Buradasınız

Çokal Barajı (Çanakkale) çökme modeli ve taşkın risk analizi

Çokal Dam-break model and flood risk analysis (Çanakkale)

Journal Name:

Publication Year:

Abstract (2. Language): 
The source of the hazard which is the main factor of disasters can be made by naturally or man. These are generally independent sources, but sometimes reason of one hazard such as flood can be both naturally and man-made. Certainly, all examples in our country and the world show that, the fail of constructed structures on the rivers (e.g. dam, embankment) produce a very large amount of water and damage more than the normal river floods. In this study, based on cofferdam of Çokal Dam breaching which occurred in 16 November 2007 on the Kavak River (Çanakkale), 1D modeling of probable Çokal Dam break take in the account tectonic properties of the area and analyzing of the flood risk have been done. For these purposes, Digital Elevation Model (DEM) gathered contours from 1:25000 scaled topographic maps and GPS points, high and medium resolution satellite images, hydrological soil data gathered from soil maps scaled 1:25000, precipitation and discharge data in 30 years, technical properties of structures on the Kavak River and field measurement have been used as a database. All these data is processed and analyzed using Geographic Information System (GIS), Hec-GeoRAS and HEC-RAS hydraulic models and hydrologic model. Hence, Çokal Dam break modeling based on cofferdam breach modeling reveals that probable flood after the dam-break will affect Evreşe Plain and the people which get livelihood from the plain. General probable lost in agricultural product after probable flood reaches TL 12 million. Thus, as a result of human interventions to the nature will cause great harm to himself again.
Abstract (Original Language): 
Afetlerin oluşmasında önemli etkiye sahip tehlikeler, doğa kaynaklı olabildikleri gibi insan kaynaklı da olabilmektedir. Bunlar genelde birbirinden bağımsız tehlike türleri iken bazen taşkınlar gibi kaynağını hem doğadan hem insandan alan tehlikeler olarak da karşımıza çıkmaktadır. Şüphesiz ki ülkemizdeki ve dünyadaki örneklerin tamamı ortaya koymuştur ki, insan kaynaklı olarak akarsular üzerine inşa edilen yapıların (baraj, set vb.) bir şekilde zarar görmesiyle sonuçları normal taşkınlardan da fazla olmuştur. Bu çalışmada, 16 Kasım 2007’de Kavak Deresi (Çanakkale) üzerindeki Çokal Barajı memba batardosunda meydana gelen çökmenin oluşturduğu taşkına bağlı olarak, günümüz itibariyle halen yapımına devam edilen Çokal Barajı’nın sahanın tektonik özellikleri de göz önünde tutularak, olası çökmesinin tek boyutlu (1D) hidrolik modellemesi yapılmış ve buna bağlı taşkın risk analizi gerçekleştirilmiştir. Çalışmada altlık verileri, 1:25000 ölçekli topografik eşyükselti eğrisi ve saha GPS verileriyle üretilmiş Sayısal Yükselti Modeli (SYM), yüksek ve orta çözünürlüklü uydu görüntüleri, hidrolojik toprak verileri, 30 yıllık yağış ve akım verileri, Kavak Dere üzerindeki yapılara ait teknik özellikler ve arazi ölçümleri oluşturmaktadır. Bütün bu altlık veriler Coğrafi Bilgi Sistemleri (CBS), Hec-GeoRAS ve HECRAS hidrolik modelleri ve hidrolojik modellerde kullanılmış ve analiz edilmiştir. Sonuç olarak, memba batardosu çökme modeli temelinde oluşturulan Çokal Barajı çökme modeli göstermiştir ki, olası baraj çökmesi sonucunda oluşacak taşkın, Evreşe Ovası ve buradan geçimini sağlayan insanlar için büyük zararlar ortaya çıkartacaktır. Sadece tarım ürünleri üzerindeki genel tahmini kayıplar 12 milyon TL yi bulmaktadır. Böylelikle insanın doğaya yapmış olduğu müdahale sonucunda yine insanın kendisi büyük zararlar görecektir.
659-698

REFERENCES

References: 

