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Some Properties for Certain General Integral Operator
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Abstract. In this paper we consider some subclasses of the class of analytic functions defined in the
open unit disk of the complex plane and we study some properties for an integral operator on these
classes. Particular results are presented.

2010 Mathematics Subject Classifications: 30C45
Key Words and Phrases: integral operator, analytic function, convex function, starlike function

1. Introduction

Let ./ denote the class of the functions f of the form
o0
f(2) :z+2anz”
n=2

which are analytic in the open unit disk U = {z € C : |z] < 1}. We also denote by S the
subclass of .¢/ consisting of functions which are univalent in U.
A function f € .« is said to be convex of order a, 0 < a < 1 if it satisfies the condition

zf"(2)
Re(f’(z) +1)>a, (z€lU)

and we denote this class by K(a).
A function f € ./ is said to be starlike of order a, 0 < a < 1 if it satisfies the condition

zf'(2)
Re( 110 ) >a, (z€lU)

and denote this class by S*(a).
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Let A (p) be the subclass of .«/ consisting of the functions f which satisfy the inequality

Re (1 + Zj:/zg)) <p,p>1, (ze€l).

This class was studied by S. Owa and H.M. Srivastava in [5].

A. Mohammed et al. considered in [4] .# T (u,[3) the subclass of .« consisting of the
functions f which satisfy the inequality

ZAON 2f'(@)
f&) f&)

Also, Frasin and Jahangiri introduced in [2] the family B(u,a), 4 > 0, 0 < a < 1,
consisting of the functions f which satisfy the condition

/ 2 H
76 (75) 1
f(2)

This family is a comprehensive class of analytic functions that includes various classes of
analytic functions. We have %(1,a) = S*(a) and (0, a) = R(a).
Let —S,(a) be the subclass of .¢/ consisting of the functions f which satisfy the inequality
z / /
Re( f(z)_a)zﬁ 2f'(z)
f(2) f(=)

This class was studied by M. Darus in [1].
A function f is said to be in the class KD(u, ) if it satisfies the inequality

P 1z P 2 12 o
Re f,()+1 > 4 f/()
f'(=) f'(=)
This class was studied by S. Shams et al. in [6].
In the present paper we study some properties for the integral operator G, defined by

+1

<p

u ,0<B<1,0<5u<l1, (zel).

<l—a, (z€l).

1}, -1<a<1,>0, (zeU).

+a,u>0,0<a<1, (zel).

Gn(z):J ()" (g{(e))mdt 1)
0 i=1

i=
on the classes presented above.
In order to prove our main results we need the following lemma:

Lemma 1 (General Schwarz Lemma [3]). Let the function f be regular in the disk
Ur = {z € C: |z| <R}, with |f(2)| < M for fixed M. If f has one zero with multiplicity order
bigger than m for z =0, then

M
If ()l < e 2| (z € Ug).

The equality can hold only if

0 M
ORTE

where 0 is constant.
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2. Main Results

Theorem 1. Let y; €R, y; > 1, n; €R, n; >0 foralli=1,2,...,n, the functions
fie MT (Wi, Bi), 0<P; <1, 0<u; <land g; € . foralli =1,2,...,n satisfying the
conditions

£2) |
<M;, (M;=z1)foralli=1,2,...,n (2)
fi(2)
and
gi/ (Z) N;, (N;>1)foralli=1,2,. (3)
gi(Z)

Then the integral operator G,, defined in (1) is in A (p), where

p=1 +Z [(yi = DB M; + B; + 1) + n;N; ]
im1

Proof. From (1), we have

G2) = (RN (g™
i=1

and

G &) & zgl()
G (2) ‘;(’“ F.(2) +;”l HOR

Thus, we have

ZG:I/(Z) B n zfi/(z) n Zgl/(z)
Re ( G,/I(Z) + 1) —;(yi —1)Re (—fi(z) ) +;niRe ( i,(z) ) + 1.

