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Abstract

Recent events in the global economy have caused many writers to argue
that the market is driven by animal spirits, by irrational exuberance or specu-
lation. At the same time, the economic downturn has apparently caused many
voters in the United States, and other countries, to change their opininion
about the the proper role of government. Unfortunately, there does not exist a
general equilibrium (GE) model of the political economy, combining a formal
model of the existence, and convergence to a price equilibrium, as well as an
equilibrium model of political choice. One impediment to such a theory is the
so-called chaos theorem (Saari, 1997) which suggests that existence of a polit-
ical equilibrium is non-generic. This paper surveys the results in GE based on
the theory of dynamical systems, emphasizing the role of structural stability.
In this context it is natural to consider a preference �eld H for the society,
combining economic �elds, associated with the preferred changes wrought by
agents in the economic market place, together with �elds of preferred changes
in the polity. A condition called half-openess of H is su¢ cient to guarantee
existence of a local direction gradient, d; for the society. The paper argues that
instead of seeking equilibrium, it is natural to examine the structural stability
of the �ow induced by the social preference �eld. Instead of focusing on equi-
librium analysis, based on some version of the Brouwer �xed point theoerem,
and thus on the assumption that the social world is topologically contractible,
political economy could consider the nature of the dynamical path of change,
and utilize notions from the qualitative theory of dynamical systems.

Mathematics Subject Classi�cation: 37C10, 37C20, 37 H20.

Keywords: social dynamical system, �xed point theory, equilibrium, elec-
toral models
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1 Introduction

When Galileo Galilei turned his telescope to the heavens in August, 1609, he
inaugurated the modern era in science. In his Sidereal Messenger (1610) he
wrote of the myriad stars in the milky way, the moons of Jupiter, each at a
di¤erent period and distance from Jupiter. Jupiter�s moons suggested it was
a planet just like the earth. Morevoer the phases of Venus also suggested that
it was a planet orbiting the Sun. These observations, together with Kepler�s
empirical �laws�on planetary orbits made it clear that the Copernican helio-
centric model of the solar system (Copernicus, (1543) was not just a mathe-
matical theory but a truth. Galileo waited 22 years before publishing Dialogue
concerning the Two Chief World Systems, Ptolemaic and Copernican, for fear
that he would be accused of heresy by the Church. Indeed, in 1633, he was
found guilty of �vehement suspicion of heresy� and spent the years until his
death under house arrest, but writing Two New Sciences (1638). Within �fty
years Newton published Philosophiae Naturalis Principia Mathematica (1687),
giving a mathematical model of physical reality, including celestial mechanics
that provided the theoretical foundations for Kepler�s Laws.
Even with the Newtonian mathematical model, it was unclear whether the

solar sytem was �structurally stable�. Although it was possible to compute the
orbit of a single planet round the sun, the calculation of the in�uence of many
planets on each other seemed technically di¢ cult. Could these joint in�uences
cause a planet to slowly change its orbit, perhaps causing it to spiral in to the
sun? Structural stability for the orbital system of the planets means that the
perturbations caused by these interactions, do not change the overall dynamic
system. The failure of structural stability means that a slight perturbation of
the dynamical system induces a change in the qualitative characteristics of the
system. We can use the term �chaos�to refer to this breakdown.
It is only in the last twenty years or so that the implications of �chaos�

have begun to be realized. In a recent book Kau¤man (1993) commented
on the failure of structural stability in the following way.

One implication of the occurrence or non-occurrence of struc-
tural stability is that, in structurally stable systems, smooth walks
in parameter space must [result in] smooth changes in dynamical
behavior. By contrast, chaotic systems, which are not structurally
stable, adapt on uncorrelated landscapes. Very small changes in
the parameters pass through many interlaced bifurcation surfaces
and so change the behavior of the system dramatically.

It is worth mentioning that the idea of structural stability is not a new
one, though the original discussion was not formalized in quite the way it is
today. The laws of motion written down by Newton in Principia Mathematica
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could be solved precisely giving a dynamical system that for the case of a
planet (a point mass) orbiting the sun. However, the attempt to compute
the entire system of planetary orbits had to face the problem of perturbations.
Would the perturbations induced in each orbit by the other planets cause the
orbital computations to converge or diverge? With convergence, computing the
orbit of Mars, say, can be done by approximating the e¤ects of Jupiter, Saturn
perhaps, on the Mars orbit. The calculations would give a prediction very close
to the actual orbit. Using the approximations, the planetary orbits could be
computed far into the future, giving predictions as precise as calculating ability
permitted. Without convergence, it would be impossible to make predictions
with any degree of certainty. Laplace in his work Mécanique Céleste (1799-
1825) had argued that the solar system (viewed as a formal dynamical system)
is structurally stable (in our terms). Consistent with his view was the use of
successive approximations to predict the perihelion (a point nearest the sun)
of Haley�s comet, in 1759, and to infer the existence and location of Neptune
in 1846.
Structural stability in the three-body problem (of two planets and a sun)

was the obvious �rst step in attempting to prove Laplace�s assertion: In 1885
a prize was announced to celebrate the King of Sweden� s birthday. Henri
Poincaré submitted his entry �Sur le problème des trois corps et les
Equations de la Dynamique.�This attempted to prove structural stability in
a restricted three body problem. The prize was won by Poincaré although it
was later found to contain an error. His work on di¤erential equations in the
1880s and his later work, New Methods of Celestial Mechanics in the 1890�s,
developed qualitative techniques (in what we now call di¤erential topology).
The Poincaré conjecture, that �a compact manifold, with the homotopy

characteristics of the three-dimensional sphere, is indeed a three sphere�was
one of the great unproven theorems of the twentieth century.1 The theorem
has recently been proved by Grigory Perelman.
The earlier e¤orts to prove this result has led to new ideas in topological

geometry, that have turned out, surprisingly, to have profound implications for
a better understanding of general relativity and the large scale structure of the
universe. (See the discussion in O�Shea , 2007). Our physical universe is a three
dimensional manifold, probably bounded and thus compact. The Ricci �ow
on this manifold is given by the partial di¤erential equation �t(gij) = 2Rij:
This equation is a way of characterizing the curvature of geodesics on this
manifold. The equation has a deep relationship with the topological structure
of the universe. Perelman�s proof depends on understanding the nature of
singularities associated with this equation. .
In passing it is worth mentioning that since there is a natural periodicity

1The generalized Poincaré conjecture in higher dimension was proved by Smale (1961)
for dimension �ve or more, while Freedman (1982) proved it in dimension four.
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to any rotating celestial system, the state space in some sense can be viewed
as products of circles (that is tori). The examples mentioned below, such
as periodic (rational) or a-periodic (non-rational) �ow on the torus come up
naturally in celestial mechanics.
One of the notions important in understanding structural stability and

chaos is that of bifurcation. Bifurcation refers to the situation where a par-
ticular dynamical system is on the boundary separating qualitatively di¤erent
systems. At such a bifurcation, features of the system separate out in pairs.
However Poincaré also discovered that the bifurcation could be associated with
the appearance of a new solution with period double that of the original. This
phenomenon is central to the existence of a period-doubling cascade as one of
the characteristics of chaos. Near the end of his Celestial Mechanics, Poincaré
writes of this phenomenon:

Neither of the two curves must ever cut across itself, but it
must bend back upon itself in a very complex manner ...an in�nite
number of times.... I shall not even try to draw it...nothing is more
suitable for providing us with an idea of the complex nature of the
three body problem.2

Although Poincaré was led to the possibility of chaos in his investigations
into the solar system, he concluded that though there were an in�nite number
of such chaotic orbits, the probability that an asteroid would be in a chaotic
orbit was in�nitesimal. Arnold showed in 1963 that for a system with small
planets, there is an open set of initial conditions leading to bounded orbits for
all time. Computer simulations of the system far into time also suggests it is
structurally stable.3 Even so, there are events in the system that a¤ect us and
appear to be chaotic (perhaps catastrophic would be a more appropriate term).
It is certainly the case that the �N-body system� can display exceedingly
complex, or chaotic phenomena (Saari and Xia, 1989; Saari, 2005).4

Poincare (1908) was led to the realization that deterministic systems could
be chaotic. As he wrote:

If we knew exactly the laws of nature and the situation of the
universe at the initial moment, we could predict exactly the situ-
ation of that same universe at a succeeding moment. but even if
it were the case that the natural laws had no longer any secret for
us, we could still only know the initial situation approximately. If

2Galison (2003: 74).
3Peterson, 1993.
4Although space is three dimensional, the Einsteinian universe also involves time, and

the behavior of geodesics near space-time singularities may also be very complex. See the
discussion of space-time singularities, such as black holes, in Hawking and Ellis (1973).
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that enabled us to predict the succeeding situation with the same
approximation, that is all we require, and we should say that the
phenomenon had been predicted, that it is governed by laws. But
it is not always so; it may happen that small di¤erences in the
initial conditions produce very great ones in the �nal phenomena.
A small error in the former will produce an enormous error in the
latter. Prediction becomes impossible, and we have the fortuitous
phenomenon.