Ağıralioğlu, N. (2007a). Baraj Planlama ve Tasarımı, Cilt 1, Su Vakfı Yayınları, İstanbul.
Ağıralioğlu, N. (2007b). Baraj Planlama ve Tasarımı, Cilt 3, Su Vakfı Yayınları, İstanbul.
Aksoy, M.E., Meghraoui, M., Vallee, M., and Çakır, Z. (2010). Rupture characteristics of the
A.D. 1912 Mürefte (Ganos) earthquake segment of the North Anatolian fault (western
Turkey), GSA, Geology, v. 38, no. 11, p-991-994.
Ambraseys, N.N., and Finkel, C.F. (1987) The Saros- Marmara earthquake of 9 August 1912:
Earthquake Engineering & Structural Dynamics, v. 15, p. 189–211, doi: 10.1002/eqe.
4290150204.
Beven, K.J. (2001). Rainfall-Runoff Modelling, John Wiley & Sons, LTD, England.
CEIWR-HEC. (1985). AGDAM Agricultural Flood Damage Analysis-User’s Manuel, US
Army Corp Engineers, USA.
Costa, J.E. (1985). Floods from Dam Failures, US Geological Survey, Open-File Report 85–
560, Denver, Colorado, 54.
Das, S., and Paul, P.K. (2006). “Selection of site for small hydel using GIS in the Himalayan
region of India”, Journal of Spatial Hydrology, Vol. 6, No.1.
Dinçergök, T. (2009). The Role of Dam Safety in Dam-Break Induced Flood Management,
River Basin Flood Management, Proceedings Book, p 682-697.
Dutta, D., Herath, S., ve Musiake, K. (2006). An application of a flood risk analysis system
for impact analysis of a flood control plan in a river basin, hydrological processes 20,
1365-1348.
Evans, S.G. (1986). The Maximum Discharge of Outburst Floods Caused by the Breaching of
Man-made and Natural Dams, Canadian Geotechnical Journal, 23(3), 385–387.
Fread, D.L. (1991). The News Dambrk Model: Theoretical Background/User Documentation,
National Weather Services, NOAA, Maryland, USA.
Fread, D.L. (2000). “NWS FLDWAV Model: Theoretical Description,” Hydrologic Research
Laboratory, Office of Hydrology, National Weather Service, NOAA, March 6 2000.
Froehlich, D.C. (1995a). Embankment Dam Breach Parameters Revisited, Proceedings of the
1995 ASCE Conference on Water Resources Engineering, San Antonio, Texas.
August. p. 887-891.
Froehlich, D.C. (1995b). Peak Outflow from Breached Embankment Dam, Journal of Water
Resources Planning and Management, vol. 121, no. 1, p. 90-97.
Gumbel, E.J. (1958). Statistics of Extremes, Columbia University Press, New York.
Hagen, V.K. (1982) Re-evaluation of Design Floods and Dam Safety, Proceedings of the 14th
International Commission on Large Dams Conference, Rio de Janeiro, Brazil.
Hecker, O. (1920). Mitteilungen über Erdbeben im Jahre 1912: Jena, A. Sieberg, Hauptstation
für Erdbebenforschung, 26 p.
Horritt, M.S. and Bates, PD. (2002). Evaluation of 1D and 2D numerical models for
predicting river flood inundation, Journal of Hydrology, 268, 87-99.
Hydrologic Engineering Center (HEC) (2008). HEC-RAS River Analysis System, User’s
Manual, Ver. 4.0, U.S. Army Corps of Engineers, Davis, CA.
IACWD (Interagency Asvisory Committee on Water Data). (1982). Guidelines for
Determining Flood Frequency, Bulletin#17B of Hydrology Subcommittee, Office of
Water Data Coordination, US Geolohisal Survey, Reston,V.A.
ICOLD. (1973). Lessons from Dam Icidents, Abridged Edition. USCOLD, Boston,
Massachusetth,.
ITC. (2006). “Determination of peak runoff”, www.itc.nl/ilwis/applications/application11.asp
Johnson, R.R. (1998). “An investigation of curve number applicability to the watersheds in
excess of 2500 hectares (250 km2)”, Jornal of Environmental Hydrology, Volume 6.
Kirkpatrich, G.W. (1977). Guidelines for Evaluating Spillways Capacity, Water Power and
Dam Construction, 29(8), 29–33.
McDonald, Thomas C., and Monopolis, J.L. (1984). Breaching Characteristics of Dam
Failures, Journal of Hydraulic Engineering, Vol. 110, No. 5, p. 567-586.
Özdemir, H. (2007a). Farklı Senaryolara Göre Taşkın Risk Analizi: Havran Çayı Örneği
(Balıkesir), TMMOB Afet Sempozyumu Bildiriler Kitabı, sy. 155-166, Ankara
Özdemir, H. (2007b). SCS CN Yağış-Akış Modelinin CBS ve Uzaktan Algılama
Yöntemleriyle Uygulanması: Havran Çayı Havzası Örneği (Balıkesir). Ankara
Üniversitesi Coğrafi Bilimler Dergisi, Cilt 5, Sayı 2, 1-12, Ankara.
