Buradasınız

KİRLENMİŞ TOPRAKLARIN BİYOREMEDİASYON İLE ISLAHI

Bioremediation of Contaminated Soil

Journal Name:

Publication Year:

Abstract (2. Language): 
The world's increasing population caused the increase of soil pollution and the level of pollution increased proportional to development. Nowadays the control of wastes originated from food, health and automobile industries gained special importance. Accumulation of pollutants in soil had important effects on not only soil productivity and ecosystem functions but also human and animal health via food chain. Bioremediation, comprising the use of microorganisms for destroying the pollutants and preventing toxification, is an effective biotechnological method providing elimination of environmental pollution. This study has included information and techniques about bioremediation of polluted soils. Bioremediation is a natural and economical process so it is more advantageous than the other processes. However, longer treatment periods and lower efficiencies with high pollutant concentrations limited the use of the method.
Abstract (Original Language): 
Dünyadaki nüfus artışı, kirlenmiş toprak alanlarının çoğalmasına neden olmakta ve kirlilik seviyesi gelişmişlik ile doğru orantılı olarak artmaktadır. Günümüzde, özellikle gıda, sağlık ve otomotiv endüstrisinin hızlı büyümesi sonucu ortaya çıkan atıkların kontrolü büyük önem taşımaktadır. Kirleticilerin topraklarda birikmesinin sadece toprak verimliliği ve ekosistem fonksiyonları üzerinde değil aynı zamanda besin zinciri yoluyla hayvan ve insan sağlığı üzerinde de önemli etkileri vardır. Toksifikasyonu önlemek ve çevresel kirleticileri parçalamak için mikroorganizmaların kullanımı esasına dayanan biyoremediasyon, çevre kirliliğinin bertarafında ve önlenmesinde etkili bir biyoteknolojik yaklaşım olarak önem kazanmaktadır. Bu çalışmada kirlenmiş toprakların biyoremediasyonuna ilişkin bilgilere ve tekniklere yer verilmiştir. Biyoremediasyon doğal yollarla gerçekleşen ve maliyet açısından diğer yöntemlere göre daha ekonomik bir proses olması sebebiyle oldukça avantajlıdır. Ancak arıtım süresinin uzun olması ve yüksek kirletici konsantrasyonlarında verimli sonuçlar elde edilememesi yöntemin kullanılabilirliğini kısıtlamaktadır.
123-137

REFERENCES

References: 

