ISSN: 2277-8713 IJPRBS

ISSN: 2277-8713

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

REVERSE PHARMACOLOGY AND SYSTEMS APPROACHES FOR DRUG DISCOVERY AND DEVELOPMENT

IJPRBS-QR CODE

*KRISHNA P., T .MERCY MARGARET, B.REVATHI, B.BRAHMAIAH, SREEKANTH NAMA, PRASANNA KUMAR DESU.

PAPER-QR CODE

Priyadarshini Institute of Pharmaceutical Education and Research, 5th Mile, Pulladigunta,

kornepadu (M), Guntur (DT), A.P, India.

Accepted Date: 16/05/2013 Publish Date:

27/06/2013

Keywords

Reverse pharmacology,

Drug discovery,

Adjutants,

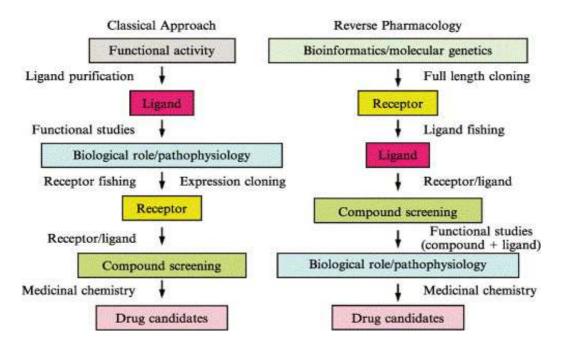
Chemo protection,

Adaptogens,

Ayurveda.

Corresponding Author Mr. Krishna P Abstract

Scientifically validated and technologically standardized botanical products may be explored on a fast track using innovative approaches like reverse pharmacology and systems biology, which are based on traditional medicine knowledge. Traditional medicine constitutes an evolutionary process as communities and individuals continue to discover practices transforming techniques. Many modern drugs have origin in ethno pharmacology and traditional medicine. Traditions are dynamic and not static entities of unchanging knowledge. Discovering reliable 'living tradition' remains a major challenge in traditional medicine. In many parts 'little traditions' of indigenous systems of medicine are disappearing, yet their role in bio prospecting medicines or poisons remains of pivotal importance. Indian Ayurvedic and traditional Chinese systems are living 'great traditions'. Ayurvedic knowledge and experiential database can provide new functional leads to reduce time, money and toxicity - the three main hurdles in the drug development. We begin the search based on Ayurvedic medicine research, clinical experiences, observations or available data on actual use in patients as a starting point. We use principles of systems biology where holistic yet rational analysis is done to address multiple therapeutic requirements. Since safety of the materials is already established from traditional use track record, we undertake pharmaceutical development, safety validation and pharmacodynamic studies in parallel to controlled clinical studies. Thus, drug discovery based on Ayurveda follows a 'Reverse Pharmacology' path from Clinics to Laboratories. Herein we describe such approaches with selected examples based on previous studies.


Available Online At www.ijprbs.com

INTRODUCTION:

The pharmaceutical sector has traditionally been a vibrant, innovation-driven and highly successful component of global industry [1]. A confluence of spectacular advances in chemistry, molecular biology, genomics and chemical technology and the fields of cognate spectroscopy, chromatography and crystallography led to discoverv and development the of numerous novel therapeutic agents for the

ISSN: 2277-8713 IJPRBS

treatment of a wide spectrum of diseases. To facilitate this process, scientists launched a significant and noticeable effort aimed at improving the integration of discovery technologies, chemical sourcing for route selection / delivery of active pharmaceutical ingredients. Drug discovery and development was increasingly done sans frontiers with collaborations spanning the globe and utilizing scientists with a broad array of technical, professional and cultural boundaries [2, 3].

REVERSE PHARMACOLOGY (RP)

Sir Peter B. Medawar rightly stated that "A synthetic discovery is always a first

recognition of an event, a phenomenon, process, or a state of affairs not previously recognized or known. Most of the stirring and deeply influential discoveries of science

come under this heading" [4]. Clinical events or phenomena previously not reported and following the administration of a known or new drug, can provide valuable insights for drug development. Medicinal plants and natural products derived there from have provided many such serendipitous bedside observations. Historically, several such clinical hits were

ISSN: 2277-8713 IJPRBS

not often pursued quickly and rigorously by the drug discovery teams. A new transdisciplinary endeavor called Reverse Pharmacology has recently emerged and addresses both these needs. Reverse Pharmacology (RP), designed as an academic discipline to reduce three major bottlenecks of costs, time and toxicity [5, 6].

