Buradasınız

Hadfield Çeliğinin Tornalanmasında Kesme Parametrelerinin Yüzey Pürüzlülüğü Üzerindeki Etkilerinin Yanıt Yüzey Metodu ile Değerlendirilmesi

EVALUATION OF THE EFFECTS OF CUTTING PARAMETERS ON THE SURFACE ROUGHNESS DURING THE TURNING OF HADFIELD STEEL WITH RESPONSE SURFACE METHODOLOGY

Journal Name:

Publication Year:

Abstract (2. Language): 
Hadfield steel (X120Mn12) is widely used in the engineering applications due to its excellent wear resistance. In this study, the effects of the cutting parameters on the surface roughness were investigated in relation to the lathe process carried out on Hadfield steel. The experiments were conducted at a cutting speed of 80, 110, 140 m/min, feed rate of 0.2, 0.3, 0.4 mm/rev and depth of cut 0.2, 0.4, 0.6 mm, using coated carbide tools. Regarding the evaluation of the machinability of Hadfield steel, a model was formed utilizing the response surface method (RSM). For the determination of the effects of the cutting parameters on the surface roughness, the central composite design (CCD) and variance analysis (ANOVA) were used. By means of the model formed as a result of the experimental study, it was demonstrated that among the cutting parameters, the feed rate is the most effective parameter on the surface roughness, with a contribution ratio of 90.28%. It was determined that the surface roughness increases with increasing feed rate. With respect to the effect on the surface roughness, the feed rate was followed by the cutting speed with a contribution ratio of 3.1% and the cutting depth with a contribution ratio of 1.7%.
Abstract (Original Language): 
Hadfield çeliği (X120Mn12) sahip olduğu mükemmel aşınma direncinden dolayı mühendislik uygulamalarında yaygın olarak kullanılmaktadır. Bu çalışmada Hadfield çeliğinin tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerindeki etkileri araştırılmıştır. Deneyler 80, 110, 140 m/dak kesme hızı, 0.2, 0.3, 0.4 mm/dev ilerleme ve 0.2, 0.4, 0.6 mm kesme derinliğinde kaplamalı karbür takımlar kullanılarak gerçekleştirilmiştir. Halfield çeliğinin işlenebilirliğinin değerlendirilmesinde yanıt yüzey yöntemi (RSM) kullanılarak bir model oluşturulmuştur. Kesme parametrelerinin yüzey pürüzlülüğü üzerindeki etkilerinin belirlenmesinde merkezi tümleşik tasarım (CCD) ve varyans analizi (ANOVA) kullanılmıştır. Deneysel çalışma sonrasında oluşturulan modelle, yüzey pürüzlülüğü üzerinde kesme parametrelerinden ilerlemenin % 90,28 katkı oranı ile en etkili parametre olduğu ortaya konulmuştur. İlerlemenin artmasıyla yüzey pürüzlülüğünün arttığı görülmüştür. Yüzey pürüzlülüğü üzerinde etki bakımından ilerlemeyi % 3,12 katkı oranı ile kesme hızı, % 1,7 katkı oranı ile de kesme derinliği takip etmiştir.
19
28

REFERENCES

References: 

