ISSN: 2277-8713 IJPRBS

ISSN: 2277-8713

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

SYNTHESIS AND BIOLOGICAL ACTIVITY OF PYRROLE AND PYRROLIDINE COMPOUNDS FROM 4-CHLORO-2-HYDROXYBENZOIC ACID HYDRAZIDE

IJPRBS-QR CODE

SONAL MEHTA

PAPER-QR CODE

Emcure Pharmaceuticals, USA

Abstract

Accepted Date: 22/02/2013 Publish Date: 27/02/2013

Keywords

4-chloro-2-hydroxy benzoic acid hydrazide, Pyrrole,

Pyrrolidine,

Antibacterial activity.

Corresponding Author Ms. Sonal Mehta 4-chloro-2-hydroxy benzoic acid hydrazide (1) undergoes facile condensation with aromatic aldehydes to afford the corresponding 4chloro-2-hydroxy benzoic acid arylidene hydrazides (2a-h) in good yields. Cyclocondensation of compounds (2a-h) with maleic anhydride and succinic anhydride yields respectively 1-(4-chloro-2-hydroxybenzamido)-5oxo-2-aryl-2,5-dihydro-1H-pyrrole-3-carboxylic acid (3a-h) and 1-(4-chloro-2-hydroxybenzamido)-5-oxo-2-arylpyrrolidine-3-carboxylic acid (4a-h). The structures of these compounds were established on the basis of analytical and spectral data. All the newly synthesized compounds were evaluated for their antibacterial and antifungal activities.

Introduction

Hydrazide and their heterocyclised products display diverse biological activities including antibacterial, antifungicidal, analgesic, antiinflammatory properties [1-13]. These heterocyclic systems find wide use in medicine, agriculture and industry. One of the hydrazides, 4-chloro-2-hydroxy benzoic hydrazide and their condensed acid products play a vital role in medicinal chemistry [14-16]. Pyrrole and pyrrolidine compounds give good biological and pharmacological properties [17]. Hence, it was thought of interest to merge both of pyrrole and 4-chloro-2-hydroxy benzoic acid hydrazide, pyrrolidine and 4-chloro-2hydroxy benzoic acid hydrazide moieties which may enhance the drug activity of compounds to some extent, or they might possess some of the above mentioned biological activities. From this point of view, the objective of the present work is to prepare new derivatives of 4-chloro-2hydroxy benzoic acid hydrazide containing pyrrole and pyrrolidine moiety. Hence the present communication comprises the synthesis of 1-(4-chloro-2hydroxybenzamido)-5-oxo-2-aryl-2,5dihydro-1H-pyrrole-3-carboxylic acid (3a-h) and 1-(4-chloro-2-hydroxybenzamido)-5oxo-2-arylpyrrolidine-3-carboxylic acid (4ah). The synthetic approach is shown in scheme-1.

Material and Method

Melting points were determined in open capillary tubes and were uncorrected. The IR spectra were recorded in KBr pellets on a Nicolet 400D spectrometer and ¹H NMR and ¹³C NMR spectra were recorded in DMSO with TMS as internal standard on a Bruker spectrometer at 400 MHz and 100 MHz, respectively. LC-MS of selected samples taken on LC-MSD-Trap-SL_01046.

Preparation of 4-chlro-2-hydroxy benzoic acid arylidene hydrazide **(2a-h)**

General procedure: – An equimolecular mixture of 4-chloro-2-hydroxy benzoic acid hydrazide (1), (0.01mole) and the aromatic aldehydes (a-h) in ethanol (15mL) was refluxed on a water bath for 1-2 h. The solid separated was collected by filtration, dried and recrystallized from ethanol. The yields, melting points and other characterization data of these compounds are given in Table -1.

Available Online At www.ijprbs.com

dihydro-1H-pyrrole-3-carboxylic acid (3a-h)

General procedure: A mixture 4-chloro-2hydroxy benzoic acid arylidene hydrazide (2a-h) (0.1 mole) and Maleic anhydride (0.1 mole) were heated at reflux in chloroform (30ml) for about 5 hours with TLC monitoring. After the mixture was allowed to stand for 2 days, the solid was filtered. The product thus formed was recrystallized from ethanol to give 1-[4pure pyridinylcarbonlyamino]-2-oxo-5-aryl-2,5dihydro-1H-pyrrole-3-carboxylic acid in (3ah), which were obtained in 53-62% yield.

