Certain Classes of Harmonic Functions Associated with Dual Convolution

R. M. EL-Ashwah ${ }^{1, *}$, M. K. Aouf ${ }^{2}$ and F. M. Abdulkarem ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Damietta University New Damietta 34517, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract

In this paper, we investigate several properties for the harmonic classes $\mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$ and $\mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. We obtain coefficient bounds, distortion theorem, extreme points, convolution condition, convex combinations and integral operator for these classes.

2010 Mathematics Subject Classifications: 30C45
Key Words and Phrases: Harmonic, Univalent Functions, Convolution, Sense-Preserving, Integral Operator.

1. Introduction

A continuous complex valued functions $f=u+i v$ which is defined in a simply connected complex domain \mathscr{D} is said to be harmonic in \mathscr{D} if both u and v are real harmonic in \mathscr{D}. In any simply connected domain we can write

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}, \tag{1}
\end{equation*}
$$

where h and g are analytic in \mathscr{D}. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathscr{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathscr{D} (see [7]).

Let \mathscr{A} denote the class of the functions f of the form:

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k},
$$

which are analytic in the open unit disc $U=\{z: z \in C$ and $|z|<1\}$ and satisfy the normalization condition $f(0)=f^{\prime}(0)-1=0$.

*Corresponding author.

Email addresses: r_elashwah@yahoo.com (R. EL-Ashwah), mkaouf 127@yahoo.com (M. Aouf)
fammari76@gmail.com (F. Abdulkarem)

For $1<\beta \leq \frac{4}{3}$ and $z \in U$, let

$$
\mathscr{M}(\beta)=\left\{f \in A: \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\beta\right\}
$$

and

$$
\mathscr{N}(\beta)=\left\{f \in A: \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\beta\right\}
$$

These classes $\mathscr{M}(\beta), \mathscr{N}(\beta)$ were extensively studied by Uralegaddi et al. [19], see also Owa and Srivastava [13], Porwal and Dixit [16] and Breaz [6].

Denote by $\mathscr{S}_{\mathscr{H}}$, the class of functions f of the form (1) that are harmonic univalent and sense preserving in the unit disc $U=\{z:|z|<1\}$ for which $f(0)=f_{z}(0)-1=0$. For $f=h+\bar{g} \in \mathscr{S}_{\mathscr{H}}$, we may express

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}+\sum_{k=1}^{\infty} \overline{b_{k} z^{k}},\left|b_{1}\right|<1 \tag{2}
\end{equation*}
$$

where the analytic functions h and g are of the form:

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=1}^{\infty} b_{k} z^{k},\left|b_{1}\right|<1 \tag{3}
\end{equation*}
$$

In 1984 Clunie and Sheil-Small [7] investigated the class $\mathscr{S}_{\mathscr{H}}$ as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on $\mathscr{S}_{\mathscr{H}}$ and its subclasses. For more basic results one may refer to the following standard introductory, Porwal [15, Chapter 5] defined the subclass $\mathscr{M}_{\mathscr{H}}(\beta) \subset \mathscr{S}_{\mathscr{H}}$ consisting of harmonic univalent functions $f(z)$ satisfying the following condition:

$$
\mathscr{M}_{\mathscr{H}}(\beta)=\left\{f(z) \in \mathscr{S}_{\mathscr{H}}: \operatorname{Re}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}\right)<\beta\right\}\left(1<\beta \leq \frac{4}{3} ; z \in U\right) .
$$

He proved that if $f=h+\bar{g}$, where h and g are given by (3) and if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\beta)}{\beta-1}\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{(k+\beta)}{\beta-1}\left|b_{k}\right| \leq 1\left(1<\beta \leq \frac{4}{3}\right) \tag{4}
\end{equation*}
$$

then $f(z) \in \mathscr{M}_{\mathscr{H}}(\beta)$.
For $g \equiv 0$ the class of $\mathscr{M}_{\mathscr{H}}(\beta)$ is reduced to the class $\mathscr{M}(\beta)$ studied by Uralegaddi et al. [19].

The convolution of two functions of the from

$$
\begin{equation*}
\varphi(z)=z+\sum_{k=2}^{\infty} \lambda_{k} z^{k}\left(\lambda_{k} \geq 0\right) \text { and } \psi(z)=z+\sum_{k=2}^{\infty} \mu_{k} z^{k}\left(\mu_{k} \geq 0\right) \tag{5}
\end{equation*}
$$

is defined as

$$
\begin{equation*}
(\varphi * \psi)(z)=z+\sum_{k=2}^{\infty} \lambda_{k} \mu_{k} z^{k}=(\psi * \varphi)(z), \tag{6}
\end{equation*}
$$

while the integral convolution is defined by

$$
\begin{equation*}
(\varphi \diamond \psi)(z)=z+\sum_{k=2}^{\infty} \frac{\lambda_{k} \mu_{k}}{k} z^{k}=(\psi \diamond \varphi)(z) . \tag{7}
\end{equation*}
$$