The impact of large asteroids may have a dramatic e¤ect on the biosphere of
the earth, and these have been suggested as a possible cause of mass extinction.
The onset and behavior of the ice ages over the last 100,000 years is very
possibly chaotic, and it is likely that there is a relationship between these
violent climatic variations and the recent rapid evolution of human intelligence
(Calvin, 1991, 2006).
More generally, evolution itself is often perceived as a gradient dynamical

process, leading to increasing complexity. However, Gould (1989,1996) has ar-
gued over a number of years that evolution is far from gradient-like: increasing
complexity coexists with simple forms of life, and past life has exhibited an
astonishing variety. Evolution itself appears to proceed at a very uneven rate.5

�Empirical� chaos was probably �rst discovered by Lorenz (1962, 1963)
in his e¤orts to numerically solve a system of equations representative of the
behavior of weather. A very simple version is the non-linear vector equation

dx

dt
=

24 dx1dx2
dx3

35 =

24 �a(x1 � x2)
�x1x3 + a2x1 � x2

x1x2 � a3x3

35
which is chaotic for certain ranges of the three constants, a1; a2; a3:
The resulting �butter�y�portrait winds a number of times about the left

hole (as in Figure 1),then about the right hole,then the left,etc. Thus the
�phase prortrait� of this dynamical system can be described by a sequence
of winding numbers (w1l ; w

1
k; w

2
l ; w

2
k; etc.). Changing the constants a1; a2; a3

slightly changes the winding numbers. Note that the picture in Figure 1
is in three dimensions, The butter�y wings on left and right consist of in�-
nitely many, in�nitesimally close loops. The whole thing is called the Lorentz
�strange attractor.�
Given that chaos can be found in such a simple meteorological system, it is

worthwhile engaging in a thought experiment to see whether �climatic chaos�
is a plausible phenomenon. Weather occurs on the surface of the earth, so the

5While we are all aware that evolution can be interpreted as a gene game (Dawkins, 1976),
less emphasis is put on the fact that sex implies that the game between genes is coalitional.
The choice theorem presented below suggests that evolution itself may be chaotic.
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Figure 1: The butter�y

spatial context, or geo-sphere, is S2 � I, where I is an interval corresponding
to the depth of the atmosphere and S2 is the two-dimensional sphere, the
surface of the earth. Below, we shall present a theoretical result to show that
a certain kind of dynamical system on S2 � I will exhibit a singularity, such
as the eye of a hurricane.
Climate is a¤ected by temporal periodicities, induced by the orbit of the

earth round the sun and wobbles in the earth�s rotation. In addition there are
spatial periodicities or closed orbits in the geo-sphere. Chief among these must
be the jet stream and the oceanic orbit of water from the southern hemisphere
to the North Atlantic (the Gulf Stream) and back. The most interesting sin-
gularities are the hurricanes generated each year o¤ the coast of Africa and
channeled across the Atlantic to the Caribbean and the coast of the U.S.A.
Hurricanes are self-sustaining heat machines that eventually dissipate if they
cross land or cool water. It is fairly clear that their origin and trajectory is
chaotic. While the topological structure of the geo-sphere allows us to infer the
existence of a singularity, understanding weather, and more generally, climate
itself, involves the analysis of an extremely complex dynamical system that
depends on properties of the solar system.
Perhaps we can use this thought experiment to consider the global econ-

omy. First of all there must be local periodicities due to climatic variation.
Since hurricanes and monsoons, etc. e¤ect the economy, one would expect
small chaotic occurrences. More importantly, however, some of the behavior
of economic agents will be based on their future expectations about the nature
of economic growth, etc. Thus one would expect long term expectations to
a¤ect large scale decisions on matters such as investment, fertility etc.
It is evident enough that the general equilibrium (GE) emphasis on the

existence of price equilibria, while important, is probably an incomplete way
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to understand economic development. In particular, GE theory tends to down-
play the formation of expectations by agents, and the possibility that this can
lead to unsustainable �bubbles.�
It is a key assumption of GE that agents�preferences are de�ned on the

commodity space alone. If, on the contrary, these are de�ned on commodities
and prices, then it is not obvious that the Arrow Debreu Theorem (1954) can
be employed to show existence of a price equilibrium. More generally one can
imagine energy engines (very like hurricanes) being generated in asset markets,
and sustained by self-reinforcing beliefs about the trajectory of prices. It is
true that modern decentralised economies are truly astonishing knowledge or
data-processing mechanisms. From the perspective of today, the argument
that a central planning authority can be as e¤ective as the market in making
�rational� investment decisions is very controversial. Hayek �s �calculation�
argument used the fact that information is dispersed throughout the economy,
and is, in any case, predominantly subjective. He argued essentially that only
a market, based on individual choices, can possibly �aggregate this information
(Hayek, 1954).
Recently, however, theorists have begun to probe the degree of consistency

or convergence of beliefs in a market when it is viewed as a game. It would
seem that when the agents �know enough about each other", then convergence
in beliefs is a possibility (Arrow,1986; Aumann, 1976).
In fact the issue about the �truth-seeking capability�of human institutions

is very old and dates back to the work of Condorcet (1785). Recent work sug-
gests that there may be "belief cascades" or bubbles, which generate multiple
paths of beliefs which diverge away from the truth. (Bikhchandani, Hirschleifer
and Welsh,1992).
John Maynard Keynes work, The General Theory of Employment, Interest

and Money (1936) was very probably the most in�uential economic book of the
century. What is interesting about The General Theory is that it does appear
to have grown out of work that Keynes did in the period 1906 to 1914 on the
foundation of probability, and that was published eventually as the Treatise
on Probability (1921). In the Treatise, Keynes viewed probability as a degree
of belief.6 He also wrote:

The old assumptions, that all quantity is numerical and that
all quantitative characteristics are additive, can no longer be sus-
tained. Mathematical reasoning now appears as an aid in its sym-
bolic rather than its numerical character. I, at any rate, have not
the same lively hope as Condorcet, or even as Edgeworth, �Eclairer
le Science morales et politiques par le �ambeau de l�Algebre.�

6The Treatise discusses earlier work by Condorcet (1795) and Laplace (1812, 1814) as
well as Poincaré (1896), and comments on the conceptual link between Condorcet, Malthus
and Darwin. See Scho�eld (2010) for comments on this link.
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Macro-economics as it is practiced today tends to put a heavy emphasis
on the empirical relationships between economic aggregates. Keynes�views,in
Treatise, suggest that he was impressed neither by econometric relationships
nor by algebraic manipulation. Moreover, his ideas on �speculative euphoria
and crashes" would seem to be based on an understanding of the economy
grounded neither in econometrics nor algebra but in the qualitative aspects of
its dynamics. (See Minsky, 1975, 1986).
Obviously I have in mind a dynamical representation of the economy some-

where in between macro-economics and general equilibrium theory. The laws
of motion of such an economy would be derived from modeling individuals�
�rational" behavior as they process information, update beliefs and locally
optimize.
As Akerlof and Shiller (2009) argue in their book,

the business cycle is tied to feedback loops involving specula-
tive price movements and other economic activity � and to the
talk that these movements incite. A downward movement in stock
prices, for example, generates chatter and media response, and
reminds people of longstanding pessimistic stories and theories.
These stories, newly prominent in their minds, incline them toward
gloomy intuitive assessments. As a result, the downward spiral can
continue: declining prices cause the stories to spread, causing still
more price declines and further reinforcement of the stories.

At present it is not possible to construct such a micro-based macro-economy
because the laws of motion are unknown. Nonetheless, just as simulation of
global weather systems can be based on local physical laws, so may economic
dynamics be built up from the local �rationality" of individual agents. How-
ever, the GE models discussed in this paper are based on the assumption
that the political economic world is contractible, that is, it has the topological
characteristic of a ball. This seems an unlikely assumption. (See Krugman,
2009, for a recent argument that the assumptions of economic theory are un-
realistic.) Although the total set of resources may well be bounded, it does
not appear to be the case that technological possibilies are similarly bounded.
Indeed, the Enlightenment argument between Malthus ([1798], 1970) and Con-
dorcet([1795], 1955) seems, at least in the developed world, to have been carried
by Condorcet.
Although we might be optimistic about technological advance, recent eco-

nomic events have caused concern about the validity of current economic the-
ory. As a result, an extensive literature has developed over the last few years
over the theory of e¢ cient markets . This literature discusses the nature of herd
instinct, the way markets respond to speculative behavior and the power law
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that characterizes market price movements.7 Some of these analyses are based
on a version of the market equilibrium theorem. In fact, much of the work
on e¢ cient markets is based on the Black-Scholes partial di¤erential equation
used to price options (Black and Scholes (1973; Merton, 1973). This equation
is structurally similar to the Ricci �ow equation mentioned above in relation
to the Poincare conjecture. The recent collapse of the economy suggests that
this equation is subject to chaotic singularities, whose qualitative nature is not
understood.
Indeed Minsky�s interpretation of Keynes�s general theory focuses on the

proposition that asset pricing is subject to an extreme degree of uncertainty.8

The underlying idea here is that individuals do not know the true probability
distribution on the various states of the world, but only have personal proba-
bility distributions, in the sense of Savage (1954), and make stochastic choices
on the basis of this personal uncertainty.9 Agents may also di¤er widely in how
they treat �black swan�low probability events, as discussed in Hinich (2003),
Taleb (2007) and Chichilinsky (2009). Since investement decisions are based
on these uncertain evaluations, and these are the driving force of an advanced
economy, the �ow of the market can exhibit singularities, of the kind that
recently nearly brought on a great depression. These singularities are time-
dependent, and can be induced by endogenous belief-cascades, rather than by
any change in economic or political fundmentals.10

