Buradasınız

TOROİDAL SÜREKLİ DEĞİŞKEN AKTARMA SİSTEMLERİ: TERMİNOLOJİ ve MEVCUT ÇALIŞMALAR

Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies

Journal Name:

Publication Year:

Abstract (2. Language): 
The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely. Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature.
Abstract (Original Language): 
Havacılık, robotik, makine ve otomotiv sanayi gibi birçok farklı alanlarda sabit çevrim oranlı hız dönüştürücülere alternatif sürekli değişken aktarma (SDA) sistemlerinin kullanımı giderek yaygınlaşmaktadır. Özellikle otomotiv sanayinde motorun sürekli optimum devirde çalışmasına imkan vererek önemli yakıt tasarrufu ve bunun sonucu daha düşük emisyon değerleri, yüksek ivmelenmeye ve sessiz çalışmaya imkan sağlamaları gibi nedenlerden dolayı son zamanlarda kullanımları artmaktadır. SDA sistemlerinin kayışlı, zincirli, bilyeli, toroidal vb. gibi birçok değişik çeşitleri mevcuttur. Bu çalışmada elastohidrodinamik ilkelere göre çalışan toroidal SDA sistemleri ele alınmış olup bunlar hakkında son yirmi yılda önem arz eden temel çalışmalar gözden geçirilmiştir. İncelenen literatürün daha iyi anlaşılmasına katkıda bulunması için konuya ilişkin terminolojiyle birlikte sistemlerin dinamiği ve kontrolüne de yer verilmiştir. Mevcut araştırma çalışmalarında bazı önemli konuların eksikliğine dikkat çekilmiş ve gelecekteki muhtemel çalışmalara işaret edilmiştir. Yazarların tespit edebildiği kadarıyla bu çalışma, toroidal SDA sistemleri üzerine Türkçe literatürde ilk inceleme çalışmasını oluşturmaktadır.
59
80

REFERENCES

References: 