1

Since Re w < |w|, then
i@ & |28()

2G”(2) ) |
Re(G;(z> ) Z(‘ fl() +Z"‘ 2.(z)

Using that f; € £ F (u;,5;) foralli=1,2,...,n in relation (4), we obtain

4)

2G)(2) 1 zf/ (z) /(Z)
Re( G, “) SZ(“_”( i@ “) *Z £
<Z(n 1 ) +Z( yi—1
fi(@)
n /(Z)

Hm

gi(2)
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and using the hypothesis (2) and (3) in this last relation we have

Re (Z(C;z(g) + 1) < ; [(ri = DBiwM; + B + D +mN; ] +1=p

This completes the proof of our theorem. O

Lettingn=1,y;=v,m =1 M =M,N; =N, u; =u, =0, f1=f and g, = g in
Theorem 1, we have

Corollary 1. et y € R, v > 1, n € R, 1 > 0, the functions f € AT (u,B), 0 < B <1,
0 <u <1and g € .« satisfying the conditions

f'(z)
f(z)

Then the integral operator

g"(2)
g'(z)

<M, (M >1)and

<N, (N>1).

Gy(2) = JO (F) (g'(e)"de
isin & (p), where p =(y — 1)(BuM + S+ 1)+ nN + 1.
Letting y = 2, 1 = 1 in Corollary 1, we have
Corollary 2. Let f € £4T(u,B),0<B <1, 0=<u<1and g € . satisfying the conditions

f'(2) g"(z)
f(®) g'(2)

Then the integral operator

<M, (M >1)and <N, (N>1).

G(z) = f f()g'(t)de
0

isin A (p), where p = B(uM + 1)+ N + 2.

Theorem 2. Let y; €R, y; > 1, n; €R, n; >0foralli=1,2,...,n, the functions
fi € Bu,a;), uj = 0, 0 < a; < 1 satisfying the conditions |f;(z)] < M;, (M; > 1) and
g €N (pi)pi>1forali=1,2,...,n If

n

Z [(Yi -DE2- ai)MiMi_l +ni(p; — 1)} <1,

i=1
then the integral operator G, defined in (1) is in K(56), where

n

5=1-3 [(i-D@-a)M" ™ +ni(p; ~ 1] .

i=1
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Proof. From (1), we have

Gz =] [ ()" (g™
i=1

and
3Gy (2) i( @) in»zgﬂz)
Gy (2) oDy T A Gy
Hence
5Gy(2) b @[
(OS5 (o () 1] 1) 2
G,(2) Z ! fi@® z o
5
+2n:n~ ( A 1)
=\ &
Since |f;(2)| < M, foralli=1,2,...,n, applying the General Schwarz Lemma, it results
fl() <M, foralli=1,2,. (6)

From (5) and (6), using that f; € B(u;,a;) and g; € A/ (p;) foralli=1,2,...,n, we obtain

ZG//(Z) n B
G @) Z [(Yl 1)(2 - a)M;" 1+m(pi—1)] =1-6
This completes the proof of our theorem. O

Lettingn:l: Yi=v.m=1n, M] :M7 U =u, a; =a, P :P:flzf andglzgin
Theorem 2, we have

Corollary 3. Let y € R, y > 1, n € R, n > 0, the functions f € B(u,a), u >0, 0<a <1,
satisfying the condition |f(z)| <M, (M >1)and g € #(p), p > 1. If

-DR2-a)M* 1+np-1)<1
then the integral operator
Gi(2) = fo (F() (g'(e)dt
is in K(8), where § =1+ (y — 1)(a — 2)M*~ 1 + n(1 — p).