The yields, melting points and other characterization data of these compounds are given in Table -2.

Preparationof1-(4-chloro-2-hydroxybenzamido)-5-oxo-2-arylpyrrolidine-3-carboxylic acid(4a-h)

A mixture 4-chloro-2-hydroxy benzoic acid arylidene hydrazide (2a-h) (0.1 mole) and Succinic anhydride (0.1 mole) were heated at reflux in chloroform (30ml) for about 5 hours with TLC monitoring. After the mixture was allowed to stand for 2 days, the solid was filtered. The product thus formed was recrystallized from ethanol to give pure 1-[4-pyridinylcarbonyl amine]-2-oxo-5-aryl-2, 5-dihydro-1H-pyrrolidinone-3-carboxylic acid (3a-h) in good yield.

The yields, melting points and other characterization data of these compounds are given in Table -3.

Biological Screening

Antibacterial activities

The antibacterial activities of all the compounds were studied against grampositive bacteria (Staphylococcus aureus and Bacillus subtilis) and gram-negative bacteria (E. coli, and klebsiella promioe) at a concentration of 50µg/mL by agar cup plate method. A methanol system was used as control in this method. Similar conditions using tetracycline as a control was used standard for comparison. The area of inhibition of zone measured in cm. Compounds 3f, 3h, 4g, and 4h were found more toxic for microbes. Other compounds found to be less or moderate active than tetracycline Tables -4 and 5.

Antifungal Activities

The fungicidal activity of all the compounds was studied at 1000 ppm concentration in

Available Online At www.ijprbs.com

vitro. Plant pathogenic organisms used were Nigrospora Sp, Aspergillus niger, Botrydepladia thiobromine, and Rhizopus Fusarium nigricum, oxyporium. The antifungal activity of all the compounds (3ah) & (4a-h) were measured on each of these plant pathogenic strains on a potato dextrose agar (PDA) medium. Such a PDA medium contained potato 200g, dextrose 20g, agar 20g and water 1c. Five days old cultures were employed. The compounds to be tested were suspended (1000ppm) in a PDA medium and autoclaved at 120° C for 15 min. at 15atm. pressure. These media were poured into sterile Petri plates and the organisms were inoculated after cooling the Petri plates. The percentage inhibition for fungi was calculated after five days using the formula given below:

Percentage of inhibition = 100(X-Y) / X

Where, X = Area of colony in control plate

Y = Area of colony in test plate

The fungicidal activity displayed by various compounds (3a-h) and (4a-h) is shown in Tables-6 and 7.

