Buradasınız

Öğrenci modelleme: E-öğrenme ortamlarında kullanıcıların bireysel gereksinimlerinin ayırt edilmesi

Student modeling: Recognizing the individual needs of users in e-learning environments

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Along with numerous universities and large trading companies heavily relying on e-learning environments to train their students and employees, the design and development of adaptive educational hypermedia that customize the content and navigation for each student has gained importance and priority all around the world. This study aims to describe the concept of student modeling, heart of the adaptive learning systems, and analyze the information collection, construction and updating phases of a student modeling process. In the study, the classification of student models in numerous ways is explained, and the different methods employed in the representation of information in the student model are addressed. Moreover, the problem of uncertainty, which is one of the most important challenges in the student modeling process, is mentioned, and the trends in student modeling are discussed.
Abstract (Original Language): 
Pek çok üniversite ve büyük ticari şirketin öğrencilerini ve çalışanlarını eğitmek için internet temelli eğitim ortamlarını tercih etmesiyle birlikte, her bir öğrenci için içerik ve gezinmeyi kişiselleştiren uyarlanabilir eğitsel hiper ortamların tasarlanması ve geliştirilmesi tüm dünyada önem kazanmıştır. Bu çalışma, uyarlanabilir öğrenme sistemlerinin merkezinde yer alan öğrenci modelleme kavramını tanımlayarak, öğrenci modeli oluşturma sürecindeki öğrenci hakkında bilgi toplama, öğrenci modelini yapılandırma ve öğrenci modelini güncelleme aşamalarını ayrıntılı bir şekilde ele almak amacıyla gerçekleştirilmiştir. Çalışmada öğrenci modellerinin çeşitli şekillerde sınıflandırılmasına ilişkin bilgi verilerek, bilgi gösteriminde kullanılan farklı yöntemler üzerinde durulmuştur. Ayrıca öğrenci modelleme sürecindeki en önemli zorluklardan birini oluşturan belirsizlik probleminden bahsedilmiş ve öğrenci modellerinin sahip olması gereken standartlar tartışılmıştır
429-450

REFERENCES

References: 