More abstractly, the space in which economic and political behavior occurs
may be thought of as a di¤erentiable manifold of very high dimension. While
GE asserts that there are "equilibria", these will depend on the dynamical do-
main in which they are de�ned. These domains are separated by singularities,
where the qualitative nature of the system may be radically transformed. To
illustrate, although topology asserts that there is a singularity in a �ow on the
geosphere, S2 � I, as described above, we need the complex mathematics of
chaos theory to understand the creation of a hutrricane, and more generally to
attempt to understand the qualitatice changes that can occur in weather and
climate. Here I interpret a singularity not as a simple phenomenon such as
the eye of the hurricane, but as a gate between di¤erent dynamical systems.
One of the concerns about climate is that it may exhibit complex singular-

ities. For example, the spatially periodic, oceanic �ow of water, including the
Gulf stream, has switched o¤, and then on again, in the past. These switches
can be interpreted as singularities that have caused catastrophic changes in

7See, for example, Barbera (2009), Cassidy (2009), Fox (2009), Mandelbrot and Hudson
(2004), Taleb ( 2007) and Shiller (2003,2005).

8Minsky (1975).
9See also Kurz and Motolese (2001).
10Scho�eld (2006a, 2010).
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climate, and have in turn been caused by subtle changes in the underlying
periodicities of the system. Since the end of the last ice age, during the period
of the holocene of the last twelve thousand years, humankind has bene�ted
from a structurally stable and mild climate domain, conducive to agriculture.
Were human activity to be su¢ cient to �force�the bio-sphere11 through one
of these singularities, then the dynamical system that we would face would be
qualitatively completely di¤erent.12

It is increasingly understood that the dynamics of the geo-sphere and bio-
sphere interact through multiple feedback mechanisms (Calvin, 2006). The
melting of the icecaps resulting from a temperature change modi�es their
albedo, re�ecting less heat energy, further raising global temperature, increas-
ing oceanic volume, a¤ecting forest evapotransportation as well as the oceanic
algae populations. Methane can be liberated from deep ocean domains. Cloud
formations may change as the weather system is transformed, and intense
families of hurricanes spawned in the oceans. All these possible changes are
deeply chaotic because they involve a fundamental change in the nature of the
equilibrium between the oceans, the land and the atmosphere.

For this reason the future we face exhibits the kind of fundamental uncer-
tainty that Keynes emphasized. It can be argued that the degree of uncertainty
is so extreme that we should plan for the future with extreme risk aversion
(Stern, 2007; Coyle, 2011).

While GE may assert the existence of a general full-employment equilib-
rium, recent events suggest that economic behavior in our sophisticated mar-
kets may also induce complex or chaotic singularities in the �ow of the economy.
Indeed, it has dawned on us that these lurches from one crisis to another make
it even more di¢ cult to see how to plan for the future.13

These suggestions are meant to indicate that there are deep connections
between economic and social choice and mathematical models derived from
di¤erential topology and geometry. In my view, the qualitative theory of dy-
namical systems will have a major role in constructing a dynamical theory of
the political economy and its e¤ect on the bio-sphere. In what follows I shall
review some aspects of the qualitative theory of dynamical systems in order to
suggest how this theory may be constructed.

11I use the term bio-sphere for the whole system of life etc. within the geo-sphere. Both
systems are extremely complex and, I believe, resist purely quantitative analysis.
12Metaphorically speaking, it would be like passing through a black hole into a totally

di¤erent universe.
13Recent economic events have led to severe disagreement about how to attempt to deal

with climate change. It was only because of pressure from Obama that the Copenhagen
Accord was agreed to, in December 2009, by the United States together with four key
emerging economies - China, Brazil, India and South Africa. .



Topology and Social Choice 89

2 Genericity on the space of utilities

We �rst introduce the idea of a topology on the set U(W )N of smooth utility
pro�les. Details of this topology can be found in Golubitsky and Guillemin
(1973), Smale (1973), Hirsch (1976), and Saari and Simon (1977).

De�nition 2.1
LetW be a compact subset of the w�dimensional commodity space Rw: A

pro�le u: W � Rn for a society N of size n belongs to U(W )N if the Jacobian
function

J [u] : W �Mat(w; n) : (x) �!
�
@ui
@xj

�i=1;:::;n
j=1;:::;w

is everywhere de�ned and continuous wrt the topologies on .the space W and
the set of w by n matrices, Mat(w; n):

(i) A set V � U(W )N is open in the C0-topology, T0; on U(W )N i¤ for any
u 2 V; 9� > 0 such that�

u0 2 U(W )N : ku0i(x)� ui(x)k < �;8x 2 W; 8i 2 N
	
� V;

where k�k is the Euclidean norm on W . Write (U(W )N ; T0) for this
topological space.

(ii) Let kkw:n be the natural norm on the set of matrices Mat(w; n).

(iii) A set V � U(W )N is open in the C1-topology, T1; on U(W )N i¤ for any
u 2 V; 9 �1; �2 > 0 such that8<:

u0 2 U(W )N : ku0i(x)� ui(x)k < �1;
and kJ [u0i](x)� J [ui](x)kn;w < �2;

8i 2 N; 8x 2 W

9=; � V:

Write (U(W )N ; T1) for this topological space.

Comment
In general if T1 and T2 are two topologies on a space U; then say T2 is

�ner than T1 i¤ every open set in the T1-topology is also an open set in the
T2-topology. T2 is strictly �ner than T1 i¤ T2 is �ner than T1 and there is a
set V which is open in T2 but which is not open in T1: The C1-topology on
U(W )N is strictly �ner than the C0-topology on U(W )N

Comment . A set V � U(W )N is called a residual set in the topology on
U(W )N i¤ it is the countable intersection of open dense sets in the topology. It
can be shown that U(W )N is a Baire space, so any residual subset of U(W )N
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in the C1-topology is itself dense. Let K be a property which can be satis�ed
by a smooth pro�le, and let

U [K] = fu 2 U(W )N : u satis�es Kg:

Then K is called a generic property i¤ U [K] contains a residual set in the
C1-topology.
The Debreu-Smale Theorem (Smale, 1973, 1974; Debreu,1976; Saari and

Simon, 1977) has shown that the existence of isolated price equilibria is a
generic phenomenon in the space, (U(W )N ; T1); of smooth utility pro�les.

3 Structural Stability of a Vector Field

The adjustment process for an economy can be viewed a vector �eld on the
(w � 1) dimensional price simplex, � : that is at every price vector p(t); at
time t; there exists a rule that changes p(t) by the equation dp(t)

dt
= �(p);

where �(p) is the excess demand (the di¤erence between the total demand at
the price vector p; and the supply, given by the total endowments, e 2 W n;
of the society).
At an equilibrium price vector p�, the excess demand �(p�) = 0 so dp(t)

dt
jp�

= 0; and the price adjustment process has a stationary point. The �ow on
� can be obtained by integrating the di¤erential equation. Now consider the
excess demand function � as a map from U(W )N � W n to the metric space
V1(�) of vector �elds on �: Here V1(�) is enowed with the natural topology
induced from the metric k � kon V1(�). Thus given a pro�le u and a vector
e 2 W n of initial endowments, we let

� : U(W )N � W n �! V1(�):
The genericity theorem given above implies that, in fact, there is an open

dense set V in (U(W )N ; T1) such that � is indeed a C1 vector �eld on �.
An obvious question to ask is how � changes as the parameters u and

x 2 W n change. One way to do this is to consider small perturbations in a
vector �eld � and determine how the phase portrait of � changes.
It should be clear that small perturbations in the utility pro�le or in x

may be su¢ cient to change � so that the orbits change in a qualitative way. A
phase portrait �(�) for a vector �eld, � is the picture obtained by integrating
the vector �eld.
If two vector �elds, �1, and �2 have phase portraits that are homeomorphic,

then �(�1) and �(�2) are qualitatively identical (or similar). Thus we say �1
and �2 are similar vector �elds if there is a homeomorphism h : � ! � such
that each orbit in the phase portrait �(�1) of �1 is mapped by h to an orbit in
�(�2):
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Figure 2: Scarf�s example

To illustrate this, consider the Scarf (1960) example where each of the
orbits of the excess demand function, �1, say, comprises a closed orbit (home-
omorphic to S1) as in Figure 2(i).14 Now consider the vector �eld �2 whose
orbits approach an equilibrium price vector p�. The phase portraits of �2 is
given in Figure 2(ii).
The price equilibrium in Figure 2(ii) is stable since limt!1 p(t) ! p�.