Results and Discussion

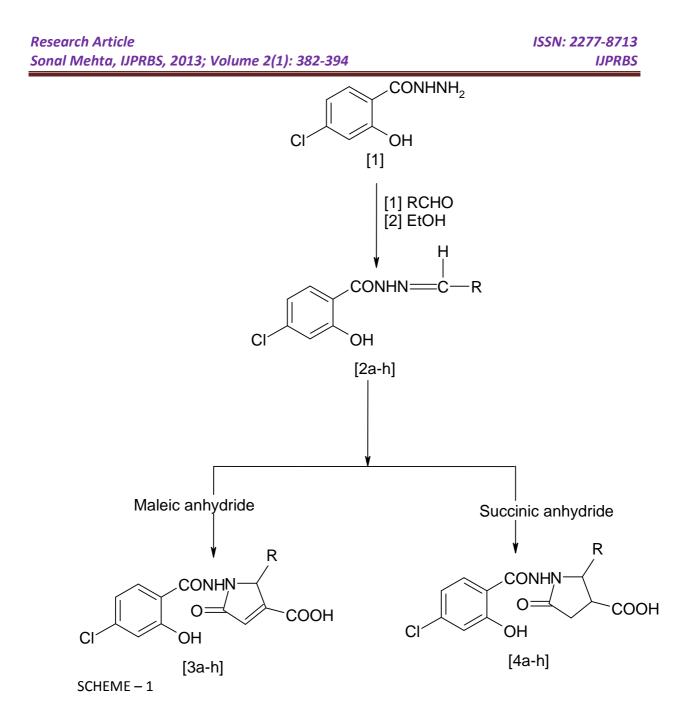
ISSN: 2277-8713 IJPRBS

It was observed that 4-chloro-2-hydroxy benzoic acid hydrazide (1), on condensation with aromatic aldehydes, yields 4-chloro-2hydroxy benzoic acid arylidene hydrazides (2a-h). The structures of (2a-h) were confirmed by elemental analysis and IR spectra showing an absorption band at 1620-1640 (C=N), 3030-3080 cm⁻¹ (C-H, of Ar.), 3240-3260 cm⁻¹ (-OH), 2815, 1250 cm⁻¹ (-OCH₃), 2950, 1370 cm⁻¹ (-CH₃). ¹H NMR : 6.85-7.84 (8H, m) (Ar - H), 11.70-11.84 (1H, s) (-OH), 11.85-11.98 (1H, s) (-CONH), 8.36-8.80 (1H, s) (-N=CH), 2e; 2.39 (3H, s) (-CH₃), 2b, 2g; 3.89 (3H, s) (-OCH₃), 2h; 4.12 (4H, q) (CH₂), 1.34 (6H, t) (CH₃), 2f; 6.12 (2H, s) (-OCH₂O- cyclic). ¹³C NMR: 111.8-160.8 (Aromatic), 163.0-164 (-CONH), 146.3-147 (-CH); (2b,2g): 55.7-56.8 (-OCH₃); (2e): 21 (CH₃); (2f): 102.5 (OCH₂O cyclic); (2h): 65.4 (OCH₂), 15.2 (CH₃). The C, H, and N analysis data of all compounds are presented in Table -1.

The structures assigned to 1-(4-chloro-2hydroxybenzamido)-5-oxo-2-aryl-2,5-

dihydro-1H-pyrrole-3-carboxylic acid (3a-h) were supported by the elemental analysis and IR spectra showing an absorption bands at 1667-1690cm⁻¹ (C=O of -COOH), 1715-1720 (C=O of pyrrole-2-one), 3030-3080 cm⁻¹

¹ (C-H, of Ar.), 3240-3260 cm⁻¹ (-OH). ¹H NMR: 6.62-7.82 (8H, m) (Ar-H), 5.50-5.60 (1H, s) (-C₅H of the ring), 7.10-7.15 (1H, s) (-C₃H), 12.90-12.98 (1H, s) (-COOH), 11.70-11.85 (1H, s) (-OH), 3e; 2.36 (3H, s) (-CH₃), 3b,3g; 3.93,3.90 (3H, s) (-OCH₃), 3h; 4.13 (4H q) (CH₂), 1.32 (6H, t) (CH₃), 3f; 6.11 (2H, s) (-OCH₂O- cyclic). ¹³C NMR: 110-161 (Aromatic), 55.0-62.5 (-CH), 169.5-171.5 (-COOH), 164.5-165 (-CO of the ring), (3b,3g): 55.4-56.5 (-OCH₃); (3e): 21.5 (CH₃); (3f): 102.8 (OCH₂O cyclic); (3h): 65.3 (OCH₂), 14.6 (CH₃). The C, H, and N analysis data of all compounds are presented in Table-2.