Alessandro, A. (2006). Inferring Dynamic Learner Behavior For User Modeling In
Continuously Adapting Hypermedia. Ph.D Thesis, University of Tennessee. Alotaiby, F. T. (2005). A Component Based Functional Model For E-Learning Systems.
Ph.D Thesis, George Mason University. Barra, M., Malandrino, D., Scarano, V. (2003). Common Web Paths in a Group Adaptive
System, HT'03, August 26-30, 2003, Nottingham, United Kingdom. Baykal, N. & Beyan, T. (2004). Bulanık Mantık İlke ve Temelleri. Ankara: Bıçaklar Kitabevi. Beaumont, I. (1994). User Modeling and Hypertext Adaptation in the Tutoring System ANATOM-Tutor. Proceedings of the Fourth International Conference on User Modelling UM'94. August 15-19, Hyannis, Massachusetts, USA. Beck, J., Stern, M. & Haugsjaa, E. (1996). Applications of AI in Education. ACM Crossroads. Special issue on artificial intelligence, 3(1), 11-15.
447
Somyürek, S.
(2009)
. Student modeling: Recognizing the individual needs of users in e-learning environments.
International Journal of Human Sciences [Online]. 6:2. Available: http://www.insanbilimleri.com/en
Bohnert, F. (2008). Constraint-Aware User Modelling and Personalisation in Physical Environments. In Adjunct Proceedings of the Sixth International Conference on Pervasive Computing (Pervasive-08), 167-172, Sydney, NSW, Australia, 2008. Brusilovsky, P. (1994). The Construction and Application of Student Models in Intelligent Tutoring Systems, Journal of Computer and System Sciences International, 32( 1), 70-89.
Brusilovsky, P. (1998). Methods and Techniques of Adaptive Hypermedia. Adaptive Hypertext and Hypermedia. P. Brusilovsky, A. Kobsa and J. Vassileva (Editors), (p. 1-44). Boston: Kluwer Academic Publishers. Butz, C.J., Hua, S. & Maguire, R.B. (2006). A Web-based Bayesian Intelligent Tutoring System for Computer Programming, Web Intelligence and Agent Systems: An International Journal, 4(1). 77-97. De Bra, P. (1996). Teaching Hypertext and Hypermedia through the Web, Journal of
Universal Computer Science, 2(12), 797-804. De Bra, P., (1998). Adaptive Hypermedia on the Web: Methods, techniques and applications,
Proceeedings of the AACE WebNet'98. 220-225, AACE, Orlando, Fl. De Bra, P. (1999). Design Issues in Adaptive Hypermedia Application Development, Proceedings of the Second Workshop on Adaptive Systems and User Modeling on the World Wide Web, 29-39, Toronto and Banff, Canada, Ebner, T., Magele, C. & Dietinger, T. (1999). Design and Implementation of Interactive, Web-Based Courses, Proceedings of WebNet 99 World Conference on the WWW and Internet, P., De Bra, J. Leggett (Editors), Charlottesville: AACE, 319-324. Ergezer, H. (2003). Yüz Tanıma: Öz Yüzler, Yapay Sinir Ağları, Gabor Dalgacık Dönüşümü
Yöntemleri.
MS Thesis, Başkent University. Frias-Martinez, E. Magoulas, G. D., Chen, S. Y., Macredie, R. D. (2005) Modeling Human Behavior in User-Adaptive Systems: Recent Advances Using Soft Computing Technique. Expert Systems with Applications. 29(2). Fröschl, C. (2005). User Modeling and User Profiling in Adaptive E-learning Systems. MS
Thesis, Graz University of Technology. Gopal, K. (2000). An Adaptive Planner Based On Learning of Planning Performance. MS
Thesis, Texas A&M University. Heckerman, D. and Shortcliffe, E.H., From certainty factors to belief networks. Artificial
Intelligence in Medicine. 4(1). 35-52. Herder, E. (2006). Forward, Back and Home Again Analyzing User Behavior on the Web.
Ph.D Thesis, University of Twente. Holt, P., Dubs, S., Jones, M., & Greer, J. (1994). The State of Student Modeling. Student Modelling. In The Key to Individualized Knowledge-Based Instruction (NATO ASI Series). J. E. Greer and G. I. McCalla (Editors), (p. 3-35). Berlin: Springer-Verlag. Höök, K. (1998). Evaluating the Utility and Usability of an Adaptive Hypermedia System. Knowledge-Based Systems, 10(5), 311-319.
IMS. (2009). IMS Learner Information Package Specification. Retrieved 03/03/2009, from http://www.imsglobal.org/profiles
448
Somyürek,
S
. (2009). Student modeling: Recognizing the individual needs of users in e-learning environments.