Motivated by the work of Ahuja [1], we consider the class $\mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$ of functions of the form (1) satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{h(z) * \varphi(z)-\sigma \overline{g(z) * \psi(z)}}{(1-t) z+t[h(z) \diamond \varphi(z)+\sigma \overline{g(z) \diamond \psi(z)}]}\right\}<\beta \tag{8}
\end{equation*}
$$

where $0 \leq t \leq 1,|\sigma|=1,1<\beta \leq \frac{4}{3}, \varphi(z)$ and $\psi(z)$ are given by (5).
We note that:
i) $\mathscr{M}_{\mathscr{H}}\left(\frac{z}{(1-z)^{2}}, \frac{z}{(1-z)^{2}} ; 1, \beta, 1\right)=\mathscr{M}_{\mathscr{H}}(\beta)$ (see [15]);
ii)

$$
\begin{aligned}
& \mathscr{M}_{\mathscr{H}}\left(z+\sum_{k=2}^{\infty} k \Gamma_{k}\left(\alpha_{1}\right) z^{k}, z+\sum_{k=2}^{\infty} k \Gamma_{k}\left(\alpha_{1}\right) z^{k}, 1, \beta, 1\right)=\mathscr{M}_{\mathscr{H}}\left(\alpha_{1}, \beta\right) \\
& \quad\left(\alpha_{i}>0, i=1, \ldots, q ; \beta_{j}>0, j=1, \ldots, s ; q \leq s+1 ; q, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\}\right)
\end{aligned}
$$

where (see [14])

$$
\Gamma_{k}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{k-1}\left(\alpha_{2}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1}\left(\beta_{2}\right)_{k-1} \ldots\left(\beta_{s}\right)_{k-1}} \cdot \frac{1}{(k-1)!}(k \geq 2) .
$$

Also we note that:
i)

$$
\begin{aligned}
& \mathscr{M}_{\mathscr{H}}\left(\frac{z+z^{2}}{(1-z)^{3}}, \frac{z+z^{2}}{(1-z)^{3}} ; 1, \beta,-1\right) \\
& \quad=\mathscr{N}_{\mathscr{H}}(\beta)=\operatorname{Re}\left\{\frac{z^{2} h^{\prime \prime}(z)+z h^{\prime}(z)+\overline{z^{2} g^{\prime \prime}(z)}+\overline{z g^{\prime}(z)}}{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}\right\}<\beta ;
\end{aligned}
$$

ii)

$$
\mathscr{M}_{\mathscr{H}}\left(z+\sum_{k=2}^{\infty} k^{n+1} z^{k}, z+\sum_{k=2}^{\infty} k^{n+1} z^{k} ; 1, \beta,(-1)^{n}\right)
$$

$$
=\mathscr{M}_{\mathscr{H}}(\beta, n)=\operatorname{Re}\left\{\frac{D^{n+1} h(z)+(-1)^{n+1} \overline{D^{n+1} g(z)}}{D^{n} h(z)+(-1)^{n} \overline{D^{n} g(z)}}\right\}<\beta,
$$

for $n \in \mathbb{N}_{0}$ and where D^{n} is the modified Salagean differential operator (see [11, 18, 20]);
iii)

$$
\begin{aligned}
& \mathscr{M}_{\mathscr{H}}\left(z+\sum_{k=2}^{\infty} k^{-n} z^{k}, z+\sum_{k=2}^{\infty} k^{-n} z^{k} ; 1, \beta,(-1)^{n+1}\right) \\
& \quad=\mathscr{L}_{\mathscr{H}}(\beta, n)=\operatorname{Re}\left\{\frac{I^{n} h(z)+(-1)^{n} \overline{I^{n} g(z)}}{I^{n+1} h(z)+(-1)^{n+1} \overline{I^{n+1} g(z)}}\right\}<\beta,
\end{aligned}
$$

for $n \in \mathbb{N}_{0}$ and where I^{n} is the modified Salagean integral operator (see [8], with $p=1$, also see [18]);
iv)

$$
\begin{aligned}
& \mathscr{M}_{\mathscr{H}}\left(z+\sum_{k=2}^{\infty} k[1+\lambda(k-1)]^{n} z^{k}, z+\sum_{k=2}^{\infty} k[1+\lambda(k-1)]^{n} z^{k} ; 1, \beta,(-1)^{n}\right) \\
& =\mathscr{M}_{\mathscr{H}}(\beta, n, \lambda)=\operatorname{Re}\left\{\frac{z\left(D_{\lambda}^{n} h(z)\right)^{\prime}-(-1)^{n} \overline{z\left(D_{\lambda}^{n} g(z)\right)^{\prime}}}{D_{\lambda}^{n} h(z)+(-1)^{n} \overline{D_{\lambda}^{n} g(z)}}\right\}<\beta,
\end{aligned}
$$

where $\lambda \geq 0, n \in \mathbb{N}_{0}$, and D_{λ}^{n} is the modified Al-Oboudi operator (see [2, 21], also see [3], with $p=1$);
v)