REVERSE PHARMACOLOGY FOR MODERN DRUGS:

Reverse Pharmacology as a term has two nuances. The first is the path of pharmacology from the bedside observation to bench experiments. The second is the search of drug-like molecules (endogenous or extrinsic) which dock-in new macromolecules with discovered through genomics and proteomics [7, 8].

For the present discussion, we will focus on the first meaning of Reverse Pharmacology. Reverse Pharmacology is a trans discipline that is comprised of three stages [9, 10]:

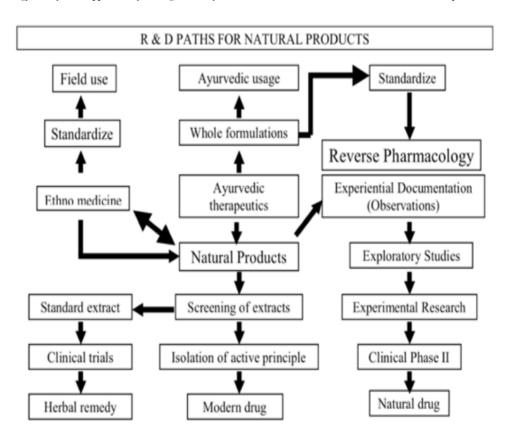
1) Experiential hits-documentation in observational Therapeutics and Pharmaco epidemiology.

 Exploratory stage of in vitro and in vivo studies to develop these hits.

Available Online At www.ijprbs.com

3) Experimental and clinical state-of-the-art relevant scientific research to determine safety, efficacy and mechanisms of action of the candidate drug. The scope of Reverse Pharmacology.

REVERSE PHARMACOLOGY FOR NATURAL PRODUCTS:


Multiple cell types and diverse pathways contribute to the disease, a single molecule may not be effective in modulation of

ISSN: 2277-8713 IJPRBS

multiple targets and such conditions require combination therapy. witnessing the entry of a new informational paradigm into medicine that is most prominently represented by proteomics, metabolomics sciences. Metabolomics is a systems approach for studying metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery process [11].

Reverse Pharmacology and Systems Approaches for Drug Discovery

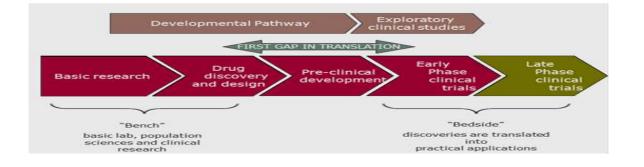
Current Bioactive Compounds 2008, Vol. 4,

6 Current Bioactive Compounds 2008, Vol. 4, No. 4

Table 1. Reverse Pharmacology Correlates

.

arthritis, hepatitis and psoriasis. ICMR has granted the first Advanced Centre in Reverse Pharmacology to our Kasturba Health Society. The CSIRNMITLI programme was quite successful.32 Several hits, leads and drug candidates have evolved over the last seven years. However, the pharmaceutical industry is still lukewarm in taking up this new paradigm for drug


Reverse Pharmacology: a strategy for new drug discovery

For the last three decades our research group, firstly at CIBA Research Centre and Podar Hospital and later at SPARC and MRC-KHS, has been engaged in evolving Reverse Pharmacology as a novel strategy for new drug discovery. This was followed up by CSIR-NIMITLI projects for diabetes mellitus,

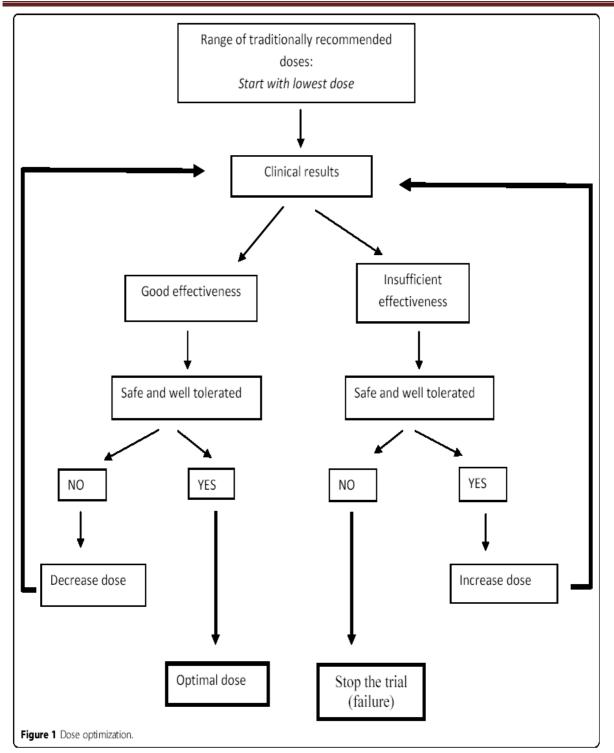
discovery [12].