Obviously each of the orbits of �2 is homeomorphic to the half open interval
(�1; 0]: Moreover (�1; 0] and S1 are not homeomorphic, so �1 and �2 are
not similar.
It is intuitively obvious that the vector �eld, �2 can be obtained from �1

by a �small perturbation, in the sense that k �1 � �2 k < �, for some small
� > 0. When there exists a small perturbation �2 of �1, such that �1 and
�2 are dissimilar, then �1 is called structurally unstable. On the other hand, it
should be plausible that, for any small perturbation �3 of �2 then �3 will have
a phase portrait �(�3) homeomorphic to �(�2), so �2 and �3 will be similar.
The vector �eld �2 is called structurally stable. Notice that structural stability
of �2 is a much more general property than stability of the equilibrium point
p� (where �2(p

�) = 0): In Fig 2(iii) is a vector �eld, �4; say, with an unstable
equilibrium point. Yet �4 is a structurally stable vector �eld.
All that we have said on � can be generalised to the case of a �smooth

manifold�Y; (that is a topological space that is smooth and is locally Euclid-
ean). So let V1(Y ) be the topological space of smooth vector �elds on Y and
P(Y ) the collection of phase portraits on Y . The topology on V1(Y ) is ob-
tained by using a local metric on the vector �eld.

14It is interesting that this vector �eld is the same as the game dynamic obtained from
the classic cycle game of rock beats scissors beats paper. See Hofbauer and Sigmund (1988).
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Figure 3: Attractors and Repellors

De�nition 3.1
(i) Let �1; �2 2 V1(Y ). Then �1 and �2 are said to be similar (written

�1 � �2) i¤ there is a homeomorphism h : Y ! Y such that an orbit � is in
the phase portrait �(�1) of �1 i¤ h(�) is in the phase portrait of �(�2):
(ii) The vector �eld � is structurally stable i¤ there exists an open neigh-

borhood V of � in V1(Y ) such that �0 � � for all �0 2 V:

(iii) A property K of vector �elds in V1(2) is generic i¤ the set
f� 2 V1(Y ) : � satis�es Kgis residual in V1(Y ).
A residual set, V; is the countable intersection of open dense sets, and,

when V1(Y )is a �Baire space,�V will itself be dense.

Figure 3 gives two examples of structurally stable �elds. In 3(i) there is a
stable attractor, the circle, S1; while in 3(ii) the circle is a repellor.
It was conjectured that structural stability is a generic property. This is

true if the dimension of Y is 2, but is false otherwise (Smale 1966, Peixoto
1962).
Before discussing the Peixoto-Smale Theorems, it will be useful to explore

further how we can qualitatively �classify" the set of phase portraits on a
manifold Y . The essential feature of this classi�cation concerns the nature
of the critical or singularity points of the vector �eld on W and how these
are constrained by the topological nature of W . We now introduce the Euler
characteristic, �(W ) of W .

Example 1.
To illustrate the Euler characteristic, let W = S1 � S1 be the torus (the

skin of a donut) and let f : W ! R be the height function, as in Figure 4.
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Figure 4: The height function on the torus

At the bottom point,s; of the torus, we let f(s) = 0; so that near s we
can represent f as

f : (h1; h2)! 0 + h1
2 + h2

2:

Note that the Hessian, Hf; of f at s is
�
2 0
0 2

�
;which is positive de�nite.

The index of s is the number of negative eigenvalues of the Hessian of f at
s; which is 0. At the next critical point, t, we can write f : (h1; h2) !

f(t) + h1
2 � h22:Clearly Hf(t) =

�
2 0
0 �2

�
; so t is a saddle, with index 1.

The next critical point is also a saddle, u, near which f can be represented as
(h1; h2)! f(u)�h12+h22 Finally the top critical point v is a local maximum
and f is represented near v by (h1; h2)! f(u) � h1

2 � h2
2:Thus the index

of v is 2.
This example allows us to introduce the idea of the Euler characteristic

�(W )of a manifold W . If W has dimension, w, let ci(W; f) be the number of
critical points of index i, of the function f : W ! R and de�ne the index of f
on W to be

�(W; f) =
wX
i=0

(�1)i ci(W; f):

For example the height function, f : W ! R on the torus W has
(i) c0(W; f) = 1, since s has index 0,
(ii) c1(W; f) = 2, since both t and u have index 1,
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(iii) c2(W; f) = 1, since vhas index 2.
Thus �(W; f) = 1 � 2 + 1 = 0: In fact, it can be shown that �(W; f)is

independent of f , when W is compact. It is an invariant of the smooth
manifold W , and is written �(W )) and is known as the Euler characteristic of
W:
We have shown �(Torus) = 0:

Example 2.
The sphere S2 has an index 0 critical point at the bottom and an index 2

critical point at the top, so �(S2) = c0+ c2 = 1+1 = 2: Clearly the circle,
S1; has �(S1) = c0 + c1 = 1� 1 = 0:
More generally, �(Sk) = 0 if k is odd and = 2 if k is even.
To compute �(Bn)for the closed n�ball, take the sphere Sn and delete the

top hemisphere. The remaining bottom hemisphere is di¤eomorphic to Bn.
By this method we have removed the index n critical point at the top of Sn.
Now,

�(S2k+1) =
2kX
i=0

(�1)i ci (S2k+1)� cn(S2k+1) = 0;

so �(B2k+1) =
2kX
i=0

(�1)i ci (S2k+1) = 1:

�(S2k) =
2k�1X
i=0

(�1)ci(S2k) + cn(S
2k) = 2;

so �(B2k+1) =
2k�1X
i=0

(�1)ci(S2k) = 1

Example 3.
Let us return to the example of the torus W = S1 � S1examined above.

We de�ned a height function f : W ! R and considered the four critical points
fs; t; u; vgof f , where v was an index 2 critical point (a local maximum of f).
Near v, f could be represented as

f(h1; h2) = f(v)� h12 � h22:
Now f de�nes a gradient vector �eld � where

�(h1; h2) = �df(h1; h2)

The �eld � may be interpreted as the law of motion under a potential energy
�eld, f , so that the system �ows from the �source", v, towards the �sink", s,
at the bottom of the torus.
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The Euler characteristic can be interpreted as an obstruction to the non-
existence of equilibria, or of �xed points. For example suppose that �(W ) = 0.
Then it is possible to construct a vector �eld � onW without zeros. Then there
will exist a function f : W ! W which follows the trajectories of � a small
distance, �, say. But then this function f is homotopic to the identity.
That is to say, from each point x construct a path cx : [0; 1] ! Y with

cx(0) = x and cx(1) = f(x) whose gradient dc
dt
(t) at time t is given by the

vector �eld � at the point x0 = cx(t): Say that f is induced by the vector
�eld, �. The homotopy F : [0; 1] � Y ! Y is then given by F (0; x) = x
and F (t; x) = cx(t): Since cx is continuous, so is F . Thus F is a homotopy
between f and the identity on W . A function f : W ! W which is homotopic
to the identity is called a deformation of Y .
If �(W ) = 0 then it is possible to �nd a vector �eld � onW without singu-

larities and then construct a deformation f of Y induced by �. Since �(x) = 0
for no x, f will not have a �xed point: that is, there exists no x 2 W such
that f(x) = x. Conversely if f is a deformation on W and �(W ) 6= 0; then
the homotopy between f and the identity generates a vector �eld �. Were f
to have no �xed point, then � would have no singularity. If f and thus � have
the right behavior on the boundary, then � must have at least one singularity.
This contradicts the �xed point free property of f .

The Lefshetz Fixed Point Theorem.
If W is a manifold with �(W ) = 0 then there exists a �xed point free

deformation ofW . If �(W ) 6= 0 then any deformation ofW has a �xed point.

The �Hairy Ball�Theorem.
Any vector �eld � on S2n (of even dimension) must have a singularity.

However there exists a vector �eld � on S2n+1(of odd dimension) such that
�(p) = 0 for no p 2 S2n+1.

To illustrate Figure 5 shows a vector �eld on S2 where the �ow is circular
on each of the circles of latitude, but both north and south poles are singular-
ities. The �ow is evidently non-gradient, since no potential function, f , can
increase around a circular orbit.