International Journal of Human Sciences [Online]. 6:2. Available: http://www.insanbilimleri.com/en
IEEE. (2000). IEEE P1484.2. PAPI: Public and Private Information. Presentation to LTSC Learner Model WG. Retrieved 03/03/2009, from http://ltsc.ieee.org/meeting/200003/ doc/papi--20000314--farance.ppt LTSC. (2001). IEEE P1484.1/D9. Draft Standard for Learning Technology -Learning
Technology Systems Architecture. Retrieved 03/03/2009, from http://ltsc.ieee.org/ wg1/files/IEEE_1484_01_D09_LTSA.pdf Jameson, A. (1996). Numerical Uncertainty Management in User and Student Modeling: An Overview of Systems and Issues. User Modeling and User Adaptive Interactions. 5. 193-251.
Jameson, A., Paris, C. & Tasso, C. (1997). ''Reader's Guide,'' in User Modeling, Proc of the
Sixth International Conference UM97, Springer-Verlag, New York. Jameson A. (1998). User Modeling: An Integrative Overview. Tutorial ABIS98:Workshop on
Adaptivitiy and User Modeling in Interactive Software Systems, FORWISS Report. Jensen, F. V. (1997). Bayesian Networks and Influence Diagrams. Proceedings of The 1st European Conference for Information Technology in Agriculture, 15-18 June The Royal Veterinary and Agricultural University, Copenhagen, Danimarka, (p. 429-440). Jordan, A. G. (2008). Frontiers of research and future directions in information and
communication technology. Technology in Society. 30(3-4). 388-396. Kadie, C. M.. Hovel, D and Horvitz, E.. (2001). MSBNx: A Component-Centric Toolkit for Modeling and Inference with Bayesian Networks. Microsoft Research Technical Report
Kay, J. (1995). The UM Toolkit for Cooperative User Modeling. User Modeling and User-
Adapted Interaction (UMUAI), 4(3). 149-196. Kay, J. (2000). User Interfaces for All, chapter User Modeling for Adaptation, p.p. 271-294. Human Factors Series. Lawrence Erlbaum Associates, Inc., http://www.cs.usyd.edu.au/~judy/Homec/Pubs/ch18.pdf Kelly, D. (2005). On the Dynamic Multiple Intelligence Informed Personalization of the
Learning Environment. Ph.D Thesis, University of Dublin. Knight, T. P. (2004). MARIA: A Multi-Layered Unsupervised Machine Learning Algorithm Based On The Vertebrate Immune System. PhD Thesis, The University of Kent at Canterbury.
Kobsa, A. (2001). Generic User Modeling Systems. User Modeling and User-Adapted
Instruction, 11(1-2), 49-63.
Koch, N. (2000). Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling Techniques and Development Process, Ph.D Thesis, Ludwig-Maximilians-University of Munich.
Limongelli, C., Sciarrone, F., Temperini, M., Vaste, G. (2009). Adaptive Learning with the LS-Plan System: A Field Evaluation. IEEE Transactions on Learning Technologies.
2(3). 203-215.
Mitchell, T. (1997). Machine Learning. U.S.A.: McGraw-Hill
449
Somyürek, S.
(2009)
. Student modeling: Recognizing the individual needs of users in e-learning environments.
International Journal of Human Sciences [Online]. 6:2. Available: http://www.insanbilimleri.com/en
Niedermayer, D. (2008). An Introduction to Bayesian Networks and their Contemporary
Applications. Innovations in Bayesian Networks. D. E. Holmes and L. C. Jain
(Editors). Series: Studies in Computational Intelligence, Vol. 156, 117-130. Nielsen, J. (1998), Personalization is over-rated, Retrieved 03/03/2009, from
http://www.useit.com/alertbox/981004.html. Nguyen, L. & Do, P. (2008). Learner Model in Adaptive Learning. Proceedings of World
Academy of Science, Engineering and Technology, 35, 396-401. Nokelainen, P., Silander, T., Tirri, H., Nevgi, A. & Tirri, K. (2001). Modeling Students'
Views on the Advantages of Web-Based Learning with Bayesian Networks.
Proceedings of The 10th International PEG2001 Conference, June 23-26 Tampere,
Finland.
Özmert Büğrü, E. (2003). Web-Tabanli Akıllı Eğitimde Uyarlanır İçerik Sunumu Sisteminin Bayes Ağı Yaklaşımı İle Tasarımı ve Gerçekleştirilmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi.
Rich, E. (1979). User Modeling Via Stereotypes, Cognitive Science, 3, 355-66.
Sas, C., Reilly, R.
&
O'Hare, G.
(2003)