Osteoarthritis **Diabetes mellitus** Hepatitis GLUT-4 translocation Chondrocyte protection Hepatoprotective- Anti TB drugs ٠ ٠ AKT-phosphorylation Disease-modifying Proinflammatory cytokines decrease Inhibition of glycation Muscular Strength Protection- Paracetamol Cataract prevention MRI improvement Reduction in fatty infiltration .

Available Online At www.ijprbs.com

Patwardhan et al.

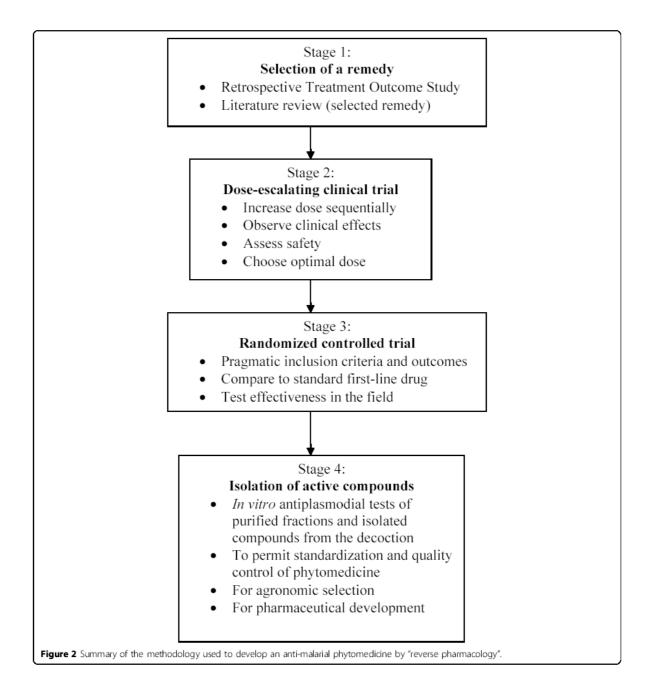
A "reverse pharmacology" approach to developing an anti-malarial phytomedicine:


A "reverse pharmacology" approach to developing an anti-malarial phytomedicine was designed and implemented and resulting in a new standardized herbal antimalarial after six years of research. The first step was to select a remedy for development, through a retrospective treatment-outcome study. The second step was a dose escalating clinical trial that showed a dose-response phenomenon and helped select the safest and most efficacious dose. The third step was a randomized controlled trial to compare the phytomedicine to the standard first-line

ISSN: 2277-8713 IJPRBS

treatment. Malaria elimination efforts will lead to the much wider use of the few currently effective anti-malarial drugs, such as artesunate / amodiaquine, artesunate / sulphadoxinepyrimethamine (SP), and artemether / lumefantrine. There is already discussion about intermittent presumptive treatment of infants, children, pregnant women, and even mass drug administration in some settings [1]. Resistance already exists to amodiaquine and SP, and will probably increase as a result of the Traditional increased drug pressure. medicinal plants have provided the source of the two major families of anti-malarial drugs still in use today, artemisinin and quinine [13].

Review Article Krishna P., IJPRBS, 2013; Volume 2(3): 173-184



ISSN: 2277-8713 IJPRBS

THE METHODS USED TO DEVELOP ANTI MALARIAL PHYTOMEDICINE BY REVERSE

PHARMACOLOGY:

REVERSE PHARMACOLOGY STRATEGY:

Receptor	Ligand	Year	Major function	Refs
Ade nosine A ₁ , A ₂₄ (RDC 7,RD C8)	Adeno sine	1990-1991	Platelet function, anxiety	[82,83]
ORL-1	Nociceptin/Orphanin FQ	1 995	Stress, pain	[94]
Orexin-1 and 2	O rex ins/Hypo cretins	1 998	Food intake, sleep - wakefulness	[95 , 9 6]
GPR10	Prolactin-releasing peptide	1 998	Sleep , ab sence seizu re	[97]
APJ	Apelin	1998	Unknown	[98]
GHS-R	Ghrelin	1999	Food intake, GH secretion	[99, 100]
SLC-1(MHC1)	MCH	1999	Food intake	[101,102
GPR14	Urotensin II	1 999	Vasoc onstriction	[1 03]
Histamine H3 (GPCR97)	Hista mine	1999	Central nervous system - obe sity, psychiatry	[8 8]
FM-3/4	Neuro medin U	2 000	U nkno wn	[104,105
Histamine H4 GPRv53	Hista mine	2 000	Inflam mation, eosino phil chem ota xis	[8 9]
GPR54	Me statin	2 001	Cell proliferation, development	[106,107
GPR73 a/b	Prokineticin ½	2 002	Angiog enesis, circad ia n rhyth m	[108,109
GPR7 and GPR8	NPB and NPW	2 002	Food intake, unknown	[110, 111
GPC R135 and GPC R142	Re la xin	2 003	U nkno wn	[112,113
GPR91	Su ccin ate	2004	Increases blood pressure	[1 14]