Example 4.
(1) For a more interesting deformation of the torusW = S1�S1; consider

Figure 6(i).
The closed orbit at the top of the torus is a repellor, R, say. Any �ow

starting near to R winds towards the bottom closed orbit, A, an attractor.
There are no singularities, and the induced deformation is �xed point free.
(2) Not all �ows on the torusW need have closed orbits. Consider the �ow
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Figure 5: A non gradient �ow on the sphere

Figure 6: Flows on the torus
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on S1 � S1;given in Figure 6 (ii). If the tangent of the angle, �; is rational,
then the orbit through a point is closed, and will consist of a speci�c number of
turns round W . However suppose this �ow is perturbed. There will be, in any
neighborhood of �, an irrational angle. The orbits of an irrational �ow will not
be closed. To relate this to the Peixoto Theorem which follows, with rational
�ow there will be an in�nite number of closed orbits. However the phase por-
trait for rational �ow cannot be homeomorphic to the portrait for irrational
�ow. Thus any perturbations of rational �ow gives a non-homeomorphic irra-
tional �ow. Clearly any vector �eld on the torus which gives rational �ow is
structurally unstable.

Peixoto-Smale Theorem
(i) If dim W = 2 and W is compact, then structural stability of vector

�elds on W is generic.
(ii) If dim W � 3; then structural stability is non-generic.
Peixoto (1962) proved part (i) by showing that structurally stable vector

�elds on compact W (of dimension 2) must satisfy the following properties:
(1) there are a �nite number of non-degenerate isolated singularities (that

is, critical points which can be sources, sinks, or saddles)
(2) there are a �nite number of attracting or repelling closed orbits
(3) every orbit (other than closed orbits) starts at a source or saddle, or

winds away from a repellor and �nishes at a saddle or sink, or winds towards
an attractor
(4) no orbit connects saddle points.
Peixoto showed that for any vector �eld � on W and any neighborhood V

of � in V1(W ) there was a vector �eld �0 in V that satis�ed the above four
conditions and thus was structurally stable. Systems satisfying the above four
conditions are called Morse-Smale systems and are structurally stable in two
dimensions.
Although we have not carefully de�ned the terms used above, they should

be intuitively clear. To illustrate, Figure 7(i) shows a structurally unstable
�ow, where an orbit connects two saddles. Figure 7(ii) shows that after per-
turbation a qualitatively di¤erent phase portrait is obtained.
In Figure 7(i), A and B are connected saddles, C is a repellor (orbits

starting near to C leave it) and D is a closed orbit. A small perturbation
disconnects A and B as shown in Figure 7(ii), and orbits starting near to D
(either inside or outside) approach D, so it is an attractor.
Smale�s (1966) proof that structural stability was non-generic in three or

more dimensions was obtained by constructing a di¤eomorphism f : Y 3 !
Y 3(with Y = S1 � S1 � S1): This induced a vector �eld � 2 V1(Y ) that
had the property that for a neighborhood V of � in V1(Y ), no �0 in V was
structurally stable. In other words, every �0 when perturbed led to a qualita-
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Figure 7: structurally unstable and stable �ows

tively di¤erent phase portrait. We could say that � was chaotic. Any attempt
to model � by an approximation �0, say, results in an essentially di¤erent vector
�eld. See Wiggins (1988).

SMD theorem.
Suppose that there are at least as many economic agents (n) as commodi-

ties. Then it is possible to construct a well-behaved economy (u;x) with
monotonic, strictly convex preferences induced from smooth utilities, u, and
an endowment vector x 2 W n, such that any vector �eld in V1(�) is generated
by the excess demand function for the economy (u;x).
Variants of this SMD theorem are given in Sonnenschein (1972), Mantel

(1974), and Debreu (1974). A generalization can be found in Saari and Simon
(1978) with further discussion in Saari (1995). As we have discussed in this
section, because the simplex � has �(�) = 1; then the excess demand vector
�eld, �; will always have at least one singularity. In fact, from the Debreu-
Smale theorem, we expect � to generically exhibit only a �nite number of
singularities. Aside from these restrictions, �; is essentially unconstrained.
As we saw above, the vector �eld � of the Scarf example was structurally

unstable, but any perturbation of � led to a structurally stable �eld �0, say,
either with an attracting or repelling singularity. It is possible to �nd (u;x)
such that the induced vector �eld � on � is chaotic� in some neighborhood
V of � there is no structurally stable �eld. Any attempt to model � by �0,
say, must necessarily incorporate some errors, and these errors will multiply
in some fashion as the phase portrait is mapped. In particular the �ow gen-
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erated by � through some price vector, p 2 � can be very di¤erent from the
�ow generated by �0 through p0 This phenomenon has been called �sensitive
dependence on initial conditions.�

Example 5.
As an application, we may consider a generalized �ow, by de�ning at each

point x 2 W a set H(x)of vectors in the tangent space at x. This �ow
generated by H could be induced by a utility pro�le fu : W ! Rng, of the
form

HN(u)(x) = fv 2 TxW : (dui(x) � v) > 0; 8 i 2 Ng:

Here (dui(x) � v) is the scalar product of dui(x); regarded as a vector in Rw;
and the vector v 2 TxW; the tangent space at x: That is to say v 2 HN(u)(x)
i¤ each utility function increases in the direction v. Then HN(u)(x) = �;

the empty set, whenever x 2
0

�(u1; : : : ; un), the �critical Pareto set�of the
pro�le.fu : W ! Rng: We use this idea in the next section to consider social
choice.

4 Existence of a Choice

Arguments for the existence of an equilibrium or choice are based on some
version of Brouwer�s �xed point theorem, which we can regard as a variant of
the Lefshetz �xed point theorem. Brouwer�s theorem asserts that any contin-
uous function f : B ! B between the �nite dimensional ball, or indeed any
compact convex set in Rw; has the �xed point property. Figure 8 suggests the
proof. If f has no �xed point, then there is a continuous retraction h : B ! S;
to the sphere. Since the ball is contractible, and the sphere is not, h cannot
be continuous. By contradiction, f has the �xed point property.15

This section will consider the use of variants of the Brouwer theorem, to
prove existence of an equilibrium of a general social choice mechanism. We
shall argue that the condition for existence of an equilibrium will be violated
if there are cycles in the underlying mechanism.
Let W be the set of alternatives and, as before, let X be the set of all

subsets of W: A preference correspondence, P; on W assigns to each point
x 2 W; its preferred set P (x): Write P : W ! X or P : W � W to denote
that the image of x under P is a set (possibly empty) in W: For any subset
V of W; the restriction of P to V gives a correspondence PV : V � V: De�ne

15This can be generalized to the in�nite dimensional case if B is a closed convex subset of
a complete normed vector space, and the image of f is compact. We use a version of this
�xed point result below.
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Figure 8: A retraction of the ball onto the sphere

P�1V : V � V such that for each x 2 V;

P�1V (x) = fy : x 2 P (yg \ V:

P�1V (x) = fy : x 2 P (yg \ V: The sets PV (x); P�1V (x) are sometimes called the
upper and lower preference sets of P on V: When there is no ambiguity we
delete the su¢ x V: The choice of P from W is the set

C(W;P ) = fx 2 W : P (x) = �g :

Here � is the empty set. The choice of P from a subset, V; of W is the set

C(V; P ) = fx 2 V : PV (x) = �g :

Call CP a choice function on W if CP (V ) = C(V; P ) 6= � for every subset
V of W: We now seek general conditions on W and P which are su¢ cient
for CP to be a choice function on W: Continuity properties of the preference
correspondence are important and so we require the set of alternatives to be
a topological space.
De�nition 4.1
Let W;Y be two topological spaces. A correspondence P : W � Y is

(i) Lower hemi-continuous (lhc) i¤, for all x 2 W; and any open set U � Y
such that P (x)\U 6= � there exists an open neighborhood V of x in W;
such that P (x0) \ U 6= � for all x0 2 V:

(ii) Upper hemi-continuous (uhc) i¤, for all x 2 W and any open set U � Y
such that P (x) � U; there exists an open neighborhood V of x in W
such that P (x0) � U for all x0 2 V:
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(iii) Lower demi-continuous (ldc) i¤, for all x 2 Y; the set

P�1 (x) = fy 2 W : x 2 P (y)g

is open (or empty) in W .

(iv) Upper demi-continuous (udc) i¤, for all x 2 W; the set P (x) is open (or
empty) in Y

(v) Continuous i¤ P is both ldc and udc.

We use acyclicity, where a correspondence P : W � W is acyclic if it is
impossible to �nd a cycle xt 2 P (xt�1); xt�1 2 P (xt�2); ::; x1 2 P (xt):
We shall use lower demi-continuity of a preference correspondence to prove

existence of a choice. In some cases, however, it is possible to make use of
lower hemi-continuity. Note that if P is ldc then it is lhc.
We shall now show that if W is compact, and P is an acyclic and ldc

preference correspondence P : W � W; then C(W;P ) 6= �: First of all, say a
preference correspondence P : W � W satis�es the �nite maximality property
(FMP) on W i¤ for every �nite set V in W; there exists x 2 V such that
P (x) \ V = �:
Lemma 4.1 (Walker 1977)
If W is a compact, topological space and P is an ldc preference correspon-

dence that satis�es FMP on W; then C(W;P ) 6= �:
This follows readily, using compactness to �nd a �nite subcover, and then
using FMP.
Corollary 4.1.
If W is a compact topological space and P is an acyclic, ldc preference

correspondence on W; then C(W;P ) 6= �:
As Walker (1977) noted, whenW is compact and P is ldc, then P is acyclic i¤
P satis�es FMP on W; and so either property can be used to show existence
of a choice. A second method of proof to show that CP is a choice function is
to substitute a convexity property for P rather than acyclicity.

