

On the Fatou Components of Semiconjugated Transcendental Entire functions

R. Sharma¹ Ajay K. Sharma^{2,*}

¹ Govt Degree College, Reasi-182311, J&K, India.

² School of Mathematics, Shri Mata Vaishno Devi University, Kakryal, Katra-182320, J& K, India.

Abstract. In this paper, we show that if *f* and *h* are two transcendental entire functions which are semiconjugated by an entire map *g*, where *f* has no Siegel disk and no Baker domain, then $g(F(f)) \subset F(h)$.

2010 Mathematics Subject Classifications: 30D05, 30D35

Key Words and Phrases: semiconjugated transcendental entire function, Siegel disk, Leau domain, Herman ring, Baker domain

1. Introduction

Let f be a non-constant entire function and let f^n , $n \in \mathbb{N}$, denote the *n*th iterate of f. The set of normality F(f) is defined to be the set of points $z \in \mathbb{C}$, such that the sequence $\{f^n\}$ is normal in some neighbourhood of z, and $J = J(f) = \mathbb{C} \setminus F(f)$. F(f) and J(f) are called the Fatou set and the Julia set of f, respectively. These sets play a fundamental role in complex dynamics, (see [2, 5, 7, 9]) for an introduction to this theory. It is well known that F(f) is open (which may be empty) and J(f) is closed. Let f and h be two entire functions and let $g : \mathbb{C} \to \mathbb{C}$ be a non-constant continuous function such that

$$g \circ f = h \circ g. \tag{1}$$

Then we say that f and h are semiconjugated by g and we call g a semiconjugacy [4]. Further, if f = h, then (1) reduces to $g \circ f = f \circ g$ and in this case we say that f and g are permutable entire functions. If U is a component of F(f), then f(U) lies in some component V of F(f). In fact, $V \setminus f(U)$ is either empty or a single point [6]. By a slight abuse of language, we write V = f(U) even when $V \setminus f(U)$ is a singleton. If all $f^n(U)$ with $n \in \mathbb{N}$ are different components of F(f), then U is called a wandering domain.

The behaviour of f^n in the periodic component is fairly well understood. In fact, if *U* is a periodic component of period *p*, then we have one of the following five possibilities [3].

Email addresses: sharmarajesh2k3@rediffmail.com (R. Sharma) aksju_76@yahoo.com (A. Sharma)

http://www.ejmathsci.com

(c) 2013 EJMATHSCI All rights reserved.

^{*}Corresponding author.

- R. Sharma, A. Sharma / Eur. J. Math. Sci., 2 (2013), 329-333
 - i) *U* is an immediate attractive basin of z_0 : *U* contains an attracting periodic point z_0 of period *p* and $f^{np}(z) \rightarrow z_0$ as $n \rightarrow \infty$ for every $z \in U$.
 - ii) *U* is a Leau domain: ∂U contains a periodic point z_0 of period *p* and $f^{np}(z) \to z_0$ as $n \to \infty$ for all $z \in U$. Further, $(f^p)'(z_0) = 1$, if $z_0 \in \mathbb{C}$ and if $z_0 = \infty$, then $(g^p)'(0) = 1$, where $g(z) = 1/f(\frac{1}{z})$.
 - iii) *U* is a Siegel disk: There exists an analytic homeomorphism $\varphi : U \to D$, where *D* is the unit disk such that $\varphi\{f^p[\varphi^{-1}(z)]\} = e^{2\pi i \alpha} z$ for some $\alpha \in \mathbb{R} \setminus Q$.
 - iv) *U* is a Herman ring: There exists an analytic homeomorphism $\varphi : U \to A$, where *A* is the annulus $A = \{z : 1 < |z| < r\}, r > 1$ such that $\varphi\{f^p[\varphi^{-1}(z)]\} = e^{2\pi i \alpha} z$ for some $\alpha \in \mathbb{R} \setminus Q$.
 - v) *U* is a Baker domain: There exists $z_0 \in \partial U$, such that $f^{np}(z) \to z_0$ as $n \to \infty$ for all $z \in U$, but $f^p(z_0)$ is not defined. In 1984, [1] Baker proved that if *f*, *g* are two permutable entire functions with

f = g + K, where K is some constant, then J(f) = J(g). In this paper, we prove that if f and h are two entire maps which are semiconjugated by an entire map g, where f has no Siegel disk and no Baker domain and f and g satisfy one of the following conditions

- (a) there exist a non-constant polynomial *p* and an entire map *k* such that p(f(z)) = k(g(z));
- (b) f = g + K, where *K* is some constant, $K \neq 0$;
- (c) f = gK, where *K* is some constant, $K \neq 1$, and K > 1/e,

then $g(F(f)) \subset F(h)$.