1. Adeniyi, A. A., Afolabi, J.A. (2002) Determination of total petroleum hydrocarbons and heavy metals in
soils within the vicinity of facilities handling refined petroleum products in lagos metropolis. Environmental
International, 28, 79-82.
2. Aisablie, J., Balks, J.M., Foght, J.M., Waterhouse, E.J. (2004). Hydrocarbon spills on Antarctic soil: effects
and management. Environmental Science & Technology 38, 1265-1274.
3. Baker, K.H, Herson, D.S. (1994). Bioremediation. McGraw – Hill, New York
4. Balba M., Al Awadhi N., Al Daher R. (1998) Bioremediation of oil contaminated soil: Microbiological
Methods to feasibility assessment and field evaluation. Journal of Microbiological Methods, Vol. 32, 155-
164.
5. Bamforth, S., Singleton, I. (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge
and future directions. J. Chem. Biotechnol. 80:723–736.
6. Brito, E.M.S., Duran, R., Guyoneaud, R., Goñi-Urriza, M., García de Oteyza, T., Crapez, M.A.C., Aleluia, I.,
Wasserman, J.C.A. (2009) A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro,
Brazil). Marine Pollution Bulletin 58, 418–423.
7. Boopathy, R. (2000) Factors limiting bioremediation technologies. Biores. Technol., 74, 63–67.
8. Boopathy, R. (2000) Bioremediation of explosives contaminated soil. International Biodeterioration &
Biodegradation 46, 29-36
9. Chatham, J.R. (2003). Landfarming on the Alaskan North slope historical development and recent
applications. 10th Annual International Petroleum Environmental Conference, Houston, TX November 11–
14, 2003. http://ipec.utulsa.edu/Conf2003/Papers/ chatham_35.pdf.
10. Cheng, H.H., Mulla, D.J. (1999). The Soil Environment. American Society of Agronomy, Crop Science
Society of America, Soil Science Society of America, USA. Bioremediation of Contamined Soils11. Christodoulatos, C., Koutsospyros, A. (1998) Bioslurry reactors. In Biological treatment of hazardous wastes
Edited by: Lewandowsky GA, DeFilippi LJ. New York: John Wiley & Sons, Inc; 69-103.
12. Clark, B., Boopathy, R. (2007) Evaluation of bioremediation methods for the treatment of soil contaminated
with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. Journal of Hazardous Materials
143, 643–648.
13. Cookson, J.T. (1995) Bioremediation engineering: Design and Applications. Mc Graw Hill, New York Vidali
M., 2001. Bioremediation . An Overview. Pure Application Chemistry Vol. 73, no.7, pp. 1163-1172.
14. Diplock, E.E., Mardlin D.P., Killham K.S., Paton G.I. (2009). Predicting bioremediation of hydrocarbons:
Laboratory to field scale. Environmental Pollution 157, 1831–1840
15. Doelman, P., Breedveld, G. (1999). In situ versus on site practices. In: D.C. Adriano, J.-M. Bollag, W.T.
Frankenberger, Jr., and R.C. Sims, Eds. Bioremediation of Contaminated Soils, 539–558. Agronomy
Monograph 372. Soil Science Society of America, Madison, WI.
16. Dua, M., Singh, A, Sethunathan, N., Johri, A.K., (2002). Biotechnology and Bioremediation: Successes and
Limitations. Appl. Microbiol. 63:329-331.
17. EPA, 1994, Engineering Bulletin: In-Situ Biodegradation Treatment, EPA/540/S-94 1502.
18. EPA, (1995) Contaminants and Remedial Options at Select Metals-Contaminated Sites, EPA/540/R-95/512.
19. EPA. (2004-b).How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. A
Guide for Corrective Action Reviewers, EPA 510-R-04-002. Washington, DC: Office of Solid Waste and
Emergency Response,
20. Evans B.S., Dudley C.A., Klasson K.T. (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil
slurry microcosms. Appl. Biochem. Biotechnol .57–58:885-894.
21. Fuller, M.E., Manning, J.F. (2004) Microbiological changes during bioremediation of explosivescontaminated
soils in laboratory and pilot-scale bioslurry reactors. Bioresour. Technol. 91(2):123-133.
22. Glass, D.J., (1999). Economic patential of phytoremediation. In:Raskin, I., Ensley, B.D. (Eds.),
Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley&Sans, New
York, NY. pp.15-31.
23. Guerin, T.F. (2008) Ex-situ bioremediation of chlorobenzenes in soil. Journal of Hazardous Materials 154,
9–20
24. Hoeppel, R.E., Hinchee, R.E., Arthur, M.F. (1991) Bioventing soils contaminated with petroleum
hydrocarbons. Journal of Industrial Microbiology, 8, 141-146
25. Janikowski, T., Velicogna, D., Punt, M., Daugulis, A. (2002) Use of a two-phase partitioning bioreactor for
degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Appl. Microbiol. Biotechnol. 59(2–
3):368-376.
26. Jerger, D.E., Woodhill, P.M., Flathman, P.E., Exner, J. H. (1993). Solid-Phase Remediation of Petroleum
Hydrocarbon Contamined Soil: Laboratory Treatability Study Through Site Closure. P. 177-193. In: P.E.
Flathmann et.al. (ed.) Bioremediation-field Experince. Lewis publ.,Boca Raton, FL.
27. Khan, A.G., Kuek, C., Chaudhry, T.M. Khoo, C.S. and Hayes, W.J. (2000) Role of plants, mycorrhizae and
phytochelators in heavy metal contaminated land remediation, Chemosphere, 41, 197-207.
28. King, R.B., Long, G. M., Sheldon, J.K. (1992). Practical Environmental Bioremediation. Lewis Publication,
Boca Raton, FL.
29. Larsen, S.B., Karakasheva, D., Angelidaki, I., Schmidta, J.E. (2009). Ex-situ bioremediation of polycyclic
aromatic hydrocarbons in sewage sludge. Journal of Hazardous Materials 164, 1568–1572
30. Lasat, M.M. (2000) phytoextraction of metals from contaminated soil: A review of plant/soil/metal
interaction and assessment of pertinent Agronomic Issues. Journal of Hazardous Substance Research, 2 (5):
1 – 25.
31. Leahy, J.G., Colwell, R.R., (1990). Microbial degradation of hydrocarbons in the environment.
Microbiological Reviews 54, 305– 315
32. Line, M.A., Garland, C.D., Crowley, M., (1996). Evaluation of landfarm remediation of hydrocarboncontaminated
soil at the Inveresk Railyard, Launceston, Australia. Waste Management 16, 567–570.
33. Mallawatantri, A.P., B.G. McConkey, D.J. Mulla. (1996). Characterization of Pesticide Sorption and
Degradation in Macropore Linings and Soil Horizons of Thatuna Silt Loam. J. Environ. Quality 25:227-235.
34. Mc Carthy, K.,Walker, L., Vigoren, L., Bartel, J. (2004). Remediation of spilled petroleum hydrocarbons by
in situ landfarming at an Arctic site. Cold Regions Science and Technology 40, 31–39.35. Mihopoulos, P.G., Sayles, G.D., Suidon, M.T., Shah, J., Bishop. D.D. (2000) Vapor Phase Treatment of PCE
in a soil Column by Lab-Scale Anaerobic Bioventing, Water Resource, Vol:44, pp.3231 – 3237.
36. Mohan S.V., Shailaja S., Krishna M.R., Reddy K.B., Sarma P.N. (2006) Bioslurry phase degradation of diethyl
phthalate (DEP) contaminated soil in periodic discontinuous mode operation: Influence of
bioaugmentation and substrate partition. Process Biochem. 41(3): 644-652.
37. Mohan, S.V., Prasanna, D., Purushotam Reddy, B., Sarma, P.N., (2008). Ex-situ bioremediation of pyrene
contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: influence of
bioaugmentation. International Biodeterioration and Biodegradation, doi:10.1016/j.ibiod.2008.01.006.
38. Mohan, S.V., Reddy, B.P., Sarma, P.N. (2009). Ex situ slurry phase bioremediation of chrysene
contaminated soil with the function of metabolic function: Process evaluation by data enveloping analysis
(DEA) and Taguchi design of experimental methodology (DOE). Bioresource Technology 100, 164–172.
39. Mohn, W., Stewart, G.R. (2000). Limiting factors for hydrocarbon biodegradation at low temperature in
Arctic soils. Soil Biology and Biochemistry 32, 1161–1172.
40. Mohn, W.W. (2004) Biodegradation and bioremediation of halogenated organic compounds. In: Singh A,
Ward OP (eds) Biodegradation and bioremediation. Springer, Heidelberg, pp 125–148
41. Mohn, W.W., Radziminski, C.Z., Fortin, M.C., Reimer, K.J., (2001). On site bioremediation of hydrocarboncontaminated
Arctic tundra soils in inoculated biopiles. Appl. Environ. Microbiol. 57, 242–247
42. Mulligan, C.N., Yang, R.N., Gibbs, B.F., (2001), Remediation Techologies for Metal-Contaminated Soils
and Ground Water: an evaluation, Engineering Geology, Vol:60, pp.193-207.
43. Nano, G, Borroni, A, Rota, R. (2003) Combined slurry and solid-phase bioremediation of diesel
contaminated soil. J. Hazard. Mater., 100 (1-3):79-94.
44. Pardieck, D.L., Bouwer, E. J., Stone, A.T. (1992) Hydrogen peroxide use to increase oxidant capacity for in
situ bioremediation of contaminated soils and aquifers: A review. Journal of Contaminant Hydrology
Volume 9, Issue 3, 221-242.
45. Paudyn, K., Rutter, A., Rowe R.K., Poland, J.S. (2008) Remediation of hydrocarbon contaminated soils in
the Canadian Arctic by landfarming. Cold Regions Science and Technology 53,102–114
46. Petigara, B.R., Blough N.V., Mignerey, A.C. (2002) Mechanisms of hydrogen peroxide decomposition in
soils, Environ. Sci. Technol. 36, 39–645.
