Buradasınız

Giriş gösterimlerinin kendini örgütleyen ve aşağıdan yukarıya çalışan akor şemalarına etkisi

Effects of input representation on self-organizing and bottom-up model of chord schema

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Effects of input representation on self-organizing and bottom-up model of chord schema were investigated. A single layer self-organizing map was trained with 12 major and 12 minor chords. Training was repeated five times, each time with a different input representation. In this model, activation of chords is determined by the representation and activation of pitches that compose the chords. Important findings of chord perception were simulated with this model. Simulation results showed that input representation was critical to simulate all of the findings.
Abstract (Original Language): 
Giriş gösterimlerinin kendini örgütleyen ve aşağıdan yukarıya çalışan akor şemalarına etkisi incelenmiştir. Tek katmanlı kendini örgütleyen ağ 12 major ve 12 minör akor ile eğitilmiştir. Eğitim her seferinde başka bir giriş gösterimi kullanılarak beş kez tekrar edilmiştir. Bu modelde akor gösterimlerinin seviyesi sadece akoru oluşturan seslerin gösterimleri ve seviyesi ile belirlenmektedir. Akor algısının önemli bulguları bu model ile benzetilmiştir. Benzetim sonuçları göstermektedir ki bütün bulguların modellenebilmesi için uygun giriş gösterimlerinin seçilmesi gerekmektedir
376-411

REFERENCES

References: 

