Buradasınız

DİELEKTRİK YÜKLÜ BİR MİKRODALGA REZONATÖRÜNDE SONLU FARKLAR ZAMAN UZANIMI YÖNTEMİYLE DİNAMİK SICAKLIK ANALİZİ

Dynamic Heat Analysis on a Microwave Resonator Loaded with Dielectric by Finite Difference Time Domain Method

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper microwave which has prevalently started to be used in everyday life and industrial applications has been examined from the point of view of microwave heating for a rectangular microwave resonator. The main factor which determines the efficiency of microwave heating is field distributions in the resonator. Finite difference time domain method has been perceived as the numerical method owing to the advantages such as usage profits and the shortness of procedure in reaching the field distributions. Temperature analysis for two different materials has been performed with the same resonator. Expressing dielectric constants of the materials as a heat varying function, two-dimensional heating maps and onedimensional heating variations according to time for different points have been found out. The accuracy of the obtained results are presented by comparisons with the numerical results of Ansoft HFSS program. It is seen that the results of FDTD method are in good agreement with the results of Ansoft HFSS.
Abstract (Original Language): 
Bu çalışmada, günlük hayatta ve endüstriyel uygulamalarda yaygın olarak kullanılmaya başlanan mikrodalganın, mikrodalga ısıtma açısından incelemesi dikdörtgen bir mikrodalga rezonatörü için yapılmıştır. Mikrodalga ısıtmanın verimini belirleyen, rezonatör içindeki alan dağılımlarıdır. Alan dağılımlarının bulunmasında, kullanım kolaylığı ve işlem süresinin azlığı gibi sahip olduğu avantajlar sebebiyle sonlu farklar zaman uzanımı (FDTD) yöntemi nümerik metot olarak seçilmiştir. Sıcaklık analizi iki farklı malzeme için aynı rezonatörle yapılmıştır. Malzemelerin dielektrik sabitleri sıcaklığa göre değişen bir fonksiyon olarak ifade edilerek iki boyutlu sıcaklık haritaları ve farklı noktalar için tek boyutlu zamana bağlı sıcaklık değişimleri bulunmuştur. Elde edilen sonuçların doğruluğu Ansoft HFSS programı ile karşılaştırılarak verilmiştir. Sonlu farklar zaman uzanımı (FDTD) yöntemi ile elde edilen sonuçların Ansoft HFSS programı ile elde edilen sonuçlarla uyumlu olduğu görülmüştür.
1-16

REFERENCES

References: 

1. Choi, D. H. and Hoefer, J. R. (1986). The finite difference time domain method and its
applications to eigenvalue problems, IEEE Trans Microwave Theory Tech, 34, 1464-1470.
2. Crank, J., Nicholson, P. (1947). A practical method for numerical integration of solutions
of partial differential equations of heat conduction type, Proc. Camb. Phil. Soc., 43, 50-67.
3. De Pourcq, M. (1983). Field and power density calculations by three dimensional finite
elements, IEEE Proc., 130, 377-380.
4. Holland, R. (1977). Threde: A free-field EMP coupling and scattering code, IEEE
Transactions on Nuclear Science, 24, 2416–2421.
5. Kondylis, G.D., Flavis, F.D., Pottie, G.J. (2001). A memory efficient formulation of the
finite difference time domain method for the solution of maxwell equations, IEEE
Transactions on Microwave Theory and Tecniques, 49(7), 1310-1320.
6. Kriegsmann, G.A. (1992). Thermal runaway in microwave heated ceramics: A one
dimensional model, Journal of Applied Physics, 71(4), 1960-1966.
7. Liao, Z.P., Wong, H.L., Yang, B.P., Yuan, Y.F. (1984). A transmitting boundary for
transient wave analysis, Sci. Sin. Ser. A, 27(10), 1063-1076.
8. Merewether, D.E., Fisher, R., Smith, F.W. (1980). On implementing a numeric Huygen’s
source scheme in a finite difference program to illuminate scattering bodies, IEEE
Transactions on Nuclear Science, 27(6), 1829-1833.
9. Mur, G. (1981). Absorbing boundary conditions for the finite difference approximation of
the time domain electromagnetic field equations, IEEE Transactions on Electromagnetic
Compatibility, 23(4), 377-382.
10. Navarro, E.A., Such, V., Gimeno, B., Cruz, J.L. (1992). Analysis of H-plane waveguide
discontinuities with an improved finite difference time domain algorithm, IEE
Proceedings, 139(2), 183-185.
11. Olivier, J.C. and McNamara, D.A. (1992). Analysis of multiportrectangular waveguide
devices using pulsed finite difference time domain (FDTD), Electronics Letters, 28(2),
129-130.
12. Reader, H.C., Chow Ting Chan, T.V. (1998). Experimental and numerical field studies in
loaded multimode and single mode cavities, Journal of Microwave Power and
Elecromagnetic Energy, 33(2), 256-263.
13. Sunberg, M., Risman, P.O., Kildal, P.S., Ohlsson, T. (1996). Analysis and design of
industrial microwave ovens using the finite difference time domain method, Journal of
Microwave Power and Elecromagnetic Energy, 31(3), 142-157.
14. Sunberg, M., Kildal P.S., Ohlsson, T. (1998). Moment method analysis of a microwave
tunel oven, Journal of Microwave Power and Elecromagnetic Energy, 33(1), 36-48.
15. Süle, O. (2011). Dielektrik yüklü bir mikrodalga rezonatöründe elektrik alnın ve ısı
dağılımının FDTD metodu ile incelenmesi, Doktora Tezi, Uludağ Üniversitesi Görükle,
Bursa.
16. Taflove, A. and Brodwin, M.E. (1975). Numerical solution of steady-state electromagnetic
scattering problems using the time-dependent Maxwell's equations, IEEE Transactions on
Microwave Theory and Techniques, 23, 623–630.
17. Torres, F., Jecko, B. (1997). Complete FDTD analysis of microwave heating processes in
frequency-dependent and temperature-dependent media, IEEE Trans. Microwave Theory
Tech., 45, 108–117.
18. Yee, K. (1966). Numerical solution of initial boundary value problems involving
Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation,
14(3), 302–307.
19. Zhao, H., Turner, I.W. (1996). An analysis of the finite difference time domain method for
modelling the microwave heating of dielectric materials within a three dimensional cavity
system, Journal of Microwave Power and Electromagnetic Energy, 31(4), 199-214.

Thank you for copying data from http://www.arastirmax.com