Buradasınız

LED TABANLI YÜKSEK GERİLİM HATLARI İKAZ SİSTEMİ

LED-Based High-Voltage Lines Warning System

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines), remote measurement of high-voltage line currents, and local illumination of the line area.
Abstract (Original Language): 
LED tabanlı, yüksek gerilim hatlarından akım ile çalışan, hat üzerinden akan akımı bir toroid şeklinde transformatör ile akımı ışığa çeviren sistem geliştirilmiştir. Transformatörün primer sargısını yüksek gerilim hattı oluşturur. Toroid nüve iki bir birine eşit parçadan oluşur ve bu iki parça üzerinde sekonder sargıları eşit şekilde yerleştirilir. Sistem kelepçe şeklinde yüksek gerilim hattına monte edilir. Sekonder uçları ise kelepçe üzerindeki konektör bağlantısı ile seri bağlanır. Sekonder uçlarında oluşan gerilimle LED’ler beslenir. Yüksek gerilim hatlarında akan akım toroid transformatör ile gerilime çevrilir ve bu gerilim ile ışık veren LED’ler beslenir. Yüksek gerilim hatlarından akan akımı ışığa çevrilme teorisi verilmiştir. Hattan akan akımla beslenen, akımı ışığa çeviren sistem geliştirilmiştir. Sistem yüksek gerilim hatların ikazı (vinçlerin yüksek gerilim hatların altında çalışırken dikkat edilmesi ve zedelenmemesi, uçakların hatlara dokunmaması, yüksek gerilim hatlardan geçen akımların uzaktan ölçülmesi ve yüksek gerilim hat bölgesinin yerel aydınlatılması gibi uygulama alanları mevcuttur.
FULL TEXT (PDF): 
1-10

REFERENCES

References: 