The structures assigned to 1-(4-chloro-2hydroxybenzamido)-5-oxo-2-

arylpyrrolidine-3-carboxylic acid (4a-h) were supported by the elemental analysis and IR spectra showing an absorption bands at 1667-1690cm⁻¹ (C=O of -COOH), 1715-1720 (C=O of pyrrole-2-one), 3030-3080 cm⁻¹ ¹ (C-H, of Ar.), 3240-3260 cm⁻¹ (-OH). ¹H NMR: 6.65-7.85 (8H, m) (Ar-H), 5.52-5.60 (1H, s) (-C₅H), 3.33-3.36 (1H, s) (-C₄H), , 2.50-2.54, 2.75-2.80 (2H, s) (-C₃H), 11.7011.85 (1H, s) (-OH), 12.90-12.95 (1H, s) (-COOH), 4e; 2.38 (3H, s) (-CH₃), 4b, 4g; 3.86 (3H, s) (-OCH₃), 4h; 4.06, (4H, q) (-CH₂), 1.35 (6H, t) (-CH₃), 4f; 6.08 (2H, s) (-OCH₂O cyclic). ¹³C NMR: 110-161 (Aromatic), 50.0-57.0 (-CH of the ring), 37.0.-37.5 (-CH₂), 172.0-172.5 (-CO), 178.0-179 (-COOH), (4b,4g): 55.5-56.5 (-OCH₃); (4e): 21.6 (CH₃); (4f): 101.5 (OCH₂O); (4h): 65.3 (OCH₂), 15.0 (CH₃). The C, H, and N analysis data of all compounds are presented in Table-3.

The examination of elemental analytical data reveals that the elemental contents are consistence with the predicted structure shown in Scheme-1. The IR data also direct for assignment of the predicted structure. The final structure of all compounds is confirmed by LC-MS. LC-MS of 3d and 4f compounds are 391 and 422 respectively.

ACKNOWLEDGEMENT

The authors are thankful to Mr. Nilesh Patel, VP, Emcure Pharmaceuticals, USA for providing laboratory facilities.

Where, R =(a) C6H5 (b) 4-OCH3-C6H4 (c) 4-OH-C6H4 (d) 2-OH-C6H4 (e) 4-CH3-C6H4 (f) 3,4-CH2O2-C6H4 (g) 4-OH-3-OCH3-C6H3 (h) 3,4-C2H5-C6H4

Compd.	Molecular	Yield	M.P. *	Elemental Analysis						
	formula		°C	%C		% H		%N	%N	
	(Mol.wt.)			Found	Calcd.	Found	Calcd.	Found	Calcd.	
2 a	$C_{14}H_{11}CIN_2O_2$	85	243	61.18	61.21	3.99	4.04	10.15	10.20	
	(274)									
2b	$C_{15}H_{13}CIN_2O_3$	80	246	59.08	59.12	4.25	4.30	9.14	9.19	
	(304)									
2c	$C_{14}H_{11}CIN_2O_3$	75	240	57.79	57.84	3.77	3.81	9.58	9.64	
	(290)									
2d	$C_{14}H_{11}CIN_2O_3$	81	243	57.78	57.84	3.75	3.81	9.57	9.64	
	(290)									
2e	$C_{15}H_{13}CIN_2O_2$	79	244	62.36	62.40	4.51	4.54	9.64	9.70	
	(288)									
2f	$C_{15}H_{11}CIN_2O_4$	75	247	56.49	56.53	3.44	3.48	8.73	8.79	
	(318)									
2g	$C_{15}H_{13}CIN_2O_3$	77	249	56.14	56.17	3.04	4.09	8.68	8.73	
	(320)									
2h	C ₁₈ H ₁₉ ClN ₂ O ₄	73	261	59.55	59.59	5.24	5.28	7.68	7.72	
	(362)									
¥	Uncorrocted									

Table:-1 Analytical Data and Elemental Analysis of Compounds (2a-h)

* Uncorrected

Compd.	Molecular	Yield	M.P. *	Elemental Analysis					
	formula		°C	%C		%H		%N	
	(Mol.wt.)			Found	Calcd.	Found	Calcd.	Found	Calcd.
3 a	C ₁₈ H ₁₃ ClN ₂ O ₅ (372)	60	224	58.00	57.88	3.52	3.45	7.52	7.48
3b	C ₁₉ H ₁₅ ClN ₂ O ₆ (402)	62	220	56.66	56.58	3.75	3.70	6.95	6.87
Зс	C ₁₈ H ₁₃ ClN ₂ O ₆ (388)	58	174	55.61	55.56	3.37	3.30	7.21	7.18
3d	C ₁₈ H ₁₃ ClN ₂ O ₆ (388)	59	170	55.61	55.54	3.37	3.31	7.21	7.19
Зе	C ₁₉ H ₁₅ ClN ₂ O ₅ (386)	62	164	59.00	58.90	3.91	3.88	7.24	7.20
3f	C ₁₉ H ₁₃ ClN ₂ O ₇ (416)	59	179	54.76	54.71	3.14	3.09	6.72	6.68
3g	C ₁₉ H ₁₅ ClN ₂ O ₇ (418)	53	185	54.49	54.40	3.61	3.58	6.69	6.61
3h	C ₂₂ H ₂₁ ClN ₂ O ₇ (460)	57	218	57.33	57.23	4.59	4.54	6.08	6.02