Atalay, N.B. (2007). The role of non-diatonic chords in perception of harmony. Unpublished
PhD thesis, Middle East Technical University, Ankara.
Atalay, N.B. Tekman, H.G. & Toiviainen, P. (2006) Priming by non-diatonic chords: The
case of the Neapolitan chord. In Proceedings of 9th International Conference on
Music Perception and Cognition, Bologna, Italy
Atalay, N.B. & Tekman, H.G. (2006) Integration of non-diatonic chords into diatonic
sequences: Results from scrambling sequences with secondary dominant chords. In
Proceedings of 9th International Conference on Music Perception and Cognition,
Bologna, Italy
Balaban, M., Ebcioglu K. & Laske, O. (1992). Understanding Music with AI. Cambridge,
MA: MIT Press
Bharucha, J.J. (1987). Music cognition and perceptual facilitation: A connectionist
framework. Music Perception, 5, 1-30.
Bharucha, J.J. (1988) Neural net modeling of music. In Proceedings of the first workshop on
AI and music, pp. 173–182. Minneapolis/St. Paul: AAAI-88
Bharucha, J.J. (1992). Tonality and learnability. In M.R. Jones & S. Holleran (Eds.),
Cognitive bases of musical communication (213-223). Washington, DC: American
Psychological Association.
Bharucha, J.J., & Krumhansl, C.L. (1983). The presentation of harmonic structure in music:
Hierarchies of stability as a function of context. Cognition, 13, 63-102.
Bharucha, J.J., & Stoeckig, K. (1986). Reaction time and musical expectancy: Priming of
chords. Journal of Experimental Psychology: Human Perception and Performance,
12, 403-410.
Bharucha, J.J., & Stoeckig, K. (1987). Priming of chords: Spreading activation or
overlapping frequency spectra. Perception & Psychophysics, 41, 519-524.
Bigand, E., & Pineau, M. (1997). Global context effects on musical expectancy. Perception
and & Psychophysics, 59, 1098-1107.
Bigand, E., Madurell, F., Tillmann, B., & Pineau, M. (1999). Effect of global structure and
temporal organization on chord processing. Journal of Experimental Psychology:
Human Perception and Performance, 25, 184-197.
Bigand, E., Poulin, B., Tillmann, B., & D’Adamo, D. (2003). Sensory versus cognitive
components in harmonic priming. Journal of Experimental Psychology: Human
Perception and Performance, 29, 159–171.
Budge, H. (1943). A study of chord frequencies (Contributions to Education No.882). New
York: Columbia University Teacher Collage.
Carpenter, G.A. & Grossberg, S. (1990). ART 3: Hierarchical search using chemical
transmitters in self- organizing pattern recognition architectures. Neural Networks, 3,
129-152.
Chew, E. (2001). Modeling Tonality: Applications to Music Cognition. In J.D. Moore & K.
Stenning (Eds.), Proceedings of the 23rd Annual Meeting of the Cognitive Science
Society, CogSci2001 (206-211). Mahwah, NJ/London: Lawrence Erlbaum Assoc.
Pub.
Eerola, T. & Toiviainen, P. (2004). MIR in Matlab: The Midi Toolbox. In Proceedings of 5th
International Conference on Music Information Retrieval (ISMIR 2004) (22-27).
Barcelona: Universitat Pompeu Fabra.
Gjerdingen, R.O. (1992) Learning syntactically significant temporal patterns of chords: A
masking field embedded in an ART3 architecture, Neural Networks, 5, 551-564.
Atalay, N., B. (2009). Effects of input representation on self-organizing and bottom-up model of chord schema.
International Journal of Human Sciences [Online]. 6:1. Available: http://www.insanbilimleri.com
410
Griffith, N. & Todd, P. (Eds.) (1994). Connection Science, 6(2-3). Special issue: music and
creativity.
Justus, T.C. & Bharucha, J.J. (2002). Music perception and cognition. In S. Yantis & H.
Passler (Eds.), Steven's Hanbook of Ecperimental Psychology, Volume 1: Sensation
and Perception (Third Edition). New York: Wiley, 2002.
Knudsen, E.I., du Lac, S. and Esterly, S.D. (1987). Computational maps in the brain. Annual
Review of Neuroscience, 10, 41-65.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43, 59-69.
Kohonen, T. (2001). Self-organizing maps (3th Ed.). Springer: Berlin.
Krumhansl, C.L. (1990). Cognitive foundations of musical pitch. New York: Oxford
University Press.
Krumhansl, C.L. (1991). Music psychology: Tpnal structures in perception and memory.
Annual Review of Psychology, 42, 277-303.
Krumhansl, C.L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126,
159-179.
Krumhansl, C.L. (2005). The cognition of tonality – as we know it today. Journal of New
Music Research, 33, 253-268.
Krumhansl, C.L. & Shepard, R.N. (1979). Quantification of the hierarchy of tonal functions
within a diatonic context. Journal of Experimental Psychology: Human Perception
and Performance, 5, 579-594.
Krumhansl, C.L., Bharucha, J.J., & Castellano, M.A. (1982). Key distance effects on
perceived harmonic structure in music. Perception and Psychophysics, 32, 96-108.
