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ABSTRACT: The forthcoming wireless communication networks, commonly referred to as fourth generation (4G) systems, are 
expected to support extremely high data rates as close as possible to the theoretical channel capacity while satisfying quality 
of service (QoS) constraints. The development of these systems must take into account the problem of limited radio 
resources and the harshness of wireless channel conditions. Two emerging technologies that are potential candidates for 4G 
wireless networks are multiuser multiple-input multiple-output (MU-MIMO) wireless systems and orthogonal frequency 
division multiplexing (OFDM). The MU-MIMO technique allows the spatial multiplexing gain at the base station to be 
obtained without the need for multiple antenna terminals, thereby allowing multiple users to receive data over the downlink 
simultaneously. The use of OFDM provides protection against intersymbol interference (ISI) and allows high data rates to be 
achieved. Linear precoding schemes for MU-MIMO wireless systems, e.g., zero forcing beamforming (ZF-BF) and minimum 
mean squared error beamforming (MMSE-BF), have been widely concerned for their high performance in single-carrier MU-
MIMO networks where a base station attempts to communicate simultaneously with multiple users. In this paper, we 
evaluate and extend the ZF-BF and MMSE-BF schemes from single-carrier MU-MIMO to multicarrier MU-MIMO architecture 
based on OFDM, i.e., MU-MIMO-OFDM system, assuming the availability of channel state information (CSI) at the 
transmitter. Numerical results demonstrate that both introduced linear precoding strategies provide a higher sum-rate 
capacity improvement compared to a conventional MU-MIMO-OFDM system where the users are served on a time division 
multiple access (TDMA) basis. 
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1 INTRODUCTION 

The main challenge of the forthcoming wireless communication systems, commonly referred to as fourth generation (4G) 
systems, is to satisfy the increasing demand for high data rates while satisfying quality of service (QoS) constraints. In 
particular, the use of multiple-input multiple-output (MIMO) wireless systems can improve the capacity by a factor 
dependent on the minimum number of transmit and receive antennas, if perfect channel state information (CSI) is available 
at the base station [1]. On other hand, orthogonal frequency division multiplexing (OFDM) is a popular method for high data 
rate wireless transmission. It is an effective technique to mitigate the effects of intersymbol interference (ISI) in frequency-
selective channels by converting a frequency-selective channel into a parallel collection of frequency flat subchannels [2]. 
Combining MIMO antenna configurations with OFDM results in a powerful architecture, MIMO-OFDM, that is able to exploit 
spatial as well as frequency diversity and allow high data rates with large degrees of freedom available in the wireless 
environment [3]. 

Recently, multiuser MIMO (MU-MIMO) has been considered a key technology for system capacity improvement in 
modern wireless networks without the need for multiple antennas and expensive signal processing at user equipments. In 
contrast to single-user MIMO (SU-MIMO), where a base station can only communicates with a single user, MU-MIMO allows 
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multiple mobile stations to be served simultaneously by means of space division multiple access (SDMA) [4]. Information 
theory reveals that if CSI is fully known at the transmitter, dirty paper coding (DPC) is the optimal transmit strategy for the 
MU-MIMO broadcast channel from a system capacity point of view [5]. However, deploying this technique in practice is hard 
to implement because of the high computational complexity it requires, especially when the number of users is large. 
Therefore, suboptimal linear precoding strategies such as zeroforcing beamforming (ZF-BF) [6], [7] and minimum mean 
square error beamforming (MMSE-BF) [8] have been investigated to provide the capacity gain promised by DPC while 
removing the multiuser interference among the simultaneously transmitted users. 

In this paper, ZF-BF and MMSE-BF linear precoding schemes are evaluated and extended, in light of the available CSI at 
the transmitter, from single-carrier to multicarrier MU-MIMO systems where the users transmit strictly using OFDM (i.e., 
frequency is not used for multiple access). Simulations results have show that compared to a conventional MU-MMO-OFDM 
based time division multiple access (TDMA) strategy, where the BS transmits to the best user at each time slot, considerable 
sum-rate capacity improvement can be achieved by both proposed linear precoding techniques. The remainder of this paper 
is organized as follows. Section 2 presents the MU-MIMO-OFDM system model. Section 3 presents the proposed precoding 
schemes. Numerical results are shown in Section 4. Finally, Section 5 summarizes the main outcomes of the paper. 

NOTATIONAL REMARK 

Boldface letters denote matrix-vector quantities while non-bold letters are used for scalars. The operation (.)
T

and (.)
H

 
represent the transpose and the Hermitian transpose of a matrix, respectively. E(.) denotes the expectation operator, Tr(.) is 

the trace and C is the set of complex numbers. I is the identity matrix and a denotes the Euclidean norm of a vector a. 