$$
\begin{aligned}
& \mathscr{M}_{\mathscr{H}}\left(z+\sum_{k=2}^{\infty} k[1+\lambda(k-1)]^{-n} z^{k}, z+\sum_{k=2}^{\infty} k[1+\lambda(k-1)]^{-n} z^{k} ; 1, \beta,(-1)^{n}\right) \\
& =\mathscr{L}_{\mathscr{H}}(\beta, n, \lambda)=\operatorname{Re}\left\{\frac{z\left(I_{\lambda}^{n} h(z)\right)^{\prime}-(-1)^{n} z \overline{\left(I_{\lambda}^{n} g(z)\right)^{\prime}}}{I_{\lambda}^{n} h(z)+(-1)^{n} I_{\lambda}^{n} g(z)}\right\}<\beta,
\end{aligned}
$$

for $\lambda \geq 0$ and $n \in \mathbb{N}_{0}$, and where I_{λ}^{n} is modified integral operator see ([4], with $p=1$, also see [10], with $\ell=0$);
vi)

$$
\mathscr{M}_{\mathscr{H}}\left(z+\sum_{k=2}^{\infty} k\left(\frac{1+\ell+\lambda(k-1)}{1+\ell}\right)^{m} z^{k}, z+\sum_{k=2}^{\infty} k\left(\frac{1+\ell+\lambda(k-1)}{1+\ell}\right)^{m} z^{k} ; 1, \beta,(-1)^{m}\right)
$$

$$
=\mathscr{M}_{\mathscr{H}}(\beta, m, \ell, \lambda)=\operatorname{Re}\left\{\frac{z\left(J^{m}(\lambda, \ell) h(z)\right)^{\prime}-(-1)^{m} z\left(\overline{\left.J^{m}(\lambda, \ell) g(z)\right)^{\prime}}\right.}{J^{m}(\lambda, \ell) h(z)+(-1)^{m} \overline{J^{m}(\lambda, \ell) g(z)}}\right\}<\beta,
$$

where $\lambda \geq 0, \ell>-1, m \in \mathbb{Z}=\{0, \pm 1, \ldots\}$, and $J^{m}(\lambda, \ell)$ is the modified Prajapat operator (see [9, 17], with $p=1$).

Further, let for $\sigma=1, \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ be the subclass of $\mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}-\sum_{k=1}^{\infty}\left|b_{k}\right| \bar{z}^{k}\left(\left|b_{1}\right|<1\right) . \tag{9}
\end{equation*}
$$

In this paper, we obtained the coefficient bounds for the classes $\mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$ and $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. We also obtain distortion theorem, extreme points, convolution, convex combinations and integral operator for functions in the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$.

2. Coefficient Bounds and Distortion Theorem

Unless otherwise mentioned, we assume in the reminder of this paper that $0 \leq t \leq 1$, $|\sigma|=1,1<\beta \leq \frac{4}{3}$ and $z \in U$. We begin with a sufficient condition for functions in the class $\mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$ and obtain distortion theorem for functions in the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$.

Theorem 1. Let $f=h+\bar{g}$, where h and g are given by (3), and satisfy the condition

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-t \beta)\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+t \beta)\left|b_{k}\right| \leq \beta-1, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{2}(\beta-1) \leq \lambda_{k}(k-t \beta) \text { and } k^{2}(\beta-1) \leq \mu_{k}(k+t \beta) \text { for } k \geq 2 \text {. } \tag{11}
\end{equation*}
$$

Then $f(z)$ is sense-preserving, harmonic univalent in U and $f(z) \in \mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$.
Proof. If $z_{1} \neq z_{2}$, then by using (11), we have

$$
\begin{aligned}
\left|\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{h\left(z_{2}\right)-h\left(z_{1}\right)}\right| & \geq 1-\left|\frac{g\left(z_{2}\right)-g\left(z_{1}\right)}{h\left(z_{2}\right)-h\left(z_{1}\right)}\right|=1-\left|\frac{\sum_{k=1}^{\infty} b_{k}\left(z_{2}^{k}-z_{1}^{k}\right)}{\left(z_{2}-z_{1}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{2}^{k}-z_{1}^{k}\right)}\right| \\
& \geq 1-\frac{\sum_{k=1}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k\left|a_{k}\right|} \geq 1-\frac{\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left|a_{k}\right|} \geq 0
\end{aligned}
$$

which proves the univalent. Also f is sense-preserving in U since

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{k=2}^{\infty} k\left|a_{k}\right||z|^{k-1}>1-\sum_{k=2}^{\infty} k\left|a_{k}\right| \\
& \geq 1-\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left|a_{k}\right| \\
& \geq \sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left|b_{k}\right| \\
& \geq \sum_{k=1}^{\infty} k\left|b_{k}\right||z|^{k-1} \geq\left|g^{\prime}(z)\right| .
\end{aligned}
$$

