Buradasınız

İMKB ENDEKS ÖNGÖRÜSÜ İÇİN İLERİ BESLEMELİ AĞ MİMARİSİNE SAHİP YAPAY SİNİR AĞI MODELLEMESİ

ARTIFICIAL NEURAL NETWORK MODELLING TO PREDICT THE EE INDEX USING FEED FORWARD NETWORK ARCHITECTURE

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
This research is about the application of neural networks in forecasting stock market index in Istanbul Stock Exchange between 1997- 2000 and it gives a brief expressions on the mathematical methods of neural network systems and algorithms in forecasting stock market prices. The market direction is being forecasted with a thirteen variable for learning in Neural Network System and model is upgraded by the Back-Propagation Algorithm. All computations were calculated by a program called ISE Neural Network Simulator.
Abstract (Original Language): 
Bu çalışmada 1997-2000 yılları arasında Istanbul Menkul Kıymetler Borsasında gerçekleşen borsa endeks değerinin tahminine ait bir uygulama yer almaktadır. Ayrıca borsada gerçekleşen fiyatların tahmininde kullanılan nöral ağ sistemleri ve algoritmalarına ait matematiksel yöntemlerden de kısaca bahsedilmiştir. Pazarın yönü tahmin edilirken onüç değişkenli bir Nöral Ağ Sistemi kurulmuş ve sistemin Hatayı Geriye Yayma Algoritması ile değerlendirilmesi yapılmıştır. Tüm hesaplamalar İMKB Nöral Ağ Simulatörü adı verilen bir programla yapılmıştır.

JEL Codes:

REFERENCES

References: 