Leman, M. (1995). Music and schema theory. Berlin: Springer.
Leman, M. (1997). Music, gestalt and computing. Berlin: Springer.
Leman, M. & Carreras, (1997). Schema and Gestalt: Testing the hypothesis of psychoneural
isomorphism by computer simulation. In M. Leman (Ed.), Music, gestalt and
computing. Berlin: Springer.
Lerdahl L. (2001). Tonal Pitch Space. New York: Oxford University Press.
Longuet-Higgins, H.C. & Steedman, M.J. (1987). On interpreting Bach. In H.C. Longuet-
Higgins (Ed.), Mental processes: Studies in Cognitive Science (82–104). British
Psychological Society/MIT Press, London, England and Cambridge, Mass.
Pantev, C., Hoke, M., Lehnertz, K., Lütkenhöner, B., Anogianakis, G., Wittkowski, W.
(1988). Tonotopic organization of the human auditory cortex revealed by transient
auditory evoked magnetic fields. Electroencephaphy in Clinical Neurophysiology,
69, 160-170.
Parncutt, R. (1988). Revision of Terhardt's psychoacoustical model of the root(s) of a
musical chord. Music Perception, 6, 65-94.
Parncutt, R. (1994). Template-matching models of musical pitch and rhythm perception.
Journal of New Music Research, 23, 145-168.
Patel, A.D., Gibson, E., Ratner, J., Besson, M. & Holcomb, P.J. (1998). Processing syntactic
relations in language and music: An event-related potential study. Journal of
Cognitive Neuroscience, 10, 717-733.
Piston, W. (1978). Harmony (4th ed.). New York: Norton.
Purwins H., Grachten M., Herrera P., Hazan A., Marxer R., & Serra X. (2008).
Computational models of music perception and cognition I: Domain specific music
processing. Physics of Life Reviews, 5, 169-182.
Atalay, N., B. (2009). Effects of input representation on self-organizing and bottom-up model of chord schema.
International Journal of Human Sciences [Online]. 6:1. Available: http://www.insanbilimleri.com
411
Purwins H., Herrera P., Grachten M., Hazan A., Marxer R., & Serra X. (2008).
Computational models of music perception and cognition I: The perceptual and
cognitive processing chain. Physics of Life Reviews, 5, 151-168.
Rumelhart, D.E. & McClelland, J.L. (Eds.) (1986). Parallel distributed processing, Vol. I:
Foundations. Cambridge, MA: MIT Press.
Rumelhart, D.E. & McClelland, J.L. (1986). On Learning the Past Tenses of English Verbs,
in Parallel Distributed Processing: Experiments in the Microstructure of Cognition,
vol. 2, J.L. McClelland, D.E. Rumelhart and the PDP research Group (ed.), MIT
Press, Cambridge, 216-271.
Shepard, R.N. (1964). Circularity in judgment of relative pitch. Journal of the Acoustical
Society of America, 36, 2346–2353.
Shepard, R.N. (1982). Geometric approximations to musical pitch. Psychological Review,
89, 305-333.
Tekman, H. G., & Bharucha, J. J. (1992). Time course of chord priming. Perception &
Psychophysics, 51, 33-39.
Tekman, H. G., & Bharucha, J. J. (1998). Implicit knowledge versus psychoacoustic
similarity. Journal of Experimental Psychology: Human Perception and
Performance, 12, 252-260.
Terhardt, E. (1974). Pitch, consonance, and harmony. Journal of Acoustical Society of
America, 55, 1061-1069.
Terhardt, E., Stoll, G., & Seewan, M. (1982a). Pitch of complex signals according to virtualpitch
theory: Tests, examples, and predictions. Journal of the Acoustical Society of
America, 71, 671-678.
Terhardt, E., Stoll, G., & Seewan, M. (1982b). Algorithm for extraction of pitch and pitch
salience from complex tonal signals. Journal of the Acoustical Society of America,
71, 679-687.
Tillmann, B., Bigand, E., & Pineau, M. (1998). Effects of local and global context on
harmonic expectancy. Music Perception, 16, 99-118.
Tillmann, B., Bharucha, J.J., & Bigand, E. (2000). Implicit learning of tonality.
Psychological Review, 4, 885-913.
Tillmann B., Janata P., Birk J. & Bharucha J.J. (2003). The costs and benefits of tonal
centers for chord processing. Journal of Experimental Psychology: Human
Perception and Performance, 29, 470-482.
Todd P. & Loy G. (Eds.) (1991). Music and Connectionism. Cambridge, MA: MIT Press.
Toiviainen, P. (2000). Symbolic AI versus connectionism in music research. In E. Miranda
(Ed.), Readings in Music and Artificial Intelligence. Amsterdam: Harwood Academic
Publishers, 47-68.
Toiviainen, P. & Krumhansl, C.L. (2003). Measuring and modeling real-time responses to
music: the dynamics of tonality induction. Perception, 32, 741-766.
Van Immerseel L. & Martens, J. P. (1992). Pitch and voiced/unvoiced determination with an
auditory model, Journal of the Acoustical Society of America, 91, 3511-3526.
Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). SOM Tool-box for
Matlab 5. Technical Report A57, Helsinki University of Technology.

Thank you for copying data from http://www.arastirmax.com