Now we show that $f \in \mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$. We only need to show that if (10) holds then the condition (8) is satisfied, then we want to prove that

$$
\left|\frac{\frac{h(z) * \varphi(z)-\overline{\sigma g(z) * \psi(z)}}{(1-t) z+t[h(z) \diamond \varphi(z)+\sigma \overline{g(z) \diamond \psi(z)}]}-1}{\frac{h(z) * \varphi(z)-\sigma \overline{\sigma(z) * \psi(z)}}{(1-t) z+t[h(z) \diamond \varphi(z)+\sigma \overline{g(z) \diamond \psi(z)}]}-(2 \beta-1)}\right|<1, z \in U .
$$

We have

$$
\begin{aligned}
& \left|\frac{\frac{h(z) * \varphi(z)-\sigma \overline{g(z) * \psi(z)}}{(1-t) z+t[h(z) \diamond \varphi(z)+\sigma \overline{g(z) \diamond \psi(z)}}-1}{\left\lvert\, \frac{h(z) * \varphi(z)-\overline{\sigma g(z) *(z)}}{(1-t) z+t[h(z) \Delta \varphi(z)+\sigma \overline{g(z) \diamond \psi(z)}]}-(2 \beta-1)\right.}\right| \\
& \leq \frac{\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-t)\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+t)\left|b_{k}\right|}{2(\beta-1)-\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-2 \beta t+t)\left|a_{k}\right|-\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+2 \beta t-t)\left|b_{k}\right|} .
\end{aligned}
$$

The last expression is bounded above by 1 , if

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-t)\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+t)\left|b_{k}\right| \\
& \quad \leq 2(\beta-1)-\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-2 \beta t+t)\left|a_{k}\right|-\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+2 \beta t-t)\left|b_{k}\right|,
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-t \beta)\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+t \beta)\left|b_{k}\right| \leq \beta-1 . \tag{12}
\end{equation*}
$$

But (12) is true by hypothesis and the Theorem is proved.
In the following theorem, it is shown that the condition (10) is also necessary for function $f(z)$ given by (9) and belongs to $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$.
Theorem 2. Let the function $f(z)$ given by (9). Then $f(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, if and only if the coefficient bound (10) holds.

Proof. Since $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta) \subseteq \mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta, \sigma)$, we only need to prove the only if part of the theorem. To this end for functions $f \in \mathscr{M}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, we notice that the necessary and sufficient condition to be in the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ is that

$$
\operatorname{Re}\left\{\frac{h(z) * \varphi(z)-\overline{g(z) * \psi(z)}}{(1-t) z+t[h(z) \diamond \varphi(z)+\overline{g(z) \diamond \psi(z)}]}\right\}<\beta
$$

This is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(\beta-1) z-\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-t \beta)\left|a_{k}\right| z^{k}-\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+t \beta)\left|b_{k}\right| \bar{z}^{k}}{z+\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left|a_{k}\right| z^{k}-\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left|b_{k}\right| \bar{z}^{k}}\right\} \geq 0 . \tag{13}
\end{equation*}
$$

The above condition must hold for all values of $z \in U$, so that on taking $z=r<1$, the above inequality reduces to

$$
\begin{equation*}
\frac{(\beta-1)-\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}(k-t \beta)\left|a_{k}\right| r^{k-1}-\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}(k+t \beta)\left|b_{k}\right| r^{k-1}}{1+\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left|a_{k}\right| r^{k-1}-\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left|b_{k}\right| r^{k-1}} \geq 0 \tag{14}
\end{equation*}
$$

If the condition (10) does not hold then the numerator of (14) is negative for r and sufficiently close to 1 . Thus there exists a $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (14) is negative. This contradicts the required condition for $f \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. This completes the proof of Theorem.

Theorem 3. Let the function $f(z)$ given by (9) be in the class $\overline{\mathcal{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ and $A_{k} \leq \frac{\lambda_{k}}{k}(k-t \beta), B_{k} \leq \frac{\mu_{k}}{k}(k+t \beta)$ for $k \geq 2, C=\min \left\{A_{2}, B_{2}\right\}$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\left(\frac{\beta-1}{C}-\frac{\beta+1}{C}\left|b_{1}\right|\right) r^{2}, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\left(\frac{\beta-1}{C}-\frac{\beta+1}{C}\left|b_{1}\right|\right) r^{2} . \tag{16}
\end{equation*}
$$