Table 2. Some ligand-orphan GPCR pairings identified using reverse pharmacology strategy

Conclusion: Drug discovery strategies based on natural products and traditional

medicines are re-emerging as attractive options. The R&D thrust in many

Available Online At www.ijprbs.com

pharmaceutical sectors has focused on development of botanical drugs through investigation of leads from the traditional herbal medicine. Herbs are of great importance as a reservoir of chemical diversity and can be explored for discovery of potential drug candidates. Knowledge and experimental database of traditional herbal medicine can provide new functional leads to reduce time, money and toxicity the three main hurdles in the conventional drug development. A reverse pharmacology approach, inspired by traditional medicine, can offer a rational Surh / Journal of Traditional and Complementary Medicine 1 (2011) 5-7 and pragmatic strategy for identification of new drug candidates. Reverse pharmacological approaches rely primarily on clinical experiences, observations or available data on actual use in patients as a starting point. This transdisciplinary science also adopts principles of systems biology where holistic yet rational analysis is done to address multiple therapeutic requirements. Since safety of the materials has already been established traditional from use track record, development, pharmaceutical safety validation and pharmacodynamic studies

ISSN: 2277-8713 IJPRBS

can be conducted in parallel to controlled clinical studies. Thus, drug discovery based on the reverse pharmacology follows a path from clinics to laboratories, an opposite direction applied for conventional synthetic drug development (Patwardhan et al., 2008)

Legacy of traditional wisdom, modern Western medicine and high throughput technology converge to form a golden triangle. By bringing all these together, reverse pharmacology can accelerate the development of innovative drugs with excellent efficacy with minimal toxicity.

ACKNOWLEDGEMENTS

Although, Reverse pharmacology as a concept was proposed and mainly promoted by one of us (ADBV), it draws inspiration from several researchers who have contributed to evidence based studies on Ayurveda and traditional medicine. We have cited few such scientists and representative case studies, however, there many such who may not have appeared in this article due to limitations on space, we wish to gratefully acknowledge all of them and the great wisdom of several unsung Ayurvedic vaidyas from whom we have

Review Article

received inspirations. We also thank CSIR NMITLI program for formally adopting RP as

REFERENCES

1. Frantz, S., (2004) approvals: the demise of the blockbuster (2005). Nat. Rev. Drug Discov., February, 4, 93-4.

2. Thayer, A.M.,(2004) Blockbuster Model Breaking Down. Mod.Drug Discovery, June, pp. 23-4.

3. Filmore, D. et. al., (2004) Pipeline Challenges, Mod. Drug Discovery, October, pp. 8-34.

4. Frantz, S. (2007) Pharma faces major challenges after a year of failures and heated battles. Nat. Rev. Drug Discov., 6, 5-7.

5. Grant, R.Z., Joseph, L., Curtis, T.K. (2007). Multi-target therapeutics: when the whole is greater than the sum of the parts., Drug Discov. Today 12(1/2), 34-42.

Age of Enlightenment, Age of Reason (AD 1600- AD 1900)

7. National Policy on Indian Systems of Medicine and Homoeopathy- 2002, Ministry

a strategy for fast track drug discovery and development.

of Health and Family Welfare, Government of India <www.indianmedicine.nic.in>.

 AyuSoft, A decision support software http://www.cdac.in/html/ hbcg/ayusoft/ayusoft.asp

9. Patwardhan, B., Joshi, K., Chopra A. (2005) Classification of Human Population based on HLA Gene Polymorphism and the Concept of Prakriti in Ayurveda. J. Altern. Complement Med. 11(2):349-353.

10. Patwardhan, B. Scirus Topic Page: http://topics.scirus.com.

Verpoorte, R. (2005)
Ethnopharmacology and systems biology: A perfect holistic match. J. Ethno pharmacol.
100 (1-2), 53-56.

12. Joshi, K., Chavan, P., Warude, D., Patwardhan, B. (2004) Molecular markers in herbal drug technology. Curr. Sci. 87 (2), 159-165.

13. Chavan, P., Joshi, K., Patwardhan, B. (2006) DNA microarrays in herbal drug

research. Evidence-based Complementary

and Alternative Medicine 3 (4), 447-457.