De�nition 4.2.

(i) If W is a subset of a vector space, then the convex hull of W is the set,
Con[W ]; de�ned by taking all convex combinations of points in W:

(ii) W is convex i¤W = Con[W ]: (The empty set is also convex.)

(iii) W is admissible i¤W is a compact, convex subset of a topological vector
space.

(iv) A preference correspondence P : W � W on a convex set W is convex
i¤, for all x 2 W; P (x) is convex.
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(v) A preference correspondence P : W � W is semi-convex i¤, for all x 2 W;
it is the case that x =2 Con(P (x)):

Fan (1961) has shown that ifW is admissible and P is ldc and semi-convex,
then C(W;P ) is non-empty.

Fan Theorem (Fan, 1961, Bergstrom, 1975).
If W is an admissible subset of a Hausdor¤ topological vector space, and

P : W � W a preference correspondence on W which is ldc and semi-convex
then C(W;P ) 6= �.
The proof uses the KKM lemma due to Knaster, Kuratowski andMazurkiewicz

(1929). Yannelis and Prabhakar (1983) have used the KKM lemma to prove
Browder�s �xed point theorem, that a correspondence Q : W � W has a �xed
point, x 2 Q(x); whenever Q is convex valued and everywhere non-empty.
There is a useful corollary to the Fan theorem. Say a preference correspondence
on an admissible space W satis�es the convex maximality property (CMP) i¤
for any �nite set V inW; there exists x 2 Con(V ) such that P (x)\Con(V ) = �:
Corollary 4.2.
Let W be admissible and P : W � W be ldc and semi-convex. Then P

satis�es the convex maximality property.
The original form of the Theorem by Fanmade the assumption that P : W �

W was irre�exive (in the sense that x =2 P (x) for all x 2 W ) and convex. To-
gether these two assumptions imply that P is semi-convex. Bergstrom (1975)
extended Fan�s original result to give the version presented above.
Note that the Fan Theorem is valid without restriction on the dimension of

W: Indeed, Aliprantis and Brown (1983) have used this theorem in an economic
context with an in�nite number of commodities to show existence of a price
equilibrium. Bergstrom (1992) also showed that when W is �nite dimensional
then the Fan Theorem is valid when the continuity property on P is weakened
to lhc. Bergtrom (1992) also used this theorem to show existence of a Nash
equilibrium of a game G = f(P1;W1); :Pi;Wi); ::(Pn;Wn) : i 2 Ng: Here the
ith stategy space is �nite dimensional Wi and each individual has a preference
Pi on the joint strategy space Pi :WN = W1 �W2::: �Wn � Wi. The Fan
Theorem can be used, in principle to show existence of an equilibrium in com-
plex economies with externalities. De�ne the Nash improvement correspon-
dence by P �i : W

N � WN by y 2 P �i (x) whenever y = (x1; ::xi�1; x�i ; :::; xn);
x = (x1; ::; xi�1; xi; ::; xn); and x�i 2 Pi(x) The joint Nash improvement corre-
spondence is P �N = [P �i : WN � WN : The Nash equilibrium of a game G is a
vector z 2 WN such that P �N(z) =�:

Bergstrom Theorem (Bergstrom, 1992).
For a game, G; on �nite dimensional admissibleWN ; if all P �i : W

N � WN

are lhc and semi-convex, then there exists a Nash equilibrium.
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This theorem can be used to show existence of an equilibrium for an ab-
stract economy with lhc and semiconvex preferences. De�ne an exchange econ-
omy to be a game

G(P; e) = fe;(P0;�); (P1;W1); :Pi;Wi); ::(Pn;Wn) : i 2 Ng

where � is the price simplex, and e = (e1; ,en) 2 WN � (Rw)n is a vector of
initial endowments. A competitive equilibrium (x;p) for G(P; e) is the choice
set C(PN ; BN(p)) By this notation we mean (BN)(p) = (B1 � ::Bn)(p) with
(Bi)(p) = fxi : (p � xi) � (p � ei)g being the budget set for i at the price vector
p: We require each Pi to be null on (Bi)(p) and �xi < �ei:
For i 2 N; extend P �i : WN � WN to

P ��i : ��WN � ��WN by (p0; y) 2 P ��i ((p; x) if p0 = p; and y 2 P �i (x):

De�ne the price adjustment mechanism P �0 : ��WN � � by

(p0; y) 2 P �0 ((p; x) if (p0 � p) � (
X
i2N
(xi � ei)) > 0:

The term
P

i2N(xi � ei) is a measure of excess demand, so this adjustment
process is designed so that the prices change to reduce aggregate excess de-
mand. Finally de�ne

P ��0 : ��WN � ��WN by (p0; y) 2 P ��0 ((p; x) if p0 2 P �0 ((p; x) and y = x:

By restricting the domain of the individual preferences correspondences to the
budget sets de�ned by the price vector p; it is possible to interpret a Nash
equilibrium of this game as a free-disposal economic equilibrium, under which
total demand may be less than total supply. Additional conditions, such as
no-satiation can then be used to gurantee equality of supply and demand. The
Nash equilibrium gives a competitive equilibrium (x�;p) with x�i 2 (Bi)(p) for
each i. No satiation means that if x 2 Pi(x�) then xi =2 (Bi)(p):
Numerous applications of the procedure have been made by Shafer and

Sonnenschein (1975) and Borglin and Keiding (1976), etc. to show existence
of such an economic equilibrium. Note however, that these results all depend
on semi-convexity of the preference correspondences.

5 Dynamical Choice Functions

The discussion above of a vector �eld � : U(W )N � W n �! V1(�) is a
di¤erential analogue of the price adjustment process just discussed.
We now use the Lefshetz Fixed Point Theorem to suggest that equilibria

may exist, even when W is not convex. In the spirit of the above discussion
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of vector �elds, we consider a generalized preference �eld H : W � TW; on a
manifold W:
We use this notation to mean that at any x 2 W; H(x) is a cone in the

tangent space TxW above x: That is, if a vector v 2 H(x); then �v 2 H(x)
for any � > 0: If there is a smooth curve, c : [�1; 1] ! W; such that the
di¤erential dc(t)

dt
2 H(x); whenever c(t) = x; then c is called an integral curve

of H: An integral curve of H from x=c(o) to y =limt!1c(t) is called an H -
preference curve from x to y: The preference �eld is called S-continuous ifH(x)
is open in TxW and whenever v 2 H(x) then there is an integral curve, c; in
a neighborhood of x with dc(0)

dt
= v: The choice C(W;H) of H on W is de�ned

by C(W;H) = fx 2 W : H(x) = �g: Say H is half open if at every x 2 W;
either H(x) = � or there exists a vector v0 2 TxW such that (v0 � v) > 0 for all
v 2 H(x): We can say in this case that there is, at x; a direction gradient d in
the cotangent space T �xW of linear maps from TxW to R such that d(v) > 0
for all v 2 H(x): If H is S-continuous and half-open, then there will exist such
a continuous direction gradient d V ! T �V on a neighborhood V of x:

Choice Theorem.
If H is an S-continuous half open preference �eld, on a �nite dimensional

compact manifold, W; with �(W ) 6= 0; then C(W;H) 6= �: If H is not half
open then there exists an H -preference cycle through fx1; x2; x3; :xr:x1g: For
each arc (xs; xs+1) there is an H -preference curve from xs to xs+1; with a �nal
H -preference curve from xr to x1:

This Theorem was proved in Scho�eld (1984a), using the Fan-Bergstrom
and Lefshetz Theorems. For the result we do not need convexity, but we do
need �nite dimensionality.The result is illustrated in Figure 9. As the left hand
�gure in Figure 9 suggests, the �eld is half open on S1; but �(S1) = 0; and
there is no choice. On the other hand �(S2) 6= 0; and C(W;S2) 6= �; in the
right hand �gure of Figure 9.
Such a �eld on S2 could be used to model plate techtonics. The Choice

Theorem implies the existence of a singularity of the �eld, H: Note that there
may be global cycles, around the equator, for example, but no localized cycles.
Another example is given by a model of cosmology on S4: Such a singularity
may correspond to the "big bang" at the beginning of time.16 There seem to
be deep connections between the nature of singularies in our universe and the
possibility of cyclic geodesics in space time.
Example 6.
To illustrate this, consider the example due to Kramer (1973), with N =

f1; 2; 3g:Let the preference relation PD : W � W be generated by a set of

16This is how I interpret the singularity theorems of Hawking and Ellis (1973).See also
Penrose (2010).
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Figure 9: Flows on the 1 and 2-sphere

decisive coalitions, D = ff1; 2g; f1; 3g; f2; 3g; so that y 2 PD(x) whenever two
voters prefer y to x:Suppose further that the preferences of the voters are
characterized by the direction gradients

fdui(x) : i = 1; 2; 3g

as in Figure 10.
As the �gure makes evident, it is possible to �nd three points fa; b; cg in