The equalities in (15) and (16) are attained for the functions f given by

$$
\begin{equation*}
f(z)=\left(1+\left|b_{1}\right|\right) \bar{z}+\left(\frac{\beta-1}{C}-\frac{\beta+1}{C}\left|b_{1}\right|\right) \bar{z}^{2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z)=\left(1-\left|b_{1}\right|\right) \bar{z}-\left(\frac{\beta-1}{C}-\frac{\beta+1}{C}\left|b_{1}\right|\right) \bar{z}^{2} \tag{18}
\end{equation*}
$$

where $\left|b_{1}\right| \leq \frac{\beta-1}{\beta+1}$.
Proof. Let $f(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, then we have

$$
\begin{aligned}
|f(z)| & \leq\left(1+\left|b_{1}\right|\right) r+\sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{2} \\
& =\left(1+\left|b_{1}\right|\right) r+\frac{\beta-1}{C} \sum_{k=2}^{\infty}\left(\frac{C}{\beta-1}\left|a_{k}\right|+\frac{C}{\beta-1}\left|b_{k}\right|\right) r^{2} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\frac{\beta-1}{C} \sum_{k=2}^{\infty}\left(\frac{\lambda_{k}}{k}(k-t \beta)\left|a_{k}\right|+\frac{\mu_{k}}{k}(k+t \beta)\left|b_{k}\right|\right) r^{2} \\
& \leq\left(1+\left|b_{1}\right|\right) r+\frac{\beta-1}{C}\left(1-\frac{(\beta+1)\left|b_{1}\right|}{\beta-1}\right) r^{2} \\
& =\left(1+\left|b_{1}\right|\right) r+\left(\frac{\beta-1}{C}-\frac{(\beta+1)\left|b_{1}\right|}{C}\right) r^{2},
\end{aligned}
$$

which proves the assertion (15) of Theorem 3. The proof of the assertion (16) is similar, thus, we omit it.

Remark 1. Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k \Gamma_{k}\left(\alpha_{1}\right) z^{k}, \lambda_{2}=\mu_{2}=2 \Gamma_{2}\left(\alpha_{1}\right), t=1$ and $C=2-\beta$ in Theorem 3, we improve the result obtained by Pathak et al. [14, Theorem 2.4], by adding the condition $\left|b_{1}\right| \leq \frac{\beta-1}{\beta+1}$.

The following covering result follows the left hand inequality Theorem 3.
Corollary 1. Let the function $f(z)$ given by (9) be in the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, where $\left|b_{1}\right|<\frac{C-(\beta-1)}{C-(\beta+1)}$ and $A_{k} \leq \frac{\lambda_{k}}{k}(k-t \beta), B_{k} \leq \frac{\mu_{k}}{k}(k+t \beta)$ for $k \geq 2, C=\min \left\{A_{2}, B_{2}\right\}$. Then for $|z|=r<1$, we have

$$
\left\{w:|w|<\frac{C-(\beta-1)}{C}-\frac{C-(\beta+1)}{C}\left|b_{1}\right|\right\} \subset f(U) .
$$

3. Extreme Points

In this section we determine the extreme points of the closed convex hull of the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ denoted by clco $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$.

Theorem 4. Let $f(z)$ given by (9), Then $f(z) \in \operatorname{clco} \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty}\left[X_{k} h_{k}(z)+Y_{k} g_{k}(z)\right] \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& h_{1}(z)=z \tag{20}\\
& h_{k}(z)=z+\frac{(\beta-1) k}{\lambda_{k}(k-t \beta)} z^{k}(k \geq 2) \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
g_{k}(z)=z-\frac{(\beta-1) k}{\mu_{k}(k+t \beta)} \bar{z}^{k}(k \geq 1) \tag{22}
\end{equation*}
$$

where $\sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right)=1, X_{k} \geq 0$ and $Y_{k} \geq 0$. In particular, the extreme points of the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ are $\left\{h_{k}\right\}(k \geq 2)$ and $\left\{g_{k}\right\}(k \geq 1)$, respectively.

Proof. For a function $f(z)$ of the form (19), we have

$$
\begin{aligned}
f(z) & =\sum_{k=1}^{\infty}\left[X_{k} h_{k}(z)+Y_{k} g_{k}(z)\right] \\
& =\sum_{k=1}^{\infty} X_{k}\left(z+\frac{(\beta-1) k}{\lambda_{k}(k-t \beta)} z^{k}\right)+Y_{k}\left(z-\frac{(\beta-1) k}{\mu_{k}(k+t \beta)} \bar{z}^{k}\right) \\
& =z+\sum_{k=2}^{\infty} \frac{(\beta-1) k}{\lambda_{k}(k-t \beta)} X_{k} z^{k}-\sum_{k=1}^{\infty} \frac{(\beta-1) k}{\mu_{k}(k+t \beta)} Y_{k} \bar{z}^{k} .
\end{aligned}
$$

But,

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left(\frac{\lambda_{k}(k-t \beta)}{k(1-\beta)} \cdot \frac{k(\beta-1)}{\lambda_{k}(k-t \beta)} X_{k}\right) \\
& \quad+\sum_{k=1}^{\infty}\left(\frac{\mu_{k}(k+t \beta)}{k(1-\beta)} \cdot \frac{k(\beta-1)}{\mu_{k}(k+t \beta)} Y_{k}\right) \\
& =\sum_{k=2}^{\infty} X_{k}+\sum_{k=1}^{\infty} Y_{k}=1-X_{1} \leq 1
\end{aligned}
$$