1. Akehurst S., Parker, D. A., Schaff S. (2006). CVT rolling traction drives – a review of
research into their design, functionality, and modeling. Journal of Mechanical Design 128
(5) 1165–1176.
2. Asano, K. (2004). Koyo’s Approach to Continuously Variable Transmission (CVT) for
Automobiles. Koyo Engineering Journal English Edition, 168E:14-18.
3. Attia, N. A., Qin, D., Shi, W., Li, H., (2003). A Parametric Study on the Contact Stress of
Half Toroidal Continuously Variable Transmission. Journal of Chongqing University, 2(2):6-
11.
4. Attia, N. A., (2005). Predicting the Life Contact for Half Toroidal Continuously Variable
Transmission, Information Technology Journal, 4(3):222-227.
5. Belfiore, N. P., Stefani, G. D. (2003). Ball toroidal CVT: a feasibility study based on
topology, kinematics, statics and lubrication, International Journal of Vehicle Design 23 (3–
4) 304–331.
6. Bottiglione, F., Carbone, G., Novellis, L. D., Mangialardi, L., Mantriota, G. (2013).
Mechanical Hybrid KERS Based on Toroidal Traction Drives: An Example of Smart
Tribological Design to Improve Terrestrial Vehicle Performance. Advances in Tribology,
2013:1-9.
7. Brace, C., Deacon, M., Vaughan, N. D., Burrows, C. R., Horrocks, R. W. (1997). Integrated
passenger car diesel CVT powertrain control for economy and low emissions. ImechE
International Seminar S540, Advanced Vehicle Transmission and Powertrain Management,
Eindhoven, The Netherlands.
8. Brace, C., Deacon, M., Vaughan, N. D., Horrocks, R. W., Burrows, C. R. (1999). The
compromise in reducing exhaust emissions and fuel consumption from a Diesel CVT
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 19, Sayı 1, 2014
77
powertrain over typical usage cycles. Proceeding of International Congress CVT, Eindhoven,
The Netherlands.
9. Carbone, G., Mangialardi, L., Mantriota, G. (2002). Fuel consumption of a mid class vehicle
with infinitely variable transmission. SAE International Journal of Engines 110 (3) 2474–
2483.
10. Carbone, G., Mangialardi, L., Mantriota, G., SORIA, L., (2004a). Performance of a City Bus
equipped with a Toroidal Traction Drive IASME TRANSACTIONS 1 (1) 16-23
11. Carbone, G., Mangialardi, L., Mantriota, G., (2004b). A comparison of the performances of
full and half toroidal traction drives. Mechanism and Machine Theory, 39 921–942.
12. Carbone, G., Mangialardi, L., Bonsen, B., Tursi, C., Veenhuizen, P. A. (2007). CVT
dynamics: Theory and experiments Mechanism and Machine Theory 42 409-428.
13. Carbone, G., Novellis, L. D., Commissaris, G., Steinbuch, M. (2010). An Enhanced CMM
Model for the Accurate Prediction of Steady-State Performance of CVT Chain Drives.
Journal of Mechanical Design (132) 021005 1-8.
14. Dama, R., Chang, L., (1997). An efficient and accurate calculation of traction in
elastohydrodynamic contacts. Wear 206:113-121.
15. Delkhosh, M., Foumani, M. S., Boroushaki, M., Ekhtiari, M., Dehghani, M. (2011).
Geometrical Optimization of Half Toroidal Continuously Variable Transmission Using
Particle Swarm Optimization. Scientia Iranica, 18(5):1126-1132.
16. Delkhosh, M., Foumani, M. S., (2013). Optimisation of full-toroidal continuously variable
transmission in conjunction with fixed ratio mechanism using particle swarm optimisation.
Vehicle System Dynamics, 51(5) 671-683.
17. Dick, E. (2010). The role of Variable drive technology in realising fuel economy and
emissions improvements. FISITA World Automotive Congress, Budapest, Hungary.
18. Evans, S., Lee, A., Hillsden A., Nagatomi, E., (2009). The durability of traction fluid in fulltoroidal
traction drives under extreme high-temperature conditions. World Tribology
Congress, Kyoto, Japan.
19. Fang, N.,Chang, L., Webster, M. N.,Jackson, A., (2000). A non-averaging method of
determining the rheological properties of traction fluids. Tribology International, 33:751-760.
20. Fuchs R., Hasuda Y., James I. (2002). Modeling simulation and validation for the control
development of a full-toroidal IVT, Proceedings of CVT 2002 Congress, Berichte, (1709)
121–129.
21. Fuchs, R., Hasuda, Y., James, I., (2004). Dynamic Performance Analysis of a Full Toroidal
IVT A Theoretical Approach. International Continuously Variable and Hybrid Transmission
Congress. 23-25 September 2004 San Francisco, California, U.S. 04CVT-30.
22. Fuchs, R., Tamura, T., Mccullough, N., Matsumoto, K. (2009). The Making of the Full
Toroidal Variator. JTEKT Engineering Journal English Edition, 1006E:31-36.