2 SYSTEM MODEL 

 

Fig. 1. Block diagram of MU-MIMO-OFDM downlink system with NT transmit antennas and K single antenna mobile users 

We consider the downlink of a single-cell MU-MIMO-OFDM system in which a single base station (BS) equipped with M  

transmit antennas communicates with MK   mobile users, each equipped with a single receive antenna. The system 

operates in a total bandwidth W  that is exploited by means of 
cN  OFDM subcarriers. The BS broadcasts to all K  users 

simultaneously over all OFDM subcarriers. The system block diagram is depicted in Fig. 1. Let nks ,  be the data symbol of user 

k  over the n th subcarrier. The 1M  overall data vector of transmitted symbols from the BS antennas on subcarrier n  for 

all K  users is  

  .= ,2,1,

T

nKnnn sss x  (1) 

Assuming perfect frequency synchronization between the transmitter and receiver and cyclic prefix duration exceeding the 

channel delay spread, the received signal, nky , , for user k  on subcarrier n  for an arbitrary OFDM symbol is given by  
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,= ,,, nknnknky xh  (2) 

where nk ,h C
1xM

 represents the channel gain response corresponding to userk over the subcarriern and nk ,  is a zero-

mean additive white Gaussian noise (AWGN) sample with variance 2
 . The base station (BS) has full and instantaneous 

knowledge of the channel state information (CSI) of all K  users. The transmitter is subject to an average power constraint 

TP , i.e., T
H
nn PTr ))(( xxE , which implies that the total transmit power is not dependent on the number of transmit 

antennas. 

The transmitter multiplies the data symbol, nks , , for each user k  on each subcarrier n  by a precoding vector nk ,w

C
Mx1

 so that the transmitted signal on each subcarrier n  is a linear function hat can be written as  

,= ,,,
1=

nknknk

K

k
n sP wx   (3) 

where nkP ,  denotes the power allocated to the k th user on the n th subcarrier satisfying,  

,=,

2

,
1=1=

Tnknk

K

k

cN

n

PPw  (4) 

and thus, the resulting received signal for user k  on subcarrier n  may be rewritten as  

                                                  njnjnjnk

K

j
nk sy ,,,,

1=
, =  wh  (5) 

                            ,= ,,,,,
1,=

,,,, nknjnjnknj

K

kjj
nknknknk sPsP  



whwh  (6) 

where the second-term in (6) corresponds to the multi-user interference that represents the major impairment in this 
scenario. The challenge now is how to perform the precoding operation in order to eliminate all multiuser interference.  

3 PRECODING TECHNIQUES FOR MU-MIMO-OFDM SYSTEMS 

In MU-MIMO-OFDM downlink system, a BS communicates simultaneously with multiple receivers using the SDMA 
technique. To achieve this goal precoding strategies should be designed, in light of the available CSI, in order to increase 
system capacity and/or reduce the complexity of the receiver. In this section we present and evaluate linear precoding 
schemes using either ZF-BF and MMSE-BF. For comparison we also present a conventional MU-MIMO-OFDM based TDMA 
system where the base station transmits only to best user at a given time slot. 

3.1 ZERO-FORCING BEAMFORMING 

Let us define the MK   channel gain matrix and KM   precoding matrix, on subcarrier n , for all K  users, 

respectively, as  

 TT
nK

T
n

T
nn ,2,1,= hhhH   (7) 

 nKnnn ,2,1,= wwwW  .  (8) 

In Zero-Forcing Beamforming (ZF-BF) the precoder is designed to achieve the zero interference condition between the users,  
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

 

kj

kj

njnk

njnk

=for1,=

for0,=
i.e.,

,,

,,

wh

wh
. (9) 

The ZF-BF precoding matrix for each subcarrier n  is given by the pseudo-inverse of the channel gain matrix nH  [7], that is,  

  

  ,=
1H

nn
H
nn HHHW  (10) 

where the precoding vector nk ,w  for each user k  on subcarrier n  is obtained by normalizing the k th column of nW . The 

achievable sum-rate capacity using ZF-BF over all subcarriers is expressed as,   

RZF-BF ,1log
1

= ,2

,

2
1=1=














 nk

nk
K

k

cN

nc

P

N




 (11) 

where nkP , denotes the power allocated to user k on subcarriern . The optimal power allocation that achieves the 

maximum sum-rate capacity is given by the waterfilling algorithm [9]. 