Thus $f(z) \in \operatorname{clco} \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$.
Conversely, assume that $f(z) \in \operatorname{clco} \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. Set

$$
X_{k}=\frac{\lambda_{k}(k-t \beta)}{k(\beta-1)}\left|a_{k}\right|\left(0 \leq X_{k} \leq 1 ; k \geq 2\right)
$$

$$
Y_{k}=\frac{\mu_{k}(k+t \beta)}{k(\beta-1)}\left|b_{k}\right| \quad\left(0 \leq Y_{k} \leq 1 ; k \geq 1\right)
$$

and $X_{1}=1-\sum_{k=2}^{\infty} X_{k}-\sum_{k=1}^{\infty} Y_{k}$. Therefore,

$$
\begin{aligned}
f(z) & =z+\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}-\sum_{k=1}^{\infty}\left|b_{k}\right| \overline{z^{k}} \\
& =z+\sum_{k=2}^{\infty} \frac{(\beta-1) k}{\lambda_{k}(k-t \beta)} X_{k} z^{k}-\sum_{k=1}^{\infty} \frac{(\beta-1) k}{\mu_{k}(k+t \beta)} Y_{k} \bar{z}^{k} \\
& =z+\sum_{k=2}^{\infty}\left(h_{k}(z)-z\right) X_{k}+\sum_{k=1}^{\infty}\left(g_{k}(z)-z\right) Y_{k} \\
& =z\left(1-\sum_{k=2}^{\infty} X_{k}-\sum_{k=1}^{\infty} Y_{k}\right)+\sum_{k=2}^{\infty} h_{k}(z) X_{k}+\sum_{k=1}^{\infty} g_{k}(z) Y_{k} \\
& =\sum_{k=1}^{\infty}\left(h_{k}(z) X_{k}+g_{k}(z) Y_{k}\right) .
\end{aligned}
$$

This completes the proof of Theorem.

4. Convolution and Convex Combination

In this section, we determine the convolution properties and convex combination. Let the functions $f_{m}(z)$ define by

$$
\begin{equation*}
f_{m}(z)=z+\sum_{k=2}^{\infty}\left|a_{k, m}\right| z^{k}-\sum_{k=1}^{\infty}\left|b_{k, m}\right| \bar{z}^{k} \quad(m=1,2), \tag{23}
\end{equation*}
$$

are in the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, we denote by $\left(f_{1} * f_{2}\right)(z)$ the convolution or (Hadamard Product) of the function $f_{1}(z)$ and $f_{2}(z)$, that is,

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z+\sum_{k=2}^{\infty}\left|a_{k, 1}\right|\left|a_{k, 2}\right| z^{k}-\sum_{k=1}^{\infty}\left|b_{k, 1}\right|\left|b_{k, 2}\right| \bar{z}^{k}, \tag{24}
\end{equation*}
$$

while the integral convolution is defined by

$$
\begin{equation*}
\left(f_{1} \diamond f_{2}\right)(z)=z+\sum_{k=2}^{\infty} \frac{\left|a_{k, 1}\right|\left|a_{k, 2}\right|}{k} z^{k}-\sum_{k=1}^{\infty} \frac{\left|b_{k, 1}\right|\left|b_{k, 2}\right|}{k} \bar{z}^{k} . \tag{25}
\end{equation*}
$$

We first show that the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ is closed under convolution.

Theorem 5. For $1<\beta \leq \delta \leq \frac{4}{3}$, let the functions $f_{1} \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ and $f_{2} \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \delta)$. Then

$$
\begin{align*}
& \left(f_{1} * f_{2}\right)(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta) \subset \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \delta), \tag{26}\\
& \left(f_{1} \diamond f_{2}\right)(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta) \subset \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \delta) . \tag{27}
\end{align*}
$$

Proof. Let $f_{m}(z)(m=1,2)$ are given by (23), where $f_{1}(z)$ be in the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ and $f_{2}(z)$ be in the class $\overline{\mathscr{M}}_{\mathscr{H}}\left(\varphi, \psi ; t, \delta\right.$, . We wish to show that the coefficients of $\left(f_{1} * f_{2}\right)(z)$ satisfy the required condition given in (10). For $f_{2} \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \delta)$, we note that $\left|a_{k, 2}\right|<1$ and $\left|b_{k, 2}\right|<1$. Now for the convolution functions $\left(f_{1} * f_{2}\right)(z)$, we obtain

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \delta}{\delta-1}\right)\left|a_{k, 1}\right|\left|a_{k, 2}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \delta}{\delta-1}\right)\left|b_{k, 1}\right|\left|b_{k, 2}\right| \\
& \leq \sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \delta}{\delta-1}\right)\left|a_{k, 1}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \delta}{\delta-1}\right)\left|b_{k, 1}\right| \\
& \leq \sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left|a_{k, 1}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left|b_{k, 1}\right| \leq 1
\end{aligned}
$$

since $1<\beta \leq \delta \leq \frac{4}{3}$ and $f_{1} \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. Thus

$$
\left(f_{1} * f_{2}\right)(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta) \subset \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \delta) .
$$

The proof of the assertion (27) is similar, thus, we omit it. This completes the proof of Theorem.

