Buradasınız

Konuşma Sesleri Steganalizine Gecikmeli Vektör Varyans Metodunu Kullanan Yeni bir Yaklaşım

A NEW APPROACH FOR SPEECH AUDIO STEGANALYSIS USING DELAY VECTOR VARIANCE METHOD

Journal Name:

Publication Year:

Abstract (2. Language): 
We investigate the use of delay vector variance-based features for recorded speech steganalysis. Considering that data hiding within a speech signal distorts the properties of the original speech signal, we design a steganalyzer that uses surrogate data based delay vector variance (DVV) features to detect the existence of a stego-signal. We evaluate the performance of the proposed DVV features as steganalyzer with numerical results.
Abstract (Original Language): 
Bu çalışmada gecikmeli vektör varyans metodunun, kayıt edilmiş konuşma seslerinin steganalizinde kullanımı araştırılmıştır. Konuşma sinyali içerisine veri gizlemenin orijinal ses verisinin özelliklerini bozacağı gerçeğinden göz önünde bulundurarak, vekil verileri kullanan gecikmeli vektör varyans (DVV) özelliklerindeki değişimi kontrol eden ve böylece stego-sinyalin varlığını tespit etmeye çalışan yeni bir steganalizör tasarlanmıştır. DVV özelliklerini baz alan önerilen steganalizörün performans başarımı ise nümerik değerlerle verilmiştir.
27
36

REFERENCES

References: 

1. Westfeld, A.P. (2003). Detecting Low Embedding Rates, Fabien A. P. Petitcolas (Ed.):
Information Hiding. 5th International Workshop, IH 2002 Noordwijkerhout, pp. 324–339,
Springer-Verlag Berlin Heidelberg..
2. Fridrich, J. and Goljan, M. (2002). Practical Steganalysis of Digital Images - State of the Art,
Proc. SPIE Photonics West, Vol. 4675, pp. 1—13.
3. Johnson, M.K., Lyu, S. and Farid, H. (2005). Steganalysis of Recorded Speech, Proc. SPIE
Symposium on Electronic Imaging, San Jose, CA.
4. Westfeld, A.P. and Pfitzmann, A. (1999). Attacks on steganographic systems, Information
Hiding, LNCS 1768, pp. 61-66, Springer-Verlag Heidelberg.
5. Koçal, O.H., Yürüklü, E. and Avcıbaş, İ. (2008). Chaotic-type features for Speech
Steganalysis, IEEE Transactions on Information Forensics and Security, Vol. 3, Issue 4, pp. 651-
661.
6. Altun, O., Sharma, G., Celik, M., Sterling, M., Titlebaum, E. and Bocko, M. (2005).
Morphological Steganalysis of Audio Signals and the Principle of Diminishing Marginal
Distortions”, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Proceedings. (ICASSP
'05), Vol. 2, pp. 21- 24.
7. Ozer, H., Avcibas, I.,, Sankur, B. and Memon, N. (2003). Steganalysis of Audio Based on
Audio Quality Metrics, Proc. SPIE, Security and Watermarking of Multimedia Contents V, Vol.
5020, pp. 55-66.
8. Kokkinos, I. and Maragos, P. (2005). Nonlinear Speech Analysis Using Models for Chaotic
Systems, IEEE Transactions on Speech and Audio Processing, Vol. 13, No. 6, pp. 1098-1109.
9. Banbrook, M. and McLaughlin, S., (1999). Speech Characterization and Synthesis by
Nonlinear Methods”, IEEE Transactions on Speech and Audio Processing, Vol. 7, No. 1, pp. 1-
17.
10. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J. D. (1992). Testing for
Nonlinearity in Time Series: The Method of Surrogate Data, Physica D 58. pp. 77 - 94.
11. Gautama, T., Mandic, D.P. and Van Hulle, M.M. (2003). Indications of nonlinear structures
in brain electrical activity, Physical Review E, Vol. 67, No. 046204.
12. Schreiber, T. and Schmitz, A. (1997). Discrimination power of measures for nonlinearity in
a time series, Phys. Rev. E, Vol:55. pp. 5443-5447.
13. Gautama, T., Mandic, D.P. and Van Hulle, M.M. (2004). A Novel Method for Determining
the Nature of Time Series, IEEE Transactions On Bıomedical Engineering, Vol. 51, No. 5.
14. Simmons, G. J. (1984). Prisoners' Problem and the Subliminal Channel (The), CRYPTO83 -
Advances in Cryptology, pp. 51-67.
Yürüklü, E., Koçal, O.H. ve Dilaveroğlu, E.: A New Approach For Speech Audio Steganalysis
36
15. Bender, W., Gruhl, D., Morimoto, N. and Lu, A. (1996). Techniques for data hiding, IBM
Systems Journal, vol. 35, no: 3&4, pp. 313-336.
16. Fridrich, J. and Goljan, M. (2003). Digital Image Steganography Using Stochastic
Modulation, Proc. SPIE Electronic Imaging, Santa Clara, CA, pp. 191-202.
17. Cox., I. J., Kilian, J., Leighton, F.T. and Shamoon, T. (1997). Secure spread spectrum
watermarking for multimedia, IEEE Tr. Image Proc., vol 6, pp. 1673 – 1687.
18. www.steganos.com,. Access Date: 23.Nov.2011, Subject: Steganos.
19. www.petitcolas.net/fabien/ steganography/mp3stego, Access Date: 12.Sep.2011, Subject:
Mp3stego.
20. http://steghide.sourceforge.net, Access Date: 13.Sep.2011, Subject: S. Hetzl.
21. www.heinz-repp.onlinehome.de/Hide4PGP.htm, Access Date: 12.Sep.2011, Subject:
Hide4PGP
22. http://www.mpi.nl/world/tg/corpora/timit/timit.html, Access Date: 05.Jul.2011, Subject:
TIMIT Speech Database
23. Kennel, M. B. and Abarbanel, H. D. I. (2002). False neighbors and false strands: A reliable
minimum embedding dimension algorithm”, Physical Review E, Vol. 66, 026209.
24. Hilborn, R. (2000). Chaos and Nonlinear Dynamics, Oxford University Press, 2. ed.
25. Hegger, R., Kantz, H. and Schreiber, T. (1999). Practical Implementation of Nonlinear Time
Series Methods: The TISEAN Package, Chaos, Vol. 9, pp. 413-435.
26. Pudil, P., Novovicova, J. and Kittler, J. (1994). Floating Search Methods in Feature
Selection, Pattern Recognition Lett. Vol 15, pp. 1119-1125.
27. http://eewww.eng.ohio-state.edu/~maj/osu_svm/, Access Date: 24.Sep.2011, Subject: OSUSVM
Matlab Toolbox.
28. Özer, H., Sankur, B., Memon, N. and Avcıbaş, İ. (2006). Detection of Audio Covert
Channels Using Statistical Footprints of Hidden Messages, Digital Signal Processing,
Vol.16, pp. 389-401.

Thank you for copying data from http://www.arastirmax.com