Table:-2 Analytical Data and Elemental Analysis of Compounds (3a-h)

* Uncorrected

Compd.	Molecular	Yield	M.P.	Element	al Analys	is			
	formula		°C	%C		% H		%N	
	(Mol.wt.)			Found	Calcd.	Found	Calcd.	Found	Calcd.
4a	C ₁₈ H ₁₅ CIN ₂ O ₅ (374.78)	60	225	57.69	57.59	4.03	4.00	7.47	7.39
4b	C ₁₉ H ₁₇ CIN ₂ O ₆ (404.80)	64	228	56.37	56.30	4.23	4.21	6.92	6.82
4c	C ₁₈ H ₁₅ CIN ₂ O ₆ (390)	62	212	55.32	55.27	3.87	3.81	7.17	7.09
4d	C ₁₈ H ₁₅ CIN ₂ O ₆ (390)	66	215	55.32	55.28	3.87	3.83	7.17	7.12
4e	C ₁₉ H ₁₇ CIN ₂ O ₅ (388)	59	214	58.69	58.59	4.41	4.38	7.21	7.18
4f	C ₁₉ H ₁₅ CIN ₂ O ₇ (418)	55	218	54.49	54.40	3.61	3.58	6.69	6.63
4g	C ₁₉ H ₁₇ CIN ₂ O ₇ (420)	54	215	54.23	54.19	4.07	4.01	6.66	6.61
4h	C ₂₂ H ₂₃ ClN ₂ O ₇ (462)	56	221	57.09	57.01	5.01	4.94	6.05	5.98

Table:-3 Analytical Data and Elemental Analysis of Compounds (4a-h)

* Uncorrect

Compounds	Gram +Ve		Gram -Ve		
	Staphylococcus	Bacillus subtilis	E.coli	Klebsiella promioe	
	aureus				
3a	10	11	12	12	
3b	14	15	14	17	
3c	12	14	13	13	
3d	11	15	12	16	
Зе	15	11	13	13	
3f	16	19	19	20	
3g	12	11	12	16	
3h	17	16	15	18	
Tetracycline	21	20	19	23	

Table:-4 Antibacterial Activity of Compounds (3a-h)

Table:-5 Antifungal Activity of Compounds (3a-h)

Zone of Inhibition at 1000 ppm (%)								
Compounds	Nigrospora	Aspergillus	Aspergillus Botrydepladia		Fusarium			
	Sp.	Niger	Thiobromine	Nigricum	oxyporium			
3a	61	61	63	62	64			
3b	57	59	64	61	67			
3c	64	66	66	65	70			
3d	65	61	59	70	66			
3e	63	63	61	71	70			
3f	58	60	64	66	71			
3g	60	67	70	62	69			
3h	59	70	69	70	68			

Compounds	Gram +Ve		Gram -Ve			
	Staphylococcus	Bacillus subtilis	E.coli	Klebsiella promioe		
	aureus					
4a	12	10	11	10		
4b	14	13	13	15		
4c	17	17	14	14		
4d	11	15	17	16		
4e	12	13	11	18		
4f	15	11	12	11		
4g	19	18	19	20		
4h	17	16	17	19		
Tetracycline	21	20	19	23		

Table:-6 Antibacterial Activity of Compounds (4a-h)

Table:-7 Antifungal Activity of Compounds (4a-h)

Zone of Inhibition at 1000 ppm (%)								
Compounds	Nigrospora	Aspergillus	Botrydepladia	Rhizopus	Fusarium			
	Sp.	Niger	Thiobromine	Nigricum	oxyporium			
4a	66	64	59	55	60			
4b	63	67	64	60	62			
4c	62	69	61	64	68			
4d	60	60	60	63	61			
4e	64	64	63	70	65			
4f	61	56	65	63	69			
4g	68	60	68	58	66			
4h	60	62	70	71	69			

REFERENCES

1. Shiradkar M. R., Murahari K. K., Gangadasu H. R., Suresh T., Kalyan C. C., Panchal D., Kaur R., Burange P., Ghogare J., Mokale V., Raut M. Synthesis of new Sderivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents, Bioorg.Med. Chem. 2007, 15, P. 3997-4008.