. A Connectionist Model of Spatial Knowledge Acquisition in a Virtual Environment. Proceedings 2nd Workshop on Machine Learning, Information Retrieval and User Modeling, 9th Int. Conf. on User
Modelling, 40-48.
Shareef, A. F. & Kinshuk, D. (2003). Student Model for Distance Education System in Maldives. In Proceedings of E-Learn 2003 A. Rossett (Editor), (p. 2435-2438).
Arizona, USA: AACE.
Shute, V. J. & Psotka, J. (1996). Intelligent Tutoring Systems: Past, Present and Future. In
Handbook of Research on Educational Communications and Technology. D. Jonassen
(Editor). (p. 570-600). New York: Macmillan.
Somyürek
, S. (2008). Uyarlanabilir Eğitsel Web Ortamlarının Öğrencilerin Akademik
Başarısına ve Gezinmesine Etkisi. Yayınlanmamış Doktora tezi. Gazi Üniversitesi.
Eğitim Bilimleri Enstitüsü. Surjono, H. D. (2007). The design and implementation of an adaptive e-learning system, The
International Symposium Open, Distance, and E-learning (ISODEL 2007), Denpasar,
Indonesia, 13-15 November 2007. Surjono, H. D. & Maltby, J. R. (2003). Adaptive Educational Hypermedia Based on Multiple
Student Characteristics. Advances in Web-Based Learning - ICWL 2003. Springer
Berlin / Heidelberg. Volume 2783/2003, 442-449.
Stern, M. K. (2001). Using Adaptive Hypermedia and Machine Learning to Create
Intelligent Web-Based Courses. Ph.D Thesis, University of Massachusetts. Toprak, Ş., Ganiz, M. C, Toprak, Ş. & Arslan, A. (2003). Genetik Algoritmalarla Makina
Öğrenmesi İçin Tıbbi Verilerden Hipotez Uzayı Oluşturulması. Akademik Bilişim
2003. 3-5
Şubat 2003. Çukurova Üniversitesi ,Adana. Triantafyllou E., Demetriadis S., Pomportsis A. (2003). Adaptive Hypermedia and Cognitive
Styles: Can Performance Be Influenced?. In Proceedings of the 9th Panhellenic
Conference in Informatics, Thessaloniki.
450
Somyürek,
S
. (2009). Student modeling: Recognizing the individual needs of users in e-learning environments.
International Journal of Human Sciences [Online]. 6:2. Available: http://www.insanbilimleri.com/en
Trousse, B. (2000). Evaluation of the Prediction Capability of a User Behaviour Mining Approach for Adaptive Web Sites, In Proceedings of the 6th Computer-Assisted Information Retrieval Conference (RIAO), France.
Tsiriga, V. & Virvou, M. (2003).Initializing Student Models in Web-Based ITSs: A Generic Approach. Proceedings of the 3rd IEEE International Conference on Advanced Learning Technologies (ICALT 2003),(p. 42-46), 9-11 July, Athens, Greece.
Vrakas, D. & Vlahavas, I. P. (2008). Artificial Intelligence for Advanced Problem Solving Techniques. U.S.A.:Information Science Reference.
Webber, C. (2004). From Errors to Conceptions. An Approach to Student Diagnosis. J. C. Lester, R. M. Vicari, & F. Paraguacu, (Eds.), Intelligent Tutoring Systems: 7th International Conference, 710-719 Berlin: Springer-Verlag Berlin & Heidelberg
GmbH & Co. K.
Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge. Los Altos, CA: Morgan
Kaufmann Publishers, Inc. White, R. W., Bailey, P. and Chen, L. (2009). Predicting User Interests from Contextual
Information, SIGIR'09, July 19-23, 2009, Boston, Massachusetts, USA. Witten, I. & Frank, E. (2000). Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. San Diego, CA: Morgan Kaufmann
Publishers, Inc.
Yavuz, U. & Karaman, S. (2003). Öğretim Yazılımlarının Zekileştirilmesi: Bir Değerlendirme Makinesi. Akademik Bilişim 2003. 3-5 Şubat 2003. Çukurova Üniversitesi, Adana.
Zhang, J. & Ghorbani, A. A. (2007). GUMSAWS: A Generic User Modeling Server for Adaptive Web Systems. Fifth Annual Conference on Communication Networks and Services Research (CNSR 2007), 117-124, 14-17 May 2006, Fredericton, New Brunswick, Canada, IEEE Computer Society
Zhou, Y. & Evens, M.W. (1999). A practical student model in an intelligent tutoring system. Proceedings 11th IEEE International Conference on Tools with Artificial Intelligence, Evanston, Illinois, 13-18.
Zukerman, I. & Albrecht, D. W. (2001). Predictive Statistical Models for User Modeling. User-Adapted Interaction. 11, (1-2), 5-18.

Thank you for copying data from http://www.arastirmax.com