Next we show that $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ is closed under convex combinations of its members.
Theorem 6. The class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ is closed under convex combination.
Proof. For $i=1,2, \ldots$, let $f_{i} \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, where

$$
\begin{equation*}
f_{i}(z)=z+\sum_{k=2}^{\infty}\left|a_{k, i}\right| z^{k}-\sum_{k=1}^{\infty}\left|b_{k, i}\right| \bar{z}^{k}(z \in U ; i=1,2, \ldots), \tag{28}
\end{equation*}
$$

then from (10), for $\sum_{i=1}^{\infty} m_{i}=1,0 \leq m_{i}<1$, the convex combination of f_{i} may be written as

$$
\begin{equation*}
\sum_{i=1}^{\infty} m_{i} f_{i}(z)=z+\sum_{k=2}^{\infty}\left(\sum_{i=1}^{\infty} m_{i}\left|a_{k, i}\right|\right) z^{k}-\sum_{k=1}^{\infty}\left(\sum_{i=1}^{\infty} m_{i}\left|b_{k, i}\right|\right) \bar{z}^{k} \tag{29}
\end{equation*}
$$

Then by (29), we have

$$
\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left(\sum_{i=1}^{\infty} m_{i}\left|a_{k, i}\right|\right)+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left(\sum_{i=1}^{\infty} m_{i}\left|b_{k, i}\right|\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} m_{i}\left[\sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left|a_{k, i}\right|+\frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left|b_{k, i}\right|\right] \\
& \leq \sum_{i=1}^{\infty} m_{i} \leq 1 .
\end{aligned}
$$

This completes the proof of Theorem.

5. Integral Operator

In this section we examine a closure property of the class $\overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$ under the generalized Bernardi -Libera-Livingston integral operator (see $[5,12]) L_{c}(f(z))$ which is defined by

$$
\begin{equation*}
L_{c}(f(z))=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, \quad c>-1 . \tag{30}
\end{equation*}
$$

Theorem 7. Let $f(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. Then $L_{c}(f(z)) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$.
Proof. From (30), it follows that

$$
\begin{aligned}
L_{c}(f(z)) & =\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1}[h(t)+\overline{g(t)}] d t \\
& =\frac{c+1}{z^{c}}\left[\int_{0}^{z} t^{c-1}\left(t+\sum_{k=2}^{\infty} a_{k} t^{k}\right) d t-\int_{0}^{z} \overline{\left(t^{c-1} \sum_{k=1}^{\infty} b_{k} t^{k}\right)} d t\right] \\
& =z+\sum_{k=2}^{\infty} A_{k} z^{k}-\sum_{k=1}^{\infty} B_{k} z^{k}
\end{aligned}
$$

where

$$
A_{k}=\left(\frac{c+1}{c+k}\right) a_{k}, B_{k}=\left(\frac{c+1}{c+k}\right) b_{k} .
$$

Therefore,

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left(\frac{c+1}{c+k}\right)\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left(\frac{c+1}{c+k}\right)\left|b_{k}\right| \\
& \leq \sum_{k=2}^{\infty} \frac{\lambda_{k}}{k}\left(\frac{k-t \beta}{\beta-1}\right)\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\mu_{k}}{k}\left(\frac{k+t \beta}{\beta-1}\right)\left|b_{k}\right| \leq 1 .
\end{aligned}
$$

Since $f(z) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$, by using Theorem 1 , then $L_{c}(f(z)) \in \overline{\mathscr{M}}_{\mathscr{H}}(\varphi, \psi ; t, \beta)$. This completes the proof of Theorem.

For suitable choose of $h(z)$ and $g(z)$ we can obtain the following remarks.

Remark 2.