1. Abdul Rahim, R., Chan, K.S., Pang, J.F. and Leong, L.C. (2005). A hardware development
for optical tomography system using switch mode fan beam projection. Sensors and
Actuators A 120 (2005), 277–290.
2. Augoustı, A.T., Grattan, K.T.V. and Palmer, A.W. (1988). Visible-LED Pumped Fiberoptic
Temperature Sensor. IEEE Transactions on Instrumentation and Measurement, Vol.
37, No. 3, September 1988, 470-472.
3. Bullough, J.D., Boyce, P.R., Bierman, A., Conway, K.M., Huang, K., O’Rourke, C.P.,
Hunter, C.M. and Nakata, A. (1999). Luminous Intensity for Traffic Signals: A Scientific
Basis for Performance Specifications. Lighting Research Center, Rensselaer Polytechnic
Institute, Troy, New York, 30th November 1999, pp.1-44.
4. Cahil, B. and El Baradie, M.A. (2001). LED-based fiber-optic sensor for measurement of
surface roughness. Journal of Materıals Processing Technology 119 (2001) 299 –306.
5. Dasgupta, P.K., Eom, I.Y., Morris, K.J. and Li, J. (2003). Light emitting diode-based
detectors: Absorbance, fluorescence and spectroelectrochemical, measurements in a planar
flow- through cell. Analytica Chimica Acta 500 (2003), 337–364.
6. Goldmeer, J.S. (2001). A Rugged LED-Based Sensor for Fire Detection. 12th International
Conference on Automatic Fire Detection, March 25-28, 2001, National Institute of
StandARDS Technology, Gaitheraburg, Maryland, U.S.A., pp. 1-13.
7. Golnabi, H. (2004). Design and operation of a fiber optic sensor for liquid level detection.
Optics and Lasers in Engineering 41 (2004) 801–812
8. Inan, U.S. and Inan, A.S. (1999). Engineering Electromagnetics. Addison-Wesley,
California, 1999, pp.540-545.
9. Komine, T. and Nakagawa, M. (2003). Integrated System of White LED Visible-Light
Communication and Power-Line Communication. IEEE Transactions on Consumer
Electronics, Vol. 49, No. 1, February 2003, 71-79.
10. Kumar, S.P., Lee, T.S., Vallabhan, C.P.G., Nampoori, V.P.N. and Radhakrishnan, P.
(2002). Design and development of an LED based fiber optic evanescent wave sensor for
simultaneous detection of chromium and nitrite traces in water. Optics Communications,
214, 25–30.
11. Li, Q., Morris, K.J., Dasgupta, P.K., Raimundo Jr., I.M. and Temkin, H. (2003). Portable
flow-injection analyzer with liquid-core waveguide based fluorescence, luminescence, and
long path length absorbance detector. Analytica Chimica Acta 479 (2003) 151–165.
12. Malinen, J., Kansakoski, M., Rikola, R. and Edison, C.G. (1998). LED-based NIR
spectrometer module for hand-held and process analyser applications. Sensors and
Actuators B 51 (1998), 220–224.
13. Musa, E. (2008). Optoelektronik, Teori ve Uygulamalar. Nobel Yayın Dağıtım, Ankara,
2008, 592 s.
14. Musayev, E. (1999). Optoelectronic circuits and Systems. Birsen Press, Istanbul, 1999,
285p.
Musa, E.: LED Tabanlı Yüksek Gerilim Hatları İkaz Sistemi
10
15. Musayev, E. (2003). New Application of Optoelectronic systems that Open Optical
channel. Uludag University Journal of the Faculty of Engineering and Architecture,
Volume 8, No 1, 2003, Bursa, pp.1-9.
16. Musayev, E. and Karlik, S. (2003). A novel liquid level detection method and its
implementation. Sensors and Actuators : A, Vol.109, Issues 1-2, Dec. 2003, pp. 21-24.
17. Musayev, E. (2004). An Optoelectronic Defect Detection Method and System Insensitive
to Yarn Speed. Journal of Optics A: Pure and Applied Optics, 6 (2004) pp.721-724.
18. Musayev, E. (2005). Optoelectronic Nondestructive Testing Techniques of Cocoon
Properties and Applications. NDT and E International, 38 (2005) pp.59-68.
19. Muthu,S., Schuurmans, F.J.P. and Pashley, M.D. (2002). Red, Green, and Blue LEDs for
White Light Illumination. IEEE Journal on Selected Topics in Quantum Electronics, Vol.
8, No. 2, March/April 2002, 333-338 .
20. O’Hagan, W. J., McKenna, M., Sherrington, D.C., Rolinsk, O.J. and Birch, D.J. (2002).
MHz LED Source for nanosecond fluorrescence sensing. Meas. Sci. Technol. 13 (Jannuary
2002) pp.84-91.
21. Perez-Jimenez, R., Rabadan, J.A. and Lopez-Hernandez, F.J. (2000). Filtered Modulation
Schemes for Short Distance lnfrared Wireless Communications. IEEE Transactions on
Consumer Electronics, Vol. 46, No. 2, MAY 2000 275-282.
22. Ribeiro, R.M., Martins, L. and Werneck, M.M. (2005). Wavelength Demodulation of
Ultrabright Gren Light-Emitting Diodes for Electrical Current Sensing. IEEE Sensors
Journal, Vol. 5, No. 1, 38-47.
23. Rys, A., Piotrowski, T. and Sobczynski, R. (1998). Light emitting diode arrays for
consumer and medical applications. Materials Science and Engineering B51 (1998) 90–93.
24. Shimazaki, Y., Watanabe, S., Takahashi, M. and Iwatsuki, M. (2000). A Portable
Spectrophotometer Using a White-Color Light-Emitting Diyote and a Charge-Coupled
Device and Application to On-Site Determination of Iron. The Japan Society for Analytikal
Chemistry, Analytikal Sciences, Vol. 16, Octobr 2000, 1091-1093.
25. Steigerwald, D.A., Bhat, J.C., Collins, D., Fletcher, R.M., Holcomb, M.O., Ludowise, M.J.,
Martin, P.S. and Rudaz, S.L. (2002). Illumination With Solid State Lighting Technology.
IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. 2, March/April 2002,
310-320.
26. Takamura, K., Saeki, Y., Kunimatsu, H. and Magatani, K. (2005). The measurement
technique of human’s bio-signals. Proceedings of the 2005 IEEE International Workshop
on Safety, Security and Rescue Robotics Kobe, Japan, June 2005, 195-200.
27. Tapia-Mercado, J., Khomenko, A.V., Cortes-Martýnez, R. and Garcýa-Zarate, M.A.
(2000). High accurate fiber sensor with two-LED light source. Optics Communications,
177, 219–223.
28. Zloto, T. and Biernacki, Z. (2003). An Optoelectronıc Sensor in the Measurements of the
Temperature of a Pump Cylınder Block. Measurement Scıence Revıew, Volume 3, Section
3, 2003, 99-102.

Thank you for copying data from http://www.arastirmax.com