ADORF, H.M. (1989), Connectionism and Neural Networks: Knowledge Based Systems in Astronomy AHeck ve F. Murtagh (Ed), Berlin: Springer-Verlag.
BAKLAVACI, S. (1984),
Analysi
s of Learning Algorithms in Neural Networks. Msc Theses ITU Institute of Science and Technology, İstanbul.
Yıl:3 Sayı:5, Yaz 2010 ISSN 1307-9832
38
International Journal of Economic and Administrative Studies
BLUM, A.(1992), Neural Networks in C++. New York: John Wiley and Sons
Inc.
BÖKESOY,
A
. (1994), Interdependency Between LMKB and NYSE. (MBA Theses) Bilkent University Department of Management, Ankara.
CAO
Q.
, LEGGIO K.B., SCHNLEDERJANS M J. (2005), "A Comparison Between Fama and French's Model and Artificial Neural Networks in Predicting the Chinese Stock Market". Computers&Operations Research, Vol 32, 2499-2512
CHENG, W., MCCLAIN, B.W. and C. KELLY (1997), Artificial Neural Networks Make Their Mark As A Powerful Tool For Investors, Review Of Business, 4-9.
CİVELEK, Ö. (1999), "Dairesel Plakların Nöro Fuzzy Tekniği ile Analizi" Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi Cilt 1
Sayı 2.
DENNIS, S. ve DEVIN, Mc. A. (1997), Introduction to Neural Networks and Brainwave Simulator. The University of Queensland School of Physhology.Internet Adresi; http://www. itee.uq. edu. au/~cogs2010/cmc/chapters/IntroBrainWave, Erişim Tarihi: 05.05.2008.
DUTTA, S. and SHEKHAR, S. (1988),
Bond-Rating
: A Non-Conservative Application ofNeural Networks. Proceedings ofthe IEEE International Conference on Neural Networks 2,443-450.
FREEMAN, J. ve SAKAPURA, D. (1989), Neural Networks Algorithms Applications and Programming Techniques. Sydney: Addision Wesley Publishing.
GENÇAY,
R
. (1998), "The Predictability of Security Returns with Simple Technical Trading", Journal of Empirical Finance, Vol 5, Issue 4, 347-359.
GILES C.L., LAWRENCE S., TSOI A.C. (1997), 'Rule Inference For Financial Prediction Using Recurrent Neural Networks," Proceedings of the IEEE/IAFE Conf on Computational Intelligence for Financial Engineering, 253, IEEE.
GÖKÇAY, M. M. (1993), Yapay Sinir Ağları ve Uygulamaları (Yayınlan¬mamış Yüksek Lisans Tezi). İstanbul Üniversitesi, İstanbul.
HAMİD
S
. A., IQBAL Z. (2004), "Using Neural Networks for Forecasting Volatility of S&P500 Index Future Prices", Journal of Business Research, Vol 57, Issue 10, 1116-1125.
JAGOTA, A. (1998), Neural Computing Surveys, NCS Journal Volume 1
Internet Adresi; http://www.icsi.berkeley.edu/~jagota/NCS/, Erişim Tarihi:
06.08.2009.
Year:3 Number:5, Summer 2010 ISSN 1307-9832
Uluslararası İktisadi ve İdari İncelemeler Dergisi
39
KELLEY, M. (1998), " Cells&SCI
Back to Basics Part I", Paraplegia News Articles, PN Magazine, NewYork.
KRYZANOWSKI, L., GALLER, M and D. WRIGHT (1993), Using Artificial Neural Network to Pick Stocks. Financial Analysts Journal, 21-27.
LASKE, O. (1992), "A Conversation With Marvin Minsky", AI Magazine Vol 13 No:13.
LEIGH, W., PURVIS, R., RAGUSA, J.M. (2002a), Forecasting the NYSE Composite Index With Technical Analysis, Pattern Recognizer, Neural Network, and Genetic Algorithm: A Case Study In Romantic Decision Support, Decision Support Systems, Vol 32, Issue 4, 361-377.
LEIGHT, W., PAZ, M., PURVIS, R. (2002b), An Analysis of a Hybrid Neural Network and Pattern Recognition Technique for Predicting Short Term Increases In The NYSE Composite Index, Omega, Vol 30, Issue 2, 69-76.
LIN, F.C. and LIN, M. (1993), Analysis of Financial Data Using Neural
Nets. AI Expert ,36-41.
MALLARIS M., SALCHENBERGER, L. (1996), Using Neural Networks to Forecast the S&P100 Implied Volatility, Neurocomputing, Vol 10, Issue 2, 83-195.
MOODY, J. (1995), Economic Forecasting: Challenges and Neural Network Solutions" Computer Science Department Graduate Institute Portand. Internet Erişimi, http://neural.cse.ogi.edu; cd pub/neural/papers, Erişim Tarihi: 04.03.2009.
ORR, G. (1994), " Computation In The Brain " Neural Networks Willamette
University Salem Oregon Lecture Notes: No:1, Internet Erişimi; http://www.willamette.edu/~gorr/classes/cs449/intro.html, Erişim Tarihi: 16.03.2009.
ÖREN, T. (1990),
Advance
s in Artificial Intelligence in Software Engineering. Vol I, New York: JAI Press Inc.
ÖZDEMİR, Ş. (1996), Hisse Senedi Fiyatlarını Etkileyen Değişkenlerin İstatiksel Analizi" (Y ayınlanmamış Yüksek Lisans Tezi) Marmara Üniversitesi, İs¬tanbul.
ÖZSOY, İ., FIRAT, M (2004), "Kirişsiz Döşemeli Betonarme Bir Binada Oluşan Yatay Deplasmanın Yapay Sinir Ağları ile Tahmini", DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt 6, Sayı 1 ,51-63.
RAO, V. VE RAO, H. V. (1993), C++ in Neural Networks and Fuzzy Logic, New York: MIS Press.
SIMPSON, P. K. (1991), Neural Network Paradigm, AGARD, 179,2 (1-33).
Yıl:3 Sayı:5, Yaz 2010 ISSN 1307-9832
40
International Journal of Economic and Administrative Studies
SUNGUR, M. (1995), Hesaplama Yönüyle Yapay Sinir Ağları: Öğ renme ve Eniyileme" Mühendis Gözüyle Yapay Sinir Ağları. ODTU-TUBITAK Elekt. Mühendisleri Odası IEEE Türkiye Şubesi Bilg. Kolu Yayını.
TRIPPI, R. R. (1996),
Neura
l Networks in Finance and Investing. Irwin Professional Publishing
TRIPPI, R. and DESIENO, D. Trading Equity Index Futures With a Neural Network, Journal ofPortfolio Management, 27-33.
ULUSOY, T.
(2001)
, Yapay Sinir Ağları Kullanılarak İstanbul Menkul Kıymetler Borsası İndeks Öngörüsü. Yayınlanmamış Yüksek Lisans Tezi. Başkent Üniversitesi, Sosyal Bilimler Enstitüsü.
WALCZAK, S. (2001), An empirical analysis of data requirements for financial fo recasting with neural networks. Journal o f Management Information Systems 17 4, 203-222
YAZICI, C. A., ÖĞÜŞ, E., ANKARALI, S., CANAN, S., ANKARALI, H., ve ZEKİ AKKUŞ (2007), "Yapay Sinir Ağlarına Genel Bakış", (der.), Türkiye Kli¬nikleri J. Med Sci 27:65-71.

Thank you for copying data from http://www.arastirmax.com