W such that

u1(a) > u1(b) = u1(x) > u1(c)

u2(b) > u2(c) = u2(x) > u2(a)

u3(c) > u3(a) = u3(x) > u3(b):

That is to say, preferences on fa; b; cg give rise to a Condorcet cycle. Note
also that the set of points PD(x); preferred to x under the voting rule, are
the shaded �win sets� in the �gure. Clearly x 2 ConPD(x); so PD(x) is not
semi-convex. Indeed it should be clear that in any neighborhood V of x it
is possible to �nd three points fa0; b0; c0g such that there is local voting cycle,
with a0 2 PD(b0); b0 2 PD(c0); c0 2 PD(a0): We can write this as

a0 ! c0 ! b0 ! a0:

Not only is there a voting cycle, but the Fan theorem fails, and we have no
reason to believe that C(W;PD) 6= �:
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Figure 10: A chaotic general �ow

Figure 11: The failure of half-openess of a preference �eld
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We can translate this example into one on preference �elds by writing

HD(u) = [HM(u) : W � TW

where each M 2 D and

HM(u)(x) = fv 2 TxW : (dui(x) � v) > 0; 8 i 2 Mg:

Figure 11 shows the three di¤erence preference �elds fHi : i = 1; 2; 3) as well
as the intersections HM ; for M = f1; 2g etc.
Obviously the joint preference �eld HD : W � TW fails the half open property
at x. Although HD is S-continuous, we cannot infer that C(W;H) 6= �: If we
de�ne

Cycle(W;H) = fx 2 W : H(x) is not half openg:
then at any point in Cycle(W;H) it is possible to construct local cycles in the
manner just described.
The choice theorem can then be interpreted to mean that for any S-

continuous �eld on W; if �(W ) 6= 0 then

Cycle(W;H) [ C(W;H) 6= �:

For a voting rule, D it is possible to guarantee that Cycle(W;H) = � and thus
that C(W;H) 6= �; by restricting the dimension of W:
De�nition 5.1

(i) Let D be a family of subsets of N: If the collegium, K(D) = \fM 2 Dg is
non-empty then D is called collegial and the Nakamura number �(D) is
de�ned to be 1:

(ii) If the collegium K(D) is empty then D is called non-collegial. De�ne the
Nakamura number in this case to be �(D) = minfjD0j : D0 � D and
K(D0) = �g.

Nakamura Theorem.
If u 2 U(W )N and D has Nakamura number �(D) with dim(W ) < �(D)� 2

then Cycle(W;HD(u)) = �: If in addition, �(W ) 6= 0 then C(W;HD(u)) 6= �:
This result is proved in Scho�eld (1984b) using results of Nakamura (1979).

See also Strnad (1985).
Unfortunately, the Nakamura number for majority voting rules is either 3

or 4, depending on whether n is odd or even, so this result can generally only
be used to prove a median voter like theorem in one dimension for a society of
size odd. However, the result can be combined with the Fan Theorem to prove
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existence of equilibrium for a political economy with voting rule D, when the
dimension of the public good space is bounded by �(D)� 2 (Konishi, 1996).
Recent work in political economy generally only considers a public good space
of one dimension (Acemoglu and Robinson,2006). Note however, that if D
is collegial, then Cycle(W;HD(u)) = �: Such a rule can be called oligarchic,
and this inference provides a theoretical basis for comparing democracy and
oligarchy (Acemoglu, 2008)
Extending this equilibrium result to higher dimension faces a di¢ culty

caused by the following theorem.

Saari Theorem.
For any non-collegial D , there exists an integer w(D) > �(D) such that

dim(W ) > w(D) implies that C(W;HD(u)) = � for all u in a residual sub-
space of (U(W )N ; T1): If. in addition,�(W ) 6= 0; then Cycle(W;HD(u)) 6= �
generically.

This result was essentially proved by Saari (1997), building on earlier results
by McKelvey (1976, 1979), Scho�eld (1978, 1983) and McKelvey and Scho�eld
(1987). See Saari (1985a,b, 2001a,b, 2008) for related analyses.17

Recent work has attempted to avoid negative conclusions of this result by
using the Brouwer �xed point theorem to seek existence of a belief equilibrium
for a society N�+1 of size n�+1: time � + 1. In this context we let
WE = W1 �W2:::�Wn�+1 �� be the economic product space, where Wi is

the commodity space for citizen i and � is a price simplex.: LetWD be a space
of political goods, governed by a rule D. At time � + 1; W�+1 = WE �WD is
the political economic space.
At � , each individual, i, is described by a utility function ui : W� ! R , so

the population pro�le is given by u : W� ! Rn� . Beliefs at � about the future
� + 1 are given by a stochastic rule, Q� , that transforms the agents�utilities
from those at time � to those at time � + 1: Thus Q�generates a new pro�le
for N�+1at � + 1 given by Q� (u) =u0 : W�+1!R

n�+1 . The utility and beliefs
of i will depend on the various sociodemographic subgroups in the society N�:
that i belongs to, as well as information about about the current price vector
in �.
Thus we obtain a transformation on the function space [W � !R

n�
] given

by
[W � !R

n�
]! Q�! [W � ! Rn�+1

]! [W � ! Rn�
]

17Although this result formally applies to voting rules, Scho�eld (2009b) argues that it is
applicable to any non-collegial social mechanism, and as a result can be interpreted to imply
that chaos is a generic phenomenon in coalitional systems. Recent work by Collier (2009)
suggests that chaos is indeed endemic in parts of Africa, particularly in the Congo.
Much more speculatively, evolution is driven by random associations of genes, and it

seems entirely possible that the amazing fertility shown by evolution (Dawkins, 2009) is due
precisely to the phenomenon of local chaos.
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The second transformation here is projection onto the subspace [W � ! Rn�
]

obtained by restrictiong to changes to the original population N�: and space.
A dynamic belief equilibrium at � for N�: is �xed point of this transforma-

tion. Although the space [W � !R
n�
] is in�nite dimensional, if the domain and

range of this transformation are restricted to equicontinous functions (Pugh,
2002), then the domain and range will be compact. Penn (2009) shows that
if the domain and range are convex then a generalized version of Brouwer�s
�xed point theorem can be applied to show existence of such a dynamic belief
equilibrium. This notion of equilibrium was �rst suggested by Hahn (1973)
who argued that equilibrium is located in the mind, not in behavior.
However, the Saari theorem suggests that the validity of Penn�s theorem

will depend on how the the model of political choice is constructed.
An alternative idea is to consider a generalized preference �eld H : W� �

TW� for the society on W� ; and to model the �ow generated by H . By
extending the �ow over some time interval � = [� ; � + 1]; we could then
examine whether it appears to be structurally stable.
In the above, we used the term structural stability for the property that

the qualitative features of the �ow are not changed by small perturbations in
the underlying parameters of the �ow. The term chreod was used by Rene
Thom ([1966], 1994) in the context of evolutionary or biological processes to
describe such a dynamical system that returns to a steady trajectory. This
term is derived from the Greek word for "necessary" and the word for "path-
way". A social chreod is therefore a structurally stable path through time,
where the state space W� now involves not only characteristics, such as factor
endowments and prices, p; inWE, but also the beliefs and thus the preferences
of individuals, particularly as regards the risk postures that are embedded in
their preferences.
One advantage of such a modeling exercise is that we do not need not need

to use Penn�s equilibrium theorem to determine the transformation Q� (u) =u0:
Instead, the society N� is characterised at � by a family fdui : W�!T �W� : i 2
N�g of normalized direction gradients. Here dui(x; p) : TW�!R speci�es the
local change in utility for i at a point x; and price p;when composed with a
vector v 2 TW� : Just as in the model for the choice theorem, we can then
de�ne, for any coalition M � N� ; the preference �eld H�

M(x) � TxW� at
x 2 W� ; consisting of vectors in TxW� that are both preferred and feasible for
the coalition at x. Taking H = [H�

M [H�; where H� is a �eld on the price
simplex, gives the generalised �eld H : W� � TW� on the tangent bundle
TW� above W�.
Because of the SMD theorem it is possible that the �ow on the component

� of W� at time � could be exotic. Such a �ow could induce changes in
beliefs about the future su¢ cient to cause discontinuities or bifurcations in the
preference �eld, H: Since Smale�s Theorem indicates that structural stability
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is non generic, it is unlikely that the �ow generated by H would be structurally
stable. One the other hand, there may be conditions under which the �eld H
is half open. If indeed, H is half open on TW�; then there will exist a local
social direction gradient, d : W�!T �W� with the property that d((x)(v) > 0
for every v 2 H(x); at every x 2 W�: We now consider a model such that H
may permit a local social direction gradient.