23. Ge, D. W., Ariyono, S., Mon. D. T. (2010). A Review On Continuously Variable
Transmissions Control. National Conference in Mechanical Engineering Research and
Postgraduate Students Pahang, Malaysia, 543-554.
24. Gillespie, R. B., Moore, C. A., Peshkin, M., Colgate, J. E. (2002). Kinematic Creep in a
Continuously Variable Transmission: Traction Drive Mechanics for Cobots. Journal of
Mechanical Design 124:713-722
Yıldız, A. ve Kopmaz, O.: Toroidal Sürekli Değişken Aktarma Sistemleri: Terminoloji ve Mevcut Çalışmalar
78
25. Hamrock J. B., (1994). Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York
26. Hasuda, Y., Fuchs, R., (2002). Development of IVT Variator Dynamic Model. Koyo
Engineering Journal English Edition, 160E:24-28.
27. Iino, T., Okuda, A., Takano, M., Tanaka, M., Sakai, K., Asano, T., Fushimi, K. (2003).
Research of hydrostatic CVT for passenger vehicles, JSAE Review 24 (3) 227–230.
28. Imanishi, T., Machida, H., Tanaka, H. (1996). A Geometrical Study of Toroidal CVT -
Comparison between Half Toroidal and Full Toroidal JSAE Review 17(4):447-447(1).
29. Imanishi, T., Machida, H., (2001). Development of Powertoros Unit Half Toroidal CVT
Comparison between Half Toroidal and Full Toroidal CVTs (2). Motion and Control NSK,
10:1-8.
30. Jacod, B., Venner, C. H., Lugt, P. M. (2001). A Generalized Traction Curve for EHL
Contacts. Journal of Tribology 123 248-253.
31. Kanphet, P., Jirawattana, P., Direcksataporn B. (2005). Optimal operation and control of a
hydrostatic CVT powertrain. SAE Transactions Journal of Passenger Cars: Mechanical
Systems 114 (6) 1838–1845.
32. Kim, J., Park, F. C., Park, Y., Shizuo, M. (2002). Design and analysis of a spherical
continuously variable transmission, Journal of Mechanical Design 124 (1) 21–29.
33. Kim, S., Moore, C., Peshkin, M., Colgate, J.E. (2008) Causes of Microslip in a Continuously
Variable Transmission. Journal of Mechanical Design 130:1-9
34. Lee, A.P., Newall, J., Goto, M., Misada, Y., Ono, Y. (2004). Experimental Validation of Full
Toroidal Fatigue Life, International Continuously Variable and Hybrid Transmission
Congress 23-25 September 2004 San Francisco, California, U.S. 04CVT-21.
35. Lee, A., Hillsden, A., Ono Y., Evans, S., (2009). Full-toroidal traction drive high temperature
durability. JSME Int. Conference on Motion and Power Transmission, Proceedings of
MPT2009 Sendai, Japan.
36. Li, X. M., Guo, F., Fan, B., Yang, P., (2010). Influence of spinning on the rolling EHL films.
Tribology International 43 2020–2028.
37. Machida, H., Murakami, Y., (2000). Development of Powertoros Unit Half Toroidal CVT.
Motion and Control NSK, 9:15-26.
38. Mantriota, G. (2005). Fuel consumption of a vehicle with power split CVT system.
International Journal of Vehicle Design 37(4) 327–342.
39. Misada, Y., Oono, Y., (2005). Transmission Efficiency and Power Capasity Analysis of
Infinitely Variable Transmission Variator. Koyo Engineering Journal English Edition,
168E:43-46.
40. Miyata, S., Liu, D., (2007). Study of the control mechanism of a Half-Toroidal CVT during
load transmission. Journal of Advanced Mechanical Design, Systems and Manufacturing 1(3)
346-357.
41. Nanbu, T., Yasuda, Y., Ushijima, K., Watanabe J., Zhu, D. (2008). Increase of Traction
Coefficient due to Surface Microtexture. Tribology Letters 29:105-118.
42. Newall, J. P., Lee A. P., (2003). Measurement and Prediction of Spin Losses in the EHL Point
Contacts of the Full Toroidal Variator, Proc. 30th Leeds-Lyon Symposium on Tribology,
Lyon.
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 19, Sayı 1, 2014
79
43. Novellis, D. L., Carbone, G., Mangialardi, L. (2012). Traction and Efficiency Performance
of the Double Roller Full-Toroidal Variator: A Comparison With Half- and Full-Toroidal
Drives. Journal of Mechanical Design 134/071005 1:14.
44. Ochiai, M., (2005). Efficiency Analysis of Half-Toroidal CVT Considering Deformation of
Pivot Shaft. NSK Motion & Control 17: 48-54.
45. Ohno, N., (2007). High-pressure behavior of toroidal CVT fluid for automobile. Tribology
International, 40:233-238.
46. Osawa, M., (2005). Basic Analysis Towards Further Development of Continuously Variable
Transmission (Overview). Review of Toyota CRDL 40(3) 1-5.
47. Osumi, T., Ueda, K., Nobumoto, H., Sakaki, M.,Fukuma, T., (2004). Transient analysis of
geared neutral type half-toroidal CVT. Technical Research Center, Mazda Motor
