Buradasınız

BENZİN VE ALKOL YAKITLARI İÇİN YAĞ FİLMİ KAYNAKLI HC EMİSYONLARININ MATEMATİK MODELLENMESİ

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Oil film on cylinder liner has been suggested as a major source of engine-out hydrocarbon emissions. So in the present study, the rate of absorption/desorption of the fuel in the oil film has been investigated numerically in a spark ignition engine by using gasoline, ethanol and methanol fuels. To aim this purpose, a thermodynamic cycle model has been developed and then a mathematical modeling for the rate of absorption/desorption of the fuel in the oil film has been developed and adapted for this thermodynamic cycle model. It was seen that the absorption/desorption mechanism of ethanol and methanol into the oil film were lower than gasoline. It was determined that the most dominant parameter of this difference was Henry’s constant, which was related to solubility. As interaction time of oil filmfuel vapor was longer at low engine speeds, the quantities of HC absorbed/desorbed increased. The quantities of HC absorbed/desorbed increased with increasing inlet pressure and compression ratio.
Abstract (Original Language): 
Silindir cidarları üzerindeki yağ filmi, hidrokarbon (HC) emisyonlarının oluşmasındaki ana kaynaklardan biri olarak bilinmektedir. Bundan dolayı sunulan çalışmada; bir buji ateşlemeli motorda benzin, etanol ve metanol kullanılması durumunda yağ filmi içine emilen/salınan yakıt miktarı sayısal olarak incelenmiştir. Bu amaç için termodinamik esaslı bir çevrim modeli geliştirilmiş ve ardından söz konusu modele yağ filmi kaynaklı HC’lerin oluşumunu hesaplayan bir model eklenmiştir. Yağ filmi tarafından emilen/salınan etanol ve metanol yakıtının benzinden daha düşük seviyede olduğu görülmüştür. Bu farklılığın en önemli parametresi çözünürlükle ilgili olan Henry sabiti olduğu tespit edilmiştir. Düşük motor devirlerinde yağ filmi yakıt buharı etkileşimine daha uzun süre tanındığı için emilen/salınan HC miktarları artmıştır. Artan sıkıştırma oranı ve giriş basıncı ile birlikte emilen/salınan HC miktarları artmıştır.
FULL TEXT (PDF): 

REFERENCES

References: 

1. Baba, Y., Suzuki, H., Sakai, Y., Wei, D.L.T., Ishima, T., Obokata T. (2007). PIV/LIF
Measurements of Oil Film Behavior on the Piston in IC Engine, SAE, Paper No: 2007-24-
0001.
2. Çengel, A.Y. and Bols, M.A. (1990). Thermodynamics an Engineering Approach,
McGraw-Hill International Editions.
3. Dhar, A., Agarwal A.K., Saxena V. (2008). Measurement of Lubricating Oil Film
Thickness Between Piston Ring-Liner Interface in an Engine Simulator, SAE, Paper No:
2008-28-0071.
4. Dwyer-Joyce, R.S., Green, D.A., Harper, P., Lewis, R., Balakrishnan, S., King, P.D.,
Rahnejat, H., Howell-Smith, S. (2006). The Measurement of Liner-Piston Skirt Oil Film
Thickness by an Ultrasonic Means, SAE, Paper No: 2006-01-0648.
5. Ferguson C.R., Kirkpatrick A. (2001). Internal Combustion Engines Applied
Thermosciences, John & Wiley Sons Inc, New York.
6. Hamrin, D.A. (1994). Modeling of Engine-Out HC Emissions for Prototype Production,
Master Thesis, Massachusetts Institute of Technology.
7. Hamrin, D.A. and Heywood, J.B. (1995). Modeling of Engine-Out Hydrocarbon Emissions
for Prototype Production Engines, SAE, Paper No: 950984.
8. Heywood, J.B. (1989). Internal Combustion Engine Fundementals, McGraw-Hill
International Editions, Singapore, 930 s.
9. Heywood, J.B. and Hochgreb, S. (1996). Measurement of Gasoline Absoption into Engine
Lubricating Oil, SAE, Paper No: 961229.
10. Karamangil, M.I., Surmen, A., and Gul, Z. (2004). In-Cylinder Expansion of Ring Crevice
and Oil film Hydrocarbons in SI Engines, Energy Conversion and Management, Vol. 45,
No: 18-19, pp. 3109-3126.
11. Karamangil, M.I., Kaynaklı, O., Sürmen, A. (2006). Parametric Investigation of Cylinder
and Jacket Side Convective Heat Transfer Coefficients of Gasoline Engines. Energy
Conversion and Management, Vol. 47: 800-816.
12. Kato, M., Fujita, K., Suzuki, H., Baba, Y., Ishima, T., Obokata T. (2009). Analysis of
Lubricant Oil Film Behavior on the Piston Surface according with Piston Shapes by means
of LIF and PIV, SAE, Paper No: 2009-28-0003.
Karamangil, M.İ. ve Yenice, S.: Benzin ve Alkol Yakıtları için HC Emisyonlarının Matematik Modellenmesi
50
13. Korematsu, K. (1990). Effects of Fuel Absorbed in Oil Film on Unburnt Hydrocarbon
Emissions from Spark Ignition Engines, JSME International Journal Series II, 33(3): 606-
614.
14. Norris, M.G., Hochgreb, S. (1994). Novel Experiment on In-Cylinder Desorption of Fuel
from the Oil Layer, SAE, Paper No:941963.
15. Salazar, V. (2008). Unburned Hydrocarbon Emission Mechanisms in Small Engines, Ph.
D. Thesis, Mechanical Engineering, University of Wisconsin – Madison, USA.
16. Schramm, J. and Sorenson, S.C. (1990). A Model for Hydrocarbon Emissions from SI
Engines, SAE, Paper No: 902169.
17. Shenghua, L., Longbao, Z., Keyu, P., Hui, Z., Xiangfeng Y. (1996). Effects of Cylinder
Lubrication Oil Film on Hydrocarbon Emissions of SI Engine, SAE, Paper No: 961913.
18. Yenice, S. (2011). Mathematical Modelling of HC Emissions from Oil Film, Master
Thesis, Uludag University.
19. Yu, S., Yi, H., Cho, H., Kim, M., Min, K. (2000). Modeling of the Dynamic Process of
Fuel Absorption/Desorption in the Oil Film in SI Engines, JSME International Journal
Series B, 43(4): 570-575.
20. Yu, S., Min, K. (2002). Effects of the Oil and Liquid Fuel Film on Hydrocarbon Emissions
in Spark Ignition Engines, Proceedings of the Institution of Mechanical Engineers, Part D:
Journal of Automobile Engineering 216: 759-771.

Thank you for copying data from http://www.arastirmax.com