1. Baş, D., İsmail, Boyacı, H., (2008). Modeling and Optimization I: Usability of response
surface methodology, Journal of Food Engineering, 78, 836–845.
2. Bhattacharya, B. and Sorkhel, SK. (1999). Investigation for controlled electrochemical
machining through response surface methodology based approach, Journal of Materials
Processing Technology, 86, 200–207.
3. Canadinc, D., Sehitoglu, H., Maier, H.J., Chumlyakov, Y.I., (2005). Strain hardening
behavior of aluminum alloyed Hadfield steel single crystals, Acta Materialia, 53, 1831–
1842Maratray, F. (1995) High Carbon Manganese Austenitic Steels. The International
Manganese Institute.
4. Chiang, K.T. and Chang, F.P. (2007). Analysis of shrinkage and warpage in an injectionmolded
part with a thin shell feature using the response surface methodology, Int J Adv
Manuf Technol, 35, 468–479.
5. Choudhury, I.A. and El-Baradie, M.A. (1997). Surface roughness in the turning of highstrength
steel by factorial design of experiments, Journal of Material Processing
Technology, 67, 55–61.
6. Collette, G., Crussard, C., Kohn, A., Plateau, J., Pomey, G., Weisz, M., (1957). Contribution
à ´létude des transformations des austénites à 12% Mn, Revue de Métallurgie LIV, 6, 433–
481.
7. Davim, J.P. (2003). Design of optimisation of cutting parameters for turning metal matrix
composites based on the orthogonal arrays, Journal of Materials Processing Technology,
132, 340–344.
8. Deniz, T.Ç., Çoğun, Ç., Özgedik, A., (2005). Elektro Erozyon İle İşlemede İşleme
Parametrelerinin Matematiksel Modellenmesi, Makina Tasarım ve İmalat Dergisi, 7, 11.
9. Dhanasekar, B. and Ramamoorthy, B. (2010). Restoration of blurred images for surface
roughness evaluation using machine vision, Tribology International, 4, 3268–276.
Ekici, E., Uzun, G. ve Kıvak, T.: The Surface Roughness During the Turning of Hadfield Steel
28
10. Gavriljuk, V.G., Tyshchenko, A.I., Razumov, O.N., Petrov, Y., Shanina, B.D., Berns, H.,
(2005). Corrosion-resistant analogue of Hadfield steel, Materials Science and Engineering,
420, 47–54.
11. Godfrey, C.O. and Kumar, S. (2006). Response surface methodology-based approach to
CNC drilling operations, Journal of Materials Processing Technology, 171, 41–47.
12. Grum, J. and Slabe, J.M. (2006). The use of factorial design and response surface
methodology for fast determination of optimal heat treatment conditions of different Ni–Co–
Mo surfaced layers, Journal of Materials Processing Technology, 155–156, 2026–2032.
13. Gunaraj, V. and Murugan, N. (1999). Application of response surface methodology for
predicting weld bead quality in submerged arc welding of pipes, Journal of Materials
Processing Technology, 88, 266–275.
14. Işık Y., (2007). Investigating the machinability of tool steels in turning operations, Materials
and Design, 28, 1417–1424.
15. Ko-Ta, C. (2008). Modeling and analysis of the effects of machining parameters on the
performance characteristics in the EDM process of Al2O3+TiC mixed ceramic, Int J Adv
Manuf Technol, 37, 523–533.
16. Krajnik, P., Kopac, J., Sluga, A., (2005). Design of grinding factors based on response
surface methodology, Journal of Materials Processing Technology, 162–163;629–636.
17. Mohan, Lal, D., Renganarayanan, S., Kalanidhi, (2001). A Cryogenic treatment to augment
wear resistance of tool and die steels, Cryogenics, 41, 149–155.
18. Öktem, H., Erzurumlu, T., Kurtaran, H., (2005). Application of response surface
methodology in the optimization of cutting conditions for surface roughness, Journal of
Materials Processing Technology, 170, 11–16.
19. Savaş, V. and Özay, Ç. (2009). Teğetsel Tornalama-Frezeleme Yöntemi Kullanılarak Ms 58
Pirinç Malzemesinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğüne Etkisinin
Araştırılması, Makine Teknolojileri Elektronik Dergisi, 6, 65-70.
20. Seman, M., Ganesan, G., Karthikeyan, R., Velayudham, A., (2010). Study on tool wear and
surface roughness in machining of particulate aluminum metal matrix composite-response
surface methodology approach, Int J Adv Manuf Technol, 48, 613–624.
21. Shaw, MC. (1984). Metal Cutting Principles. Oxford University Press, Oxford, NY.
22. Vitanov, V.I., Javaid, N., Stephenson, D.J., (2010). Application of response surface
methodology for the optimisation of micro friction surfacing process, Surface & Coatings
Technology, 204, 3501–3508.
23. Yang, W.H. and Tarng, Y.S. (1998). Design optimization of cutting parameters for turning
operations based on the Taguchi method, Journal of Materials Processing Technology, 84,
122–129.

Thank you for copying data from http://www.arastirmax.com