2. Main Results and Their Proofs

Theorem 1. Let f and h be two transcendental entire maps semiconjugated by an entire map g, where f has no Siegel disk and no Baker domain. If there exist a non-constant polynomial p and an entire map k such that

$$p(f(z)) = k(g(z)),$$

then

$$g(F(f)) \subset F(h).$$

Theorem 2. Let f and h be two transcendental entire maps which are semiconjugated by an entire map g, where f has no Siegel disk and no Baker domain, and if f = g + K, where K is some constant, $K \neq 0$, then $g(F(f)) \subset F(h)$.

Theorem 3. Let f and h be two transcendental entire maps which are semiconjugated by an entire map g, where f has no Siegel disk and no Baker domain, and if f = gK, where K is some constant $\neq 1$, and K > 1/e, then $g(F(f)) \subset F(h)$.

R. Sharma, A. Sharma / Eur. J. Math. Sci., 2 (2013), 329-333

In order to prove the main results, we need the following lemmas.

Lemma 1. Suppose that W is a wandering domain of a transcendental entire function f. Then for any compact subset Ω of W, diam $[f^n(\Omega)] \rightarrow 0$ as $n \rightarrow \infty$.

Proof. The proof follows on same lines as the proof of Lemma 8.2.2 in [2]. For completeness, we include it here. Suppose that the result is false. Then there is some compact set K of W, some $\delta > 0$, some increasing sequence n_j of positive integers such that for $j = 1, 2, \dots$, we have that diam $[f^n(\Omega)] \ge \varepsilon$. As f^n is normal in W, there is a subsequence of f^{n_j} which converges locally uniformly on W to some analytic function g. For convenience, we relabel this subsequence and so assume that f^{n_j} itself has this property. If g is constant, with value α say, on W, then f^{n_j} converges uniformly to α on K and so for large j, f^{n_j} lies in an $\varepsilon/3$ neighbourhood of α . This contradicts the fact that diam $[f^n(\Omega)] \ge \varepsilon$. Thus we conclude that f^{n_j} converges to a non-constant g locally uniformly on W. Now take a point ζ in W such that $g'(\zeta) \ne 0$ and draw a small circle C with centre ζ such that its interior D lies in W, and which is such that $g(z) \ne g(\zeta)$, where z is on C. Then for $j \ge j_0$ say,

$$|f^{n_j} - g(z)| < \inf_{w \in C} |g(w) - g(\zeta)| < |g(z) - g(\zeta)|$$

on *C*, so by Rouche's Theorem, $f^{n_j}(D)$ contains a point $g(\zeta)$. A contradiction to the fact that *W* is a wandering domain. This completes the proof.

Lemma 2 ([1]). If $\alpha \in J(f)$, if N is an open neighbourhood of α , and if Ω is a compact set which does not contain a Fatou-exceptional point of f, then there exists n_0 such that $f^n(N) \supset \Omega$ for all $n > n_0$.

Lemma 3. Let f and h be two transcendental entire functions, where f has no Siegel disk and no Baker domain and let g be a continuous and open map such that $g \circ f = h \circ g$, then if there is a subsequence f^{n_k} , with $n_k \to \infty$ which has a finite limit, say ξ in the component U of F(f)which contains α , then $g(\alpha) \in F(h)$.