Corporation Shinchi 3-1, Fuchu-cho, Hiroshima 730-8670.
48. Pandey, R. K.,Ghosh, M. K., (1998). A thermal analysis of traction in elastohydrodynamic
rolling/sliding line contacts. Wear, 216:106-114.
49. Patil, H. S., (2011). An Experimental Study on Full ‘Toroidal’ Continuously Variable
Transmission System. Int. J. Advanced Design and Manufacturing Technology. 5(1) 19-23.
50. Pfiffner, R., Guzzella, L., Onder C. H., (2003) Fuel-optimal control of CVT powertrains.
Control Engineering Practice 11: 329–336
51. Pohl, B., Simister, M., Smithson, R., Miller D. (2004). Configuration Analysis of a Spherical
Traction Drive CVT/IVT. International Continuously Variable and Hybrid Transmission
Congress 23-25 September 2004 San Francisco, California, U.S. 04CVT-9.
52. Raghavan, M., (2002). Kinematics of the Full-Toroidal Traction Drive Variator. Journal of
Mechanical Design, 124:448-455.
53. Roy, T. D., Zhang, N. (2004). Effect of a half-toroidal continuously variable unit on the
dynamics of a complete powertrain: a parametric free vibration analysis. Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of Automobile 128:471-484.
54. Sanda, S., Hayakawa, K., (2005). Traction Drive System and its Characteristics as Power
Transmission. R&D Review of Toyota CRDL 40 (3) 30-39.
55. Savaresi, S. M., Taroni, F. L., Previdi, F., Bittanti, S., (2004). Control System Design on a
Power-Split CVT for High-Power Agricultural Tractors. Transactions on Mechatronics (9)
3 569-579.
56. Sharif, K. J., Evans, H. P., Snidle, R. W., Newall, J. P., (2004). Modeling of Film Thickness
and Traction in a Variable Ratio Traction Drive Rig. Journal of Tribology, 126:92-104.
57. Srivastava, N., Haque, I. (2009a). A review on belt and chain continuously variable
transmissions (CVT): Dynamics and control, Mechanism and Machine Theory 44(2009) 19-
41
58. Srivastava, N., Haque, I. (2009b). Nonlinear dynamics of a friction-limited drive: Application
to a chain continuously variable transmission (CVT) system. Journal of Sound and Vibration
321:319-341
59. Tanaka, H., Eguechi, M., (1993). Stability of a Speed Ratio Conrtol Servo-mechanism for a
Half-Toroidal Traction Drive CVT. JSME International Journal, C36(1):135-140.
Yıldız, A. ve Kopmaz, O.: Toroidal Sürekli Değişken Aktarma Sistemleri: Terminoloji ve Mevcut Çalışmalar
80
60. Tanaka, H., Machida, H., Hata, H., Nakano, M. (1995). Half-Toroidal Traction Drive
Continuously Variable Power Transmission for Automobiles. JSME International Journal C-
38(4) 772-777.
61. Tanaka. H., Machida. H., (1996). Half-toroidal traction drive continuously variable power
transmission. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of
Engineering Tribology 210(3) 205-212.
62. Tanaka H. (2003). Torque control of a double cavity half-toroidal CVT, International Journal
of Vehicle Design 32 (3–4) 208–215.
63. Tevaarwerk, J. L., Johnson, K. L., (1979). The Influence of Fluid Rheology on the
Performance of Traction Drives. Journal of Lubrication Technology, 101: 266-273.
64. Webster, M.N., Lee, G.H., (2006). Effect of EHL Contact Condition on the Behavior of
traction Fluid. Tribology Transactions, 49: 439-448.
65. Yamashita, R., (2004). Analysis of Traction on Infinitely Variable Transmission (IVT). Koyo
Engineering Journal English Edition, 164E:30-34.
66. Yıldız, A., (2013). Mekanik Preslerde Kullanılmaya Uygun Bir Sürekli Değişken Aktarma
Organının Tasarımı ve Analizi. Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri
Enstitüsü, Bursa.
67. Yildiz, C., Wasfy, T. M., (2011). Time-accurate Multibody Dynamics Model for Toroidal
Traction Drives. International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, Washington D.C. USA.
68. Zhang, Y., Zhang, X., Tobler, W., (2000). A Systematic Model for the Analysis of Contact,
Side Slip and Traction of Toroidal Drives. Journal of Mechanical Design, 122: 523-528.
69. Zheng, C. H., Lim, W. S., Cha, S. W. (2011). Performance optimization of CVT for twowheeled
vehicles. International Journal of Automotive Technology 12(3) 461-468
70. Zou Z., Zhang Y., (2000). Ratio Control of Traction Drive Continuously Variable
Transmissions. Proceedings of the American Control Conference, June 2000, Chicago, USA.
71. Zou, Z., Zhang, Y., Zhang, X., Tobler. W., (2001). Modeling and Simulation of Traction
Drive Dynamics and Control. Journal of Mechanical Design, (123) 556-561.

Thank you for copying data from http://www.arastirmax.com