47. Phillips, T.M., Lee, H., Trevors, J. T., Seech A. G. (2006) Full-scale in situ bioremediation of
hexachlorocyclohexane-contaminated soil. Journal of Chemical Technology and Biotechnology, 81, 289–
298.
48. Prasanna, D., Venkata Mohan, S., Purushotam Reddy, B., Sarma, P.N., (2008). Bioremediation of anthracene
contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode. Journal of
Hazardous Materials 153, 244–251.
49. Pope, D.F., Matthews, J.E., (1993). Bioremediation using the land treatment concept. USEPA/600/R-93/164.
Robert S. Kerr, Environmental Research Laboratory. US Environmental Protection Agency, Ada, OK.
50. Raskin, I., Smith, R.D., Salt, D.E., (1997). Phytoremediation of metals using plants to remove pollutants
from the environment. Curr. Opin. Birstechnol, 8, 221 – 226.
51. Reible, D., Demnerova, K. (Eds) (2002) Innovative approaches to the on-site Assesment and remediations of
contaminated sites. Kluwer Academic Publishers. Netherlands, 67-113.
52. Reynolds, C.M., Brayel, A.W., Travis, M.D., Perry, L.B., Iskandar, I.K. (1998). United States Army Corps of
Engineers, Special Report, 97–20.
53. Rittmann, B. E. (1993) Performance standards for in-situ bioremediation. Environmen. Sci. Tech., Vol. 27,
No. 10 1974-1979.
54. Robles-González, I., Ríos-Leal, E., Sastre-Conde, I., Ferrera-Cerrato, R., Caffarel-Méndez, S., Poggi-
Varaldo, H.M. (2003) Effect of supplementary organic carbon source and electron acceptors on the removal
of 2,4-Dichlorophenoxyacetic acid in slurry bioreactors. In Proceedings 2nd International Conference on
Remediation of Contaminated Sediments, Venice, September 30 2003; Venice, Italy Edited by: Pellei M,
Porta A, Hinchee E. Battelle Press, Columbus, OH; Paper G-08, ISBN. 1-57477-143-4.
55. Robles-González, I., Fava, F., Poggi-Varaldo, H.M. (2008). A review on slurry bioreactors for
bioremediation of soils and sediments. Microbial Cell Factories , 7:5 doi:10.1186/1475-2859-7-5.
56. Robles-González, I., Ríos-Leal, E., Ferrera-Cerrato, R., Esparza-García, F., Rinderkenecht-Seijas N., Poggi-
Varaldo H.M. (2006) Bioremediation of a mineral soil with high contents of clay and organic mattercontaminated with herbicide 2,4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron
acceptor and supplementation with an organic carbon source. Process Biochem. 41(9):1951-1960.
57. Romero, A., Santos, A., Vicente, F., Rodriguez S., Lafuente, A.L. (2009) In situ oxidation remediation
technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter. Journal of Hazardous
Materials 170,627–632.
58. Sabate, J., Vinas, M., Solanas, A. M. (2004) Laboratory-scale bioremediation experiments on hydrocarboncontaminated
soils. International Biodeterioration & Biodegradation 54, 19-25
59. Salt, D.E., Smith, R.D., Raskin, I. (1998) Phytoremediation, Ann. Rev. Plant Phys. Plant Mol. Biol. 49, 643–
668.
60. Scragg, A. (1999). Environmental Biotechnology. Longman. England.
61. Singh A., Ward, O.P. (2004) Soil Biology, Volume 2, Biodegradation And Bioremediation Springer-Verlag
Berlin Heidelberg
62. Thomas, J.M., Ward, C.H. (1993). Introduced Organisms for Subsurface Bioremediation. P. 227-244. In:
R.D. Norris Et Al.(Ed) Handbook of Bioremediation. Lewis Publ. Baco Raton, FL.
63. Troy, M.A. (1994). Bioengineering of Soils and Groundwater. P. 173-201. In: K.H. Baker and D.S Herson
(ed.). Bioremediation, McGraw-Hill, New York.
64. USEPA. (1993) Bioremediation Using the Land Treatment Concept: Environmental Regulation and
Technology, EPA/600-R93/164.
65. Quinn, J.W., Reinhart, D.R., (1997). Bioremediation of diesel contaminated soil using biopiles. Pract. Period.
Hazard., Toxic, Radioact. Waste Manag. 18–25 Jan.
66. Vidali, M., (2001). Bioremediation: an overview. Pure Applied Chemistry 73, 1163–1172.
67. Von Fahnestock, F.M, Wickramanagake, G.B., Kratzke, R.J., Major, W.R. (1998) Biopile design, operation
and maintenance handbook for treating hydrocarbon-contaminated soils, Battlele Press, Columbus, OH.
68. Widrig, D.L., Boopathy, R., Manning, J.F. (1997). Bioremediation of TNT contaminated soil: A laboratory
study. Environ. Toxicol. Chem. 16, 1141–1148.
69. Wolicka, D., Suszek, A., Borkowski A., Bielecka, A. (2009) Application of aerobic microorganisms in
bioremediation in situ of soil contaminated by petroleum products Bioresource Technology 100, 3221–3227.

Thank you for copying data from http://www.arastirmax.com