Proof. Suppose $g(\alpha) \notin F(h)$. Then $g(\alpha) \in J(h)$. Let $\alpha \in F(f)$. Then there exists an open neighbourhood U of α such that $\overline{U} \subset F(f)$. Since f^{n_k} has a finite limit function, say ξ in U such that all $f^{n_k}(U)$ lie in a single compact set, say K_0 on which g is uniformly continuous. Now by Lemma 1, we have $g(f^{n_k}(U)) = h^{n_k}(g(U))$ has small diameter for all large n_k . Again $g(\alpha) \in J(h)$ and $g(K_0)$ is a compact set, which does not contains Fatou exceptional point of h, then by Lemma 2, there exists n_0 such that for $n > n_0$,

$$h^{n_k}(g(U)) \supset g(K_0).$$

Now

$$h^{n_k}(g(U)) = g(f^{n_k}(U)).$$
 (2)

Choose a non-Fatou exceptional value $\eta \notin g(K_0)$. Then for any point $\delta \in U$, $g(\delta) \in g(U)$ and $h^{n_{k'}}(g(\delta)) = \eta$, where $n_{k'}$ is fixed. Thus $f^{n_{k'}}(\delta) \in f^{n_{k'}}(U) \subset K_0$, and so

$$g(f^{n_{k'}}(\delta)) \subset g(K_0),$$

R. Sharma, A. Sharma / Eur. J. Math. Sci., 2 (2013), 329-333

which implies that $g(f^{n_{k'}}(\delta)) \neq \eta$, a contradiction to (2). Hence $g(\alpha) \in F(h)$.

Proof. [Theorem 1] Let $\alpha \in F(f)$. Then there exists a neighbourhood U of α such that $\overline{U} \subset F(f)$. By Lemma 3, we only need to consider the case $f^n \to \infty$ in U. Let $M = \max_{\substack{|w|=1 \\ |w|=1}} |k(w)|$. Since p is a non-constant polynomial, there exist a positive constant K such that |p(z)| > M+1 when |z| > K. Since $f^n \to \infty$ in U as $n \to \infty$, there exists n_0 such that for $n > n_0$ and $z \in U$, $|f^n(z)| > K$.

Thus |f(z)| > K for every $z \in f^n(U)$ $(n > n_0)$. Now if $g(\alpha) \notin F(h)$, then for arbitrary large n, by expanding properties of Julia sets [see 8, p. 75], the sequence $\{h^n\}$ takes all values in g(U) with at most one exception. Thus there exists $t = g(\xi), \xi \in U$, such that for some $m > n_0$,

$$1 > |h^{m}(t)| = |h^{m}(g(\xi))| = |g(f^{m}(\xi))|.$$

Thus $\delta = f^m(\xi) \in f^m(U)$, and so $|f(\delta)| > K$, and $|g(\delta)| < 1$. Hence $M + 1 < |p(f(\delta))| = |k(g(\delta))| \le M$, which is a contradiction. Thus we have that $g(\alpha) \in F(h)$. Hence $g(F(f)) \subset F(h)$.

Proof. [Theorem 2] Let $\alpha \in F(f)$, and a neighbourhood U of α such that $\overline{U} \subset F(f)$. Then by Lemma 3, we only need to consider the case $f^n \to \infty$ in U. Take a constant A such that A > |K| + 1. There exists n_0 such that $|f^n| > A$ in U for $n > n_0$, and hence $|f^n| > A$ for $z \in f^n(U), n > n_0$. To complete the proof, let $g(\alpha) \notin F(h)$. Then for arbitrary large n, the sequence $\{h^n\}$ takes all values in g(U) with atmost one exception [see 8, p. 75]. Therefore, there exists $t = g(\xi), ; \xi \in U$, such that for some $m > n_0$,

$$1 > |h^{m}(t)| = |h^{m}(g(\xi))| = |g(f^{m}(\xi))|,$$

which implies that $|g(f^m(\xi))| < 1$. Thus $\eta = f^m(\xi) \in f^m(U)$ and $|g(\eta)| = |g(f^m(\xi))| < 1$. Since $|f^n(\xi)| > A$ for all $\xi \in U$ and for all $n > n_0$, and so $|f(\eta)| = |f(f^m(\xi))| = |f^{m+1}(\xi)| > A$ for $\xi \in U$. Also

$$|K| = |f(\eta) - g(\eta)| > |f(\eta)| - |g(\eta)| > A - 1,$$

a contradiction for A > |K| + 1.