 Janin Y. Antituberculosis drugs: Ten years of research, Bioorg. Med. Chem.
 2007, 15, P. 2479-2513.

 Gursoy E., Guzeldemirci-Ulusoy N.
 Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives, Eur. J. Med. Chem. 2007, 42, P.
 320-326.

4. Kaymakcioglu K. B., Oruc E. E., Unsalan S., Kandemirli F., Shvets N., Rollas S., Anatholy D. Synthesis and characterization of novel hydrazide-hydrazones and the study of their structure antituberculosis activity, Eur. J. Med. Chem. 2006, 41, P. 1253-1261.

5. Kalsi R., Shrimali M., Bhalla T. N., Barthwal J. P. Synthesis and anti inflammatory activity of indolyl azetidinonesIndian, J. Pharm. Sci. 2006, 41, P. 353-359.

6. Gemma S., Kukreja G., Fattorusso C., Persico M., Romano M., Altarelli M.,Savini L., Campiani G., Fattorusso E., Basilico N. Synthesis of N1-arylidene N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQresistant P. falciparum strains, Bioorg. Med. Chem. Lett. 2006, 16, P. 5384-5388.

7. Sriram D., Yogeeswari P., Madhu K. Synthesis and in vitro and in vivo antimycobacterial activity of isonicotinoyl hydrazones, Bioorg. Med. Chem. Lett. 2006, 15, P. 4502-4505.

8. Nayyar A., Jain R. Recent advances in new structural classes of anti tuberculosis agents, Curr. Med. Chem. 2006, 12, P. 1873-1886.

9. Walcourt A., Loyevsky M., Lovejoy D. B., Gordeuk V. R., Richardson D. R. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites, Int.J.Biochem. Cell Biol. 2004, 36, P. 401-407.

Available Online At www.ijprbs.com

10. Mamolo M. G., Falagiani V., Zampieri D., Vio L., Banfi E., Scialino G. Synthesis and anti mycobacterial activity of (3,4-diaryl-3Hthiazole-2-ylidene)hydrazide derivatives, Farmaco 2003, 58, P. 631-637.

11. Terzioglu N., Gursoy A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6dimethylimidazo[2,1-b]-[1,3,4]thiadiazole 5carbohydrazide, Eur. J. Med. Chem. 2003, 38, P. 781-786.

12. Kucukguzel S. G., Oruc E. E., Rollas S., Sahin F., Ozbek A. Synthesis, Characterization and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds, Eur. J. Med. Chem. 2002, 37, P. 197-206.

13. Rollas S., Gulerman N., Erdeniz H. Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines, Farmaco 2002, 57, P. 171-174.

ISSN: 2277-8713 IJPRBS

14. Al- Mawsawi LQ, Dayam R., Taheri L., Witvrouw M., Debyser Z., Neamati N. Discovery of novel non-cytotoxic salicylhydrazide containing HIV-1 integrase inhibitors, Bioorg. Med. Chem. Lett. 2007, 17(23), P. 6472-6475.

15. Plasencia C., Daym R., Wang Q., Pinski J., Jr. Burke T. R., Quinn D. I., and Neamati N. Discovery and preclinical evaluation of a novel class of small-molecule compounds in hormone-dependent and -independent cancer cell lines, Mol. Cancer Ther. 2005, 4(7), P. 1105-1113.

16. Zhao H., Neamati N., Sunder S., Hong H.,
Wang S., Milne G. W., Pommier Y., Jr. Burke
T. R. Hydrazide-containing inhibitors of HIV1 integrase, J. Med. Chem. 1997, 40(6), P.
937-941.

17. Bellina F. and Rossi R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions, Tetrahedron 2006, 62, P. 7213-7256.