i) Putting $\varphi=\psi=\frac{z}{(1-z)^{2}}$ and $t=\sigma=1$ in the above results, we obtain the corresponding results obtained by Porwal [15];
ii) Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k \Gamma_{k}\left(\alpha_{1}\right) z^{k}$ and $t=\sigma=1$ in the above results, we obtain the corresponding results obtained by Pathak et al. [14];
iii) Putting $\varphi=\psi=\frac{z+z^{2}}{(1-z)^{3}}, t=1$ and $\sigma=-1$ in the above results, we obtain new results of the class $\mathscr{N}_{\mathscr{H}}(\beta)$;
iv) Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k^{n+1} z^{k}, t=1, n \in \mathbb{N}_{0}$ and $\sigma=(-1)^{n}$ in the above results, we obtain new results of the class $\mathscr{M}_{\mathscr{H}}(\beta, n)$;
v) Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k^{-n} z^{k}, t=1, n \in \mathbb{N}_{0}$ and $\sigma=(-1)^{n+1}$ in the above results, we obtain new results of the class $\mathscr{L}_{\mathscr{H}}(\beta, n)$;
vi) Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k[1+\lambda(k-1)]^{n} z^{k}, t=1, \lambda \geq 0, n \in \mathbb{N}_{0}$ and $\sigma=(-1)^{n}$ in the above results, we obtain new results of the class $\mathscr{M}_{\mathscr{H}}(\beta, n, \lambda)$;
vii) Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k[1+\lambda(k-1)]^{-n} z^{k}, t=1, \lambda \geq 0, n \in \mathbb{N}_{0}$ and $\sigma=(-1)^{n}$ in the above results, we obtain new results of the class $\mathscr{L}_{\mathscr{H}}(\beta, n, \lambda)$;
viii) Putting $\varphi=\psi=z+\sum_{k=2}^{\infty} k\left(\frac{1+\ell+\lambda(k-1)}{1+\ell}\right)^{m} z^{k}, t=1, \ell, \lambda \geq 0, m \in \mathbb{N}_{0}$ and $\sigma=(-1)^{m}$ in the above results, we obtain new results of the class $\mathscr{M}_{\mathscr{H}}(\beta, m, \ell, \lambda)$.

References

[1] O. P. Ahuja. Palnar harmonic univalent and related mappings, Journal of Inequalities in Pure and Applied Mathematics, 6, 4, 122, 1-18. 2005.
[2] F. M. Al-Aoboudi. On univalent functions defined by a generalized operator, International Journal of Mathematics and Mathematical Sciences, 27, 1429-1436. 2004.
[3] M. K. Aouf. Certain subclasses of multivalent prestarlike functions with negative coefficients, Demonstratio Mathematica, 40, 4, 799-814. 2007.
[4] M. K. Aouf and T. M. Seoudy. On sandwich theorems of p-valent analytic functions defined by the integral operator, Arabian Journal of Mathematics, 1-12. 2012.
[5] S. D. Bernardi. Convex and starlike univalent functions, Transactions of the American Mathematical Society, 135, 429-446. 1969.
[6] D. Breaz. Certain integral operators on the classes $M\left(\beta_{i}\right)$ and $N\left(\beta_{i}\right)$, Journal of Inequalities and Applications, Art. ID 719354. 2008.
[7] J. Clunie and T. Sheil-Small. Harmonic univalent functions, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, 9, 3-25. 1984.
[8] L. I. Cotirla. Harmonic univalent functions defined by an integral operator, Acta Universitatis Apulensis, 17, 95-105. 2009.
[9] R. M. El-Ashwah and M. K. Aouf. Some properties of new integral operator, Acta Universitatis Apulensis, 24, 51-61. 2010.
[10] R. M. El-Ashwah and M. K. Aouf. Differential subordination and superordination for certain subclasses of analytic functions involving an extended integral operator, Acta Universitatis Apulensis, 28, 341-350. 2011.
[11] J. M. Jahangiri, G. Murugusundaramoorthy, and K. Vijaya. Salagean-type harmonic univalent functions, Southwest Journal of Pure and Applied Mathematics, 2, 77-82. 2002.
[12] R. J. Libera, Some classes of regular univalent functions, Proceedings of the American Mathematical Society, 16 (1965), 755-758.
[13] S. Owa and H. M. Srivastava. Some generalized convolution properties associated with certain subclasses of analytic functions, Journal of Inequalities in Pure and Applied Mathematics, 3, Art. 3, 1-13. 2002.
[14] A. L. Pathak, K. K. Dixit, and R. Agarwal. A new subclass of harmonic univalent functions associated with Dziok-Srivastava operator, International Journal of Mathematics and Mathematical Sciences, 1-10. 2012.
[15] S. Porwal. Study of certain classes related to analytic and harmonic univalent functions [Ph.D. thesis], Chhatrapati Shahu Ji Maharaj University, Kanpur, India, (2011).
[16] S. Porwal and K.K. Dixit. An application of certain convolution operator involving hypergeometric functions, Journal of Rajasthan Academy of Physical Sciences, 9, 2, 173-186. 2010.
[17] J. K. Prajapat. Subordination and superordination preserving properties for generalized multiplier transformation operator, Mathematical and Computer Modelling, 1-10. 2011.
[18] G. S. Salagean. Subclasses of univalent function, Lecture Notes in Mathematics (SpringerVerlag), 1013, 368-372. 1983.
[19] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi. Univalent functions with positive coefficients, Tamkang Journal of Mathematics, 25, 3, 225-230. 1994.
[20] S. Yalçin, M. Öztürk, and M. Yamankaradeniz. On the subclass of Salagean-type harmonic univalent functions, Journal of Inequalities in Pure and Applied Mathematics, 8, 2, Art. 54, 1-9. 2007.
[21] E. Yaşar and S. Yalçin. Generalized Salagean-type harmonic univalent functions, Studia Universitatis BabeÂÿs-Bolyai Ãś Series Mathematica, 57, 3, 395-403. 2012.