Özdemir, H., Akbulak, C., ve Özcan, H. (2011). Çokal Barajının (Çanakkale) Çökme
Modellemesi ve Taşkın Risk Analizi, İ.Ü. Bilimsel Araştırma Projeleri, YADOP 4400,
İstanbul.
Pataki, G.E and Cahill, C.H. (1989). Guidelines for Design of Dams, New York State
Department Of Environmental Conservatin Division Of Water Bureau Of Flood
Protection Dam Safety Section, USA.
Penning-Rowsell, E.C., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., Coker,
A., Green, C. (2003). The Benefits of flood and coastal defence: techniques and data
for 2003, Flood Hazard Research Centre, Middlesex University.
Ramsbottom, D., Floyd, P., and Penning-Rowsell, E. (2003). Flood Risks to People Phase 1,
R&D Technical Report FD2317. UK.
Reiter, P. (2000). International methods of Risk Analysis, Damage Evaluation and Social
Impact Studies concerning Dam-Break Accidents, Helsinki: PR Water Consulting.
Rico, M.; Benito, G.; Diez-Herrero, A. (2008a). Flood from tailing dam failures. J. Hazard.
Mater., 154 (1-3), 79-87.
Rico, M., Benito, G., Salgueiro, A. R., Diez-Herrero, A. (2008b). Reported tailing dam
failures: A review of the european incidents in the worldwide context. J. Hazard.
Mater., 152 (2), 846-852.
Schwab, G.O., Fangmeier, D.D., Elliot, W.J., and Freveret, R.K. (1993). Soil and Water
Conservation Engineering, J. Wiley and Sons, NewYork, 507 pp.
SCS. (1964, 1972). Hydrology – National Engineering Handbook, Supplement A, Section 4,
Chapter 10, Soil Conservation Service, USDA, Washington, D.C.
SCS. (1981). Simplified Dam-Breach Routing Procedure, Technical Release No.66 (Rev.1),
December 1981, p39.
Singh, K.P., and Snorrason, A. (1984). “Sensitivity of Outflow Peaks and Flood Stages to the
Selection of Dam Breach Parameters and Simulation Models,” Journal of Hydrology,
vol. 68, p. 295-310.
Satrapa, L., Fosumpaur, P., Horsky, M. (2005). Methods of flood damage evaluation,
MSPowerPoint Presentation.
Tüysüz, O., Barka, A. and Yiğitbaş, E. (1998). Geology of Saroz Graben and its implications
for the evolution of the North Anatoloian fault in the Ganos-Saroz region,
northwestern Turkey, Tectonophysics, 293, 105-126.
USACE (US Army Corps of Engineers). (1993). Engineering and Desing Hidrologic
Frequency Analysis, Department of Army, EM-1110-2-1415, USA.
USACE (US Army Corps of Engineers). (1996). Engineering Manual . EM 1110-2-1619.
Engineering and Design . Risk based analysis for flood damage reduction studies.
USACE (US Army Corps of Engineers). (2010). HEC-RAS River Analysis System,
Hydraulic Reference Manuel, USA
U.S. Bureau of Reclamation. (1982). Guidelines for Defining Inundated Areas Downstream
from Bureau of Reclamation Dams, Reclamation Planning Instruction No. 82-11, June
15, 1982.
U. S. Bureau of Reclamation. (1988). “Downstream Hazard Classification Guidelines,”
ACER Technical Memorandum No. 11, Denver, Colorado, December 1988, 57 p.
USDA. (1985). National Engineering Handbook, Section 4: Hydrology. U.S. Government
Printing Office, Washington, DC.
Ündül, Ö. (2001). Çokal Baraj Yeri ve Göl Alanının (Gelibolu) Jeomühendislik İncelemesi,
İ.Ü. Fen Bilimleri Enstitüsü, Basılmamış Yüksek Lisans Tezi, İstanbul.
Von Thun, J.L., and Gillette, D.R. (1990). Guidance on Breach Parameters, Unpublished
Internal Document, US. Bureau of Reclamation, Denver, Colorado, 17 pp.
Wahl, T.L. (1998). Prediction of Embankement Dam Breach Parameters, A literature Rivew
and Needs Assessment, Dam Safety Research Report, USA.
Wallingford, H.R. (2006a). Flood Risk to People Phase 2, FD2321/TR1 Guidance Document,
Defra/Environmental Agency, UK.
Wallingford, H.R. (2006b). Flood Risk to People Phase 2, FD2321/TR2 Guidance Document,
Defra/Environmental Agency, UK.
www.dsi.gov.tr/bolge/dsi11/tekirdag Erişim tarihi 10 Aralık 2010.
www.tarim.gov.tr/TurkiyedeTarim,Tarim_Takvim.html Erişim tarihi 15 Mart 2011.
Wanielista, M., Kersten, R., and Eaglin, R. (1997). Hydrology: Water Quantity and Quality
Control, John Wiley & Sons, Ltd.

Thank you for copying data from http://www.arastirmax.com