Thus we have that $g(\alpha) \in F(h)$. Hence $g(F(f)) \subset F(h)$. Next example illustrates that there exist transcendental entire maps f, g and h such that $f \neq h$ and satisfying the conditions in Theorem 2.

Example 1. Let $f(z) = e^{z} + K$, K > 0, $g(z) = e^{z}$ and $h(z) = e^{z+K}$. Then f(z) = g(z) + K and $(g \circ f)(z) = (h \circ g)(z)$. Also $f(z) = e^{z} + K \neq h(z)$.

Proof. [Theorem 3] Take $\alpha \in F(f)$, and a neighbourhood U of α such that $\overline{U} \subset F(f)$. Then by Lemma 3, we shall consider only the case when $f^n \to \infty$ in U. Take a constant A such that A > |K|. Then there exist n_0 such that for $n > n_0$, $|f^n| > A$ holds in U, and hence |f(z)| > A for $z \in f^n(U)$, $(n > n_0)$. To complete the proof, let $g(\alpha) \notin F(h)$. Then by expanding properties of REFERENCES

Julia sets [see 8, p. 75] for arbitrary large *n*, the sequence $\{h^n\}$ takes all values in g(U), with atmost one exception. Therefore, there exist $t = g(\xi), \xi \in U$, such that for some $m > n_0$,

$$1 > |h^{m}(t)| = |h^{m}(g(\xi))| = |g(f^{m}(\xi))|,$$

and so $|g(f^m(\xi))| < 1$ Thus $\eta = f^m(\eta) \in f^m(U)$ and $|g(\eta)| = |g(f^m(\xi))| < 1$. Also, since $|f^n| > A$ in U for $n > n_0$, and so

$$|f(\eta)| = |f(f^m(\xi))| = |f^{m+1}(\xi)| > A$$
 for $\xi \in U$.

Now $|f(\eta)| > A$, and so $|Kg(\eta)| > A$ for $\eta \in f^m(U)$, which implies that $|g(\eta)| > A/K$. Thus $A/K < |g(\eta)| < 1$, a contradiction for A > |K|. Thus we have that $g(\alpha) \in F(h)$. Hence $g(F(f)) \subset F(h)$. Again we provide an example which illustrates that there exist transcendental entire maps f, g and h such that $f \neq h$ and satisfying the conditions in Theorem 3.

Example 2. Let $f(z) = Ke^z$, $g(z) = e^z$ and $h(z) = e^{Kz}$ ($K \neq 1$), and K > 1/e be three transcendental entire functions. Clearly, $f(z) \neq h(z)$ and $g \circ f = h \circ g$.

ACKNOWLEDGEMENTS This research was partly supported by National Board of Higher Mathematics (NBHM)/DAE, India (Grant No. 48/4/2009/ R&D-II/426).

References

- [1] I. N. Baker. *Wandering Domains in the Iteration of Entire Functions*, Proc. London Math. Soc. 49, 3, 563-576, 1984.
- [2] A. F. Beardon. Iteration of Rational Functions, Complex Analytic Dynamical systems, Springer Verlag, 1991.
- [3] W. Bergweiler. *Iteration of Meromorphic Functions*, Bull. Amer. Math. Soc. 29, 2, 151-188, 1993.
- [4] W. Bergweiler and A. Hinkkanean. *On Semiconjugation of Entire Functions*, Math. Proc. Cambridge Philos. Soc. 126, 565-574, 1999.
- [5] L. Carleson and T. W. Gamelin. *Complex dynamics*, Springer, New-York, Berlin, Heidelberg, 1993.
- [6] M. Heins. Asymptotic Spots of Entire and Meromorphic Functions, Ann. of Math. 66, 430-439, 1957.
- [7] J. Milnor. *Dynamics in One Complex Variable: Introductory Lectures*, Stony Brook Institute for Mathematical Sciences, Preprint 1990.
- [8] S. Morosawa, Y. Nishmura, M. Taniguchi and T. Ueda. *Holomorphic dynamics*, Cambridge University Press 2000.
- [9] N. Steinmetz. *Rational iteration*, de Gruyter, Berlin, New York 1993.