Letting u; =0 and M; = M for alli =1,2,...,n in Theorem 2, we have
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Corollary 4. Lety; € R, y; > 1, n; €R, m; >0 foralli =1,2,...,n, the functions f; € R(a;),
0 < a; < 1, satisfying the conditions |f;(z)] < M, (M > 1) and g; € A (p;), p; > 1 for all
i=12,...,n. If

n

1
Z [(Yi — D2 —a)r +nilei - 1)} <1

i=1
then the integral operator G, defined in (1) is in K(5), where

n

1
0=1- Z |:(Yi -1)(2- ai)M +ni(pi — 1)} .

i=1
Letting u; =1 and M; = M for alli =1,2,...,n in Theorem 2, we have

Corollary 5. Let y; €R, y; > 1, n; €R, n; >0 foralli =1,2,...,n, the functions f; € S*(a;),
0 < a; < 1, satisfying the conditions |f;(z)] < M, (M > 1) and g; € A (p;), p; > 1 for all
i=12,...,n. If

n
Dl DE-a)+np; — 1] <1
i=1
then the integral operator G, defined in (1) is in K(5), where
n
§=1-Y [(ri—D2-a)+np;—1)].
i=1
Theorem 3. Lety; €R, y; > 1, n; €R, n; >0 foralli=1,2,...,n, the functions

fi€pi—=S,(e) -1 <¢ <1, p; >0and g € KD(u;,a;), 0 < a; < 1, y; > 0 for all
i=12,....,n If

0< Z [A-y)e+m(1—0a)] <1

i=1
then the integral operator G, defined in (1) is in K(&), where

5§=1 +Z [(yi = De; +ni(e; — 1]
i=1

Proof. Following the same steps as in Theorem 1, we obtain that

2G/(2) & f() o z2g/(2)
G/ (2) Z(l =) Zl'” 2(2)

= [ ( fil) ) +(ri - 1)81}
fi(=)

+Z (S0 e

2| o | +1.

and hence

zG/ (z)
G (2 )
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We calculate the real part from both terms of the above expression and obtain

2G(2) R 2f/(2) .
Re ( e + 1) _;(yi — 1)Re ( o ei) +;(Y1~ — 1)

e . %
+ iRe i +1]— i + 1.
;n ( 8i(z) ) ;n
From (7), using that f; € p; —S,(¢;) and g; € KD(u;, ;) for alli =1,2,...,n, we have
ZG//(Z) ) n Zf-/(Z) n
Re 41> (y;—Dp; | —==——=—-1|+ ) (y;—1)e
( G, (=) ; l | fi®) ; l l
S z8{(2) -
+ > i | ui|l— a; |—> ni+1
; A ( 1 gl/(Z) A ; A
Then
ZG//(Z) ) n
Re| ——+1]|>) (y;— Dp; + ) (r
( G (=) 2= fl( ) Z T
n /( ) n (8)
28! (2
+ > i ) Zm (a;—1) +1.
i=1
2f/(2) 2g/(2)
Since (y; — 1)p; —1|>0and n;u; |—-——|=0foralli=1,2,...,n, we obtain from
fi(z) gi(z)
(8) that
ZGN(Z) n
Re ( G’n(z) +1]> Z [(y;—De;+mi(a; —1)] +1=6.
n i=1
This completes the proof of our theorem. O

Lettingn=1, 7, =y, m =M p1=p, &1 =6 U =W, a; =0, f =f and g =g in
Theorem 3, we have

Corollary 6. Let y €R, y > 1, n €R, n > 0, the functions f €p —S,(¢), - 1<e<1,p >0
and g €KD(u,a), 0<a<1, u=>0.1If

O0<(1-y)k+nm1-a)<1
then the integral operator .
Gi(z) = L (F() (g’ (0)"de
isin K(6), where 6 =1+ (y — De+n(a—1).

Letting y = 2 and 1 = 1 in Corollary 6, we have
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Corollary 7. Let the functions f € p —S,(¢), -1 <e <1, p>0and g €KD(u,a), 0 <a <1,
uw=0.If
0<l—-a-—-¢<1

then the integral operator
2z
G(z) = f f(0)g'(t)dt
0

isin K(5), where 6 = ¢+ a.
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