6 Stochastic Choice

To construct such a social preference �eld, we �rst consider political choice
on a compact set of proposals. This model is an extension of the standard
multiparty stochastic model, modi�ed by inducing asymmetries in terms of
the preferences of voters.
We de�ne a stochastic electoral model,M(�;�;�;�; �);which utilizes socio-

demographic variables and voter perceptions of character traits. For this model
we assume that voter i utility is given by the expression

uij(xi; zj) = �j + �j(zj) + (�j � �i) + (�j � � i)� �kxi � zjk2 + "j: (1)

= [u�ij(xi; zj)] + "j (2)

The points fxi 2 WD : i 2 N = f1; :::ngg are the preferred policies of the vot-
ers in the political or policy space WD; and z =fzj 2 WD : j 2 Q = f1; :::qgg
are the positions of the agents/ candidates. The term kxi � zjk is simply the
Euclidean distance between xi and zj: The error vector ("1:; ::; "j; ::; "q) is dis-
tributed by the iid Type I extreme value distribution, as assumed in empirical
multinomial logit estimation (MNL). The symbol � denotes a set of k -vectors
f�j : j�Qg representing the e¤ect of the k di¤erent sociodemographic parame-
ters (class, domicile, education, income, religious orientation, etc.) on voting
for agent j while �i is a k-vector denoting the i

th individual�s relevant �sociode-
mographic�characteristics. The compositions f(�j � �i)g are scalar products,
called the sociodemographic valences for j. These scalar terms characterize the
various types of the voters.
The terms f(�j � � i)g are scalars giving voter i0s perceptions and beliefs.

These can include perceptions of the character traits of agent j; or beliefs
about the state of the economy, etc. We let � = (�q; ::::�1): A trait score can
be obtained by factor analysis from a set of survey questions asking respon-
dents about the traits of the agent, including �moral�, �caring�, �knowledgable�,
�strong�, �honest�, �intelligent�, etc. The perception of traits can be augmented
with voter perception of the state of the economy, etc. in order to examine
how anticipated changes in the economy a¤ect each agent�s electoral support.
The intrinsic or exogenous valence vector � = (�1; �2; : : : ; �q) gives the

general perception of the quality of the various candidates, {1; :::; qg. This
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vector satis�es �q � �q�1 � � � � � �2 � �1; where (1; :::; q) label the candidates,
and �j is the intrinsic valence of agent or candidate j: In empirical multinomial
logit models, the valence vector � is given by the intercept terms for each agent.
Finally f�j(zj)g represent the endogenous valences of the candidates. These
valences depend on the positions fzj 2 WD : j 2 Qg of the agents.
Partial models are (i)M(�;�); called sociodemographic, with only intrinsic

valence and sociodemographic variables (ii) M(�; �); called pure spatial, (iii)
M(�;�; �); called joint (iv) M(�;�;�; �); called joint with traits.
In all models, the probability that voter i chooses agent j; when party

positions are given by z is:

�ij(z) = Pr[[uij(xi; zj) > uil(xi; zl)], for all l 6= j]:

A local Political Nash equilibrium (LNE) is a vector, z; such that each
agent, j; has chosen zj to locally maximize the expectation 1

n
�i�ij(z):

The type I extreme value distribution,	; has a cumulative distribution with
the closed form

	(h) = exp[� exp[�h]];

while its pdf has variance 1
6
�2.

With this distribution it follows, for each voter i, and agent, j, that

�ij(z) =
exp[u�ij(xi; zj)]
qX
k=1

expu�ik(xi; zk)

: (3)

This game is an example of what is known as a Quantal response game
(McKelvey and Palfrey, 1995; McKelvey and Patty, 2006; Levine and Palfrey,
2007). Note that the utility expressions {u�ik(xi; zk)g can be estimated from
surveys that include vote intentions.
In more complex forms of this game it is possible to model the choice of

each voter whether or not to vote. This will depend on the voter estimates of
the probability of being pivotal (casting the deciding vote for a candidate).
Once the voter probabilities over a given set z =fzj : j�Qg are computed ,

then estimation procedures allow these probabilities to be computed for each
possible �nite set. This allows the determination and proof of existence of
local Nash equilibrium (LNE), namely a vector, z�; such that each agent, j;
chooses z�j to locally maximize its expected vote share, given by the expectation
Vj((z

�) = 1
n
�i�ij(z

�):

It can be shown that the �rst order condition for a LNE is that themarginal
electoral pull at z�= (z�1 ; ::; z

�
j ; ::z

�
q ) is zero. For candidate j; this is de�ned to
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be

dE�j
dzj

(z�j ) =
�
zelj � z�j

�
where zelj �

nX
i=1

$ijxi

is the weighted electoral mean of candidate j:
Here the weights f$ijg are individual speci�c, and de�ned at the vector z�

by:

[$ij] =

"
[�ij(z

�)� �ij(z�)
2]P

k2N [�kj(z
�)� �kj(z�)

2]

#
(4)

Because the candidate utility functions {Vj : WD ! Rg are di¤erentiable,
the second order condition on the Hessian of each Vj at z� can then be used
to determine whether z� is indeed an LNE. Proof of existence of such an LNE
will then follow from some version of the Choice Theorem. For example, in
the model M(�; �); all weights are equal to 1

n
; so the electoral mean 1

n

P
xi

satis�es the �rst order condition, as suggested by Hinich (1977). For example,
Table 1 gives the estimates for the conditional logit model for the 2008 US
presidential election, based on the estimated positions given in Figure 12.
Obviously, the full model M(�;�;�; �) given in column 4 has superior

loglikelihoods to the other partial models. Given the estimated parameters for
the model M(�;�;�; �); the theory implies convergence of both candidates to
the electoral mean, contradicting Figure 12.
To put together the political and economic models, we now consider, for

each individual i at time � and state x 2 W� a stochastic preference cone
H�
i (x) � TxW� : That is, let fdui : W�!T �W� : i 2 N�g de�ne the set of utility

direction gradients for the society, N� ; at time � : Let H�
i (x) be a probability

distribution over the set of vectors fv 2 TxW� : dui(x)(v) > 0g: As in a
QRE, each individual chooses an action in H�

i (x); and this generates a curve
ci;t : [�1: + 1]� Wi;� where Wi;� is the ith individual�s a commodity space at
time � .
Aggregating these curves gives a path cN;t : [�1:+1]� W� for the society

in the interval � = [� ; � + 1]. The aggregate social path in W� will of course
involve changes in the price vector, along the lines discussed above. Because
the individual actions are stochastic�there is no guarantee that the the path
of price changes is a Gaussian random walk. However, the path may permit a
social direction gradient, d : W�!T �W�; as suggested above, but de�ned over
an interval, � = [� ; � + 1] from one election at time � to the next election at
time � + 1: The jumps occasioned by by a policy switch at election time, � ;
may very well induce changes in the social preference cone H�

�+1:
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Figure 12: Estimated voter distribution, candidate positions and activist posi-
tions in 2008. (Democrat activists are red and Republican activists are blue.)

7 Conclusion.

As this review has been at pains to point out, all the equilibrium theorems
are based on assumptions of convexity and/or acyclicity, and the stability of
equilibria, rather than singularity. It has often been alleged that the basis for
political irrationality can be found in some form of the chaos theorem applied
to political choice. However, QRE models of political choice give statistically
signi�cant estimates of such choices. The existence of LNE in such models
suggest that elections are intelligible and non-chaotic. It thus would appear
that irrationality, in the form of bubble collapse and the like, may be due to
the consequence of the SMD theorem or the existence of unstable singularities.
This paper suggests that the models that have been deployed in political

economy are mathematically unsophisticated. Instead of focusing on equilib-
rium analysis, based on some version of the Brouwer �xed point theorem, and
thus on the assumption that the social world is simply a ball, political economy
could consider the nature of the dynamical path of change, and utilize notions
from the qualitative theory of dynamical systems.
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Table 1. ��Spatial Conditional Logit Models for USA 2008
M(�;�) M(�;�; �) M(�;�; �) Full:M(�;�;�; �)

McCain valence � �0:84��� �1:08��� �2:60�� �3:58���
(0.11) (0.13) (0.93) (1.05)

Distance � 0:85��� 0:78��� 0:86��� 0:83���

(0.06) (0.07) (0.07) (0.08)
McCain traits 1:30��� 1:36���

(0.17) (0.19)
Obama traits �1:02��� �1:16���

(0.15) (0.18)
Age -0.01 -0.01

(0.01) (0.01)
Female 0.29 0.44

(0.23) (0.26)
Black �4:16��� �3:79���

(1.10) (1.23)
Hispanic -0.55 -0.23

(0.41) (0.45)
Education 0:15� 0:22���

(0.06) (0.06)
Income 0.03 0.01

(0.02) (0.02)
Working Class �0:54� �0:70��

(0.24) (0.27)
South 0.36 -0.02

(0.24) (0.27)
Observations 781 781 781 781
log Like -298.63 -243.14 -250.25 -206.88
AIC 601.27 494.28 520.50 437.77
BIC 610.59 512.92 567.11 493.69
Standard errors in parentheses. �pob < :05; ��prob < :01; ���prob < :001

Vote for Obama is the baseline outcome
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