3.2 MINIMUM MEAN SQUARED ERROR BEAMFORMING 

The ZF-BF precoder completely eliminates multi-user interference at the expense of noise enhancement and thus the 
system can be treated as a group of parallel SU-MIMO communications at each subcarriern . However, if some of the 
channels are in bad condition the system needs large power to compensate the bad channel condition. The minimum mean-
square-error beamforming (MMSE-BF) precoder can reach a good tradeoff between noise and interference and is suitable to 
be used to overcome this problem. In presence of CSI at the transmitter, the MMSE-ZF precoder at each subcarrier n  is given 
as follows:  

  ,=
1

 IHHHW H
nn

H
nn  (12) 

where   is a regularization factor commonly chosen as 
TPM /= 2

  motivated by the results in [10] showing that, for 

single carrier systems, the performance of MMSE-BF is certainly significantly better at low-medium SNR and converges to 
that of ZF-BF at high SNR. However, MMSE-BF does not provide parallel channels and thus power allocation techniques 
cannot be performed in a straightforward manner. 

The achievable sum-rate capacity using MMSE-BF over all subcarriers with equal power allocation is given by  

RMMSE-BF  ,SINR1log
1

= ,2
1=1=

nk

K

k

cN

ncN
  (13) 

where nk ,SINR  represents the signal to interference plus noise ratio of userk on subcarriern , and can be expressed as  

.

/

=SINR
22

,,
1,=

2

,,

,

Tnjnk

K

kjj

nknk

nk

PK 


wh

wh
 

(14) 

3.3 TIME DIVISION MULTIPLE ACCESS 

In a conventional MU-MIMO-OFDM network where user multiplexing takes place using TDMA techniques, the base 
station selects the best user at a time who will be allocated all the spectrum and power resources [11]. In this scenario it is 
easy to show that, once a user has been selected, the precoding operation on each subcarrier n  is simply implemented by 
means of maximum ratio transmission (MRT) [12], that is,  
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,= ,,, nknknkn sP wx  (15) 

where 
H
nknk ,, hw  . The maximum sum-rate capacity achieved by sending to the user with the largest channel norm is  

RTDMA 
















2

,22
1=

},{1,
1log

1
max= nk

T
cN

nc
Kk

P

N
h


. (16) 

4 NUMERICAL  RESULTS 

In this section, we evaluate the performance of ZF-BF and MMSE-BF linear precoding schemes in MU-MIMO-OFDM 
scenarios, assuming the availability of CSI at transmitter, and compare them to conventional MU-MMO-OFDM based TDMA 
system. The simulations consider the use of parameters currently found in the latest WLAN standard IEEE 802.11n. The 
system has been configured to operate at 5.25GHz carrier frequency on a bandwidth of W=20MHz with Nc=64 OFDM 
subcarriers, where the subchannel gains are independent and identically distributed for each user. The channel profile used 
to generate the frequency-selective channel responses correspond to profiles B (residential) from channel models developed 

within the IEEE 802.11n standard [13]. The base station is assumed to communicate with a total of MK   mobile users, 
each equipped with a single receive antenna. 

Fig. 2 shows a performance comparison in terms of sum-rate capacity as a function of the average SNR for MMSE-BF, ZF-

BF and the conventional TDMA network in a system with 4M  transmit antennas and MK  mobile users. As expected, it 
can be seen that the performance of MMSE-BF is certainly significantly better at low-medium SNR regime and converges to 
that of ZF-BF at high SNR regime. Moreover, the gain in sum-rate capacity gap between both linear precoding schemes and 
the conventional TDMA system exhibits a linear increase with SNR values reaching more that 10 bits/s/Hz for an SNR=30 dB. 

 

Fig. 2. Sum-rate capacity versus the average SNR. K = M = 4 

In Fig. 3 we compare the sum-rate capacity versus the number of transmit antennas M  for  MK  mobile terminals and 

an average SNR=10 dB. It can be observed that, increasing the number of transmit antennas ,M i.e., increasing the number of 

simultaneously transmitting users ,K has the detrimental effect of providing a linear sum-rate capacity growth for both linear 

precoding schemes, where the sum-rate capacity of MMSE-BF outperforms that of the ZF-BF. However, for the conventional 
case, where the best user is scheduled, the sum-rate capacity saturates at 7.7 bits/s/Hz. This can be explained by the fact that 
adding more transmit antennas does not improve the performance of the TDMA technique. 
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Fig. 3. Sum-rate capacity versus the number of transmit antennas M. K = M users, SNR=10 dB 

5 CONCLUSION  

In this paper, zeroforcing beamforming (ZF-BF) and minimum mean square error (MMSE-BF) linear precoding schemes 
have been analyzed and extended, from single-carrier MU-MIMO to a multicarrier MU-MIMO architecture based on OFDM. 
Simulation results have shown that, when channel state information (CSI) is available at the transmitter and for practical 
average SNR values, the performance of both proposed linear precoding techniques is significantly better than the 
conventional TDMA network and achieve a linear sum-rate growth with the number of transmit antennas. In addition, for a 
fixed number of transmit antennas at the base station, the performance of MMSE-BF is significantly better at low-medium 
SNR regime and converges to that of ZF-BF at high SNR regime. 
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