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Abstract
In this paper, the authors investigate the orthogonal stability of a

mixed type additive and quadratic functional equation of the form

f(x+2y)+f(x−2y)+4f(x) = 3[f(x+y)+f(x−y)]+f(2y)−2f(y) (0.1)

with x ⊥ y, where ⊥ is orthogonality in the sense of Rätz.
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1 Introduction

The stability problem of functional equations originated from a question of
S.M. Ulam [21] in 1940, concerning the stability of group homomorphisms.

Let (G1, ·) be a group and let (G2, ∗) be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2

satisfies the inequality d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there
exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

The case of approximately additive functions was solved by D.H. Hyers
[9] under the assumption that G1 and G2 are Banach spaces. In 1951 and in
1978, a generalized version of the theorem of Hyers for approximately linear
mappings was given by T. Aoki [1] and Th.M. Rassias [15]. The Hyers -
Ulam - Aoki - Rassias stability originates from this historical backgrounds see
[2, 3, 6, 16, 20] . In 1982, J.M. Rassias [13, 14] provided a generalizations of
the Hyers stability theorem which allows the Cauchy difference to be bounded.
The stability phenomenon that was proved by J.M. Rassias is called the Ulam -
Gavruta - Rassias stability by [18]. Very recently J.M. Rassias [19] introduced
a new concept on stability called JMRassias Mixed type product-sum of powers
of norms stability.

There are several orthogonality notations on a real normed space are
available. But here, we present the orthogonality concept introduced by
J.Rätz[17].This is given in the following definition.

Definition 1.1. [17] A vector space X is called an orthogonality vector
space if there is a relation x ⊥ y on X such that
(i) x ⊥ 0, 0 ⊥ x for all x ∈ X;
(ii) if x ⊥ y and x, y 6= 0 , then x, y are linearly independent;
(iii) x ⊥ y, ax ⊥ by for all a, b ∈ R;
(iv) if P is a two-dimensional subspace of X ; then

(a) for every x ∈ P there exists 0 6= y ∈ P such that x ⊥ y ;
(b) there exists vectors x, y 6= 0 such that x ⊥ y and x+ y ⊥ x− y.

Any vector space can be made into an orthogonality vector space if we define
x ⊥ 0, 0 ⊥ x for all x and for non zero vector x, y define x ⊥ y iff x, y are
linearly independent. The relation ⊥ is called symmetric if x ⊥ y implies that
y ⊥ x for all x, y ∈ X. The pair (X,⊥) is called anorthogonality space. It
becomes orthogonality normed space when the orthogonality space is equipped
with a norm.

The orthogonal Cauchy functional equation

f(x+ y) = f(x) + f(y), x ⊥ y (1.1)

in which ⊥ is an abstract orthogonally was first investigated by S.Gudder and
D. Strawther [8]. R. Ger and J. Sikorska discussed the orthogonal stability of
the equation (1.1) in [7].
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Definition 1.2. Let X be an orthogonality space and Y be a real Banach
space. A mapping f : X → Y is called orthogonally quadratic if it satisfies the
so called orthogonally Euler-Lagrange quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.2)

for all x, y ∈ X with x ⊥ y. The orthogonality Hilbert space for the orthogo-
nally quadratic functional equation (1.2) was first investigated by F. Vajzovic
[22].

Several other functional equations and its stability in orthogonality spaces
was discussed in [4, 10, 11, 12, 18, 19]. Fridoum Moradlou, Hamid Vaezi and
G. Zamani Eskandani [5], obtained the general solution and the generalized
Hyers-Ulam-Rassias stability of a functional equation deriving from quadratic
and additive functions of the form

f(x+ 2y) + f(x− 2y) + 4f(x) = 3[f(x+ y) + f(x− y)] + f(2y)− 2f(y). (1.3)

In this paper, the authors discussed the orthogonal stability of a mixed
type additive and quadratic functional equation of the form

f(x+ 2y) + f(x− 2y) + 4f(x) = 3[f(x+ y) + f(x− y)] + f(2y)− 2f(y). (1.4)

with x ⊥ y and investigates its Hyers - Ulam - Aoki - Rassias stability of
(1.4), where ⊥ is orthogonality in the sense of Ratz. Note that the function
f(x) = ax+ bx2 is the solution of the functional equation (1.4).

Definition 1.3. A mapping f : A → B is called orthogonal additive and
quadratic respectively, if it satisfies the mixed type functional equation (1.4)
for all x, y ∈ A, with x ⊥ y where A be an orthogonality space and B be a real
Banach space.

Through out this paper, let (A,⊥) denote an orthogonality normed space
with norm ‖ · ‖A and (B, ‖ · ‖B) is a Banach space. We define

D f (x, y) = f(x+2y)+f(x−2y)+4f(x)−3[f(x+y)+f(x−y)]−f(2y)+2f(y).

for all x, y ∈ A, with x ⊥ y.

2 Hyers - Ulam - Aoki - Rassias Stability of

(1.4)

In this section, we present the Hyers - Ulam - Aoki - Rassias stability of
the orthogonal functional equation (1.4).
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Theorem 2.1. Let α and s(s < 1) be nonnegative real numbers. Let fa :
A→ B be an odd mapping satisfying

‖D fa (x, y)‖B ≤ α {‖x‖sA + ‖y‖sA} (2.1)

for all x, y ∈ A, with x ⊥ y. Then there exists a unique orthogonally additive
mapping L : A→ B such that

‖fa(y)− L(y)‖B ≤
α

(2− 2s)
‖y‖sA (2.2)

for all y ∈ A. The function L(y) is defined by

L(y) = lim
n→∞

fa(2
ny)

2n
(2.3)

for all y ∈ A.

Proof. Replacing (x, y) by (0, 0) in (2.1), we get fa(0) = 0. Setting (x, y) by
(0, y) in (2.1), we obtain

‖fa(2y)− 2fa(y)‖B ≤ α ‖y‖sA (2.4)

for all y ∈ A. Since y ⊥ 0 , we have∥∥∥∥fa(2y)

2
− fa(y)

∥∥∥∥
B

≤ α

2
‖y‖sA (2.5)

for all y ∈ A. Now replacing y by 2y and dividing by 2 in (2.5) and summing
resulting inequality with (2.5), we arrive∥∥∥∥fa(22y)

22
− fa(y)

∥∥∥∥
B

≤ α

2

{
1 +

2s

2

}
‖y‖sA (2.6)

for all y ∈ A. In general, using induction on a positive integer n, we obtain
that ∥∥∥∥fa(2ny)

2n
− fa(y)

∥∥∥∥
B

≤ α

2

n−1∑
k=0

2s k

2k
‖y‖sA (2.7)

≤ α

2

∞∑
k=0

2s k

2k
‖y‖sA

for all y ∈ A. In order to prove the convergence of the sequence {fa(2ny)/2n},
replace y by 2my and divide by 2m in (2.7), for any n,m > 0, we obtain∥∥∥∥fa (2n2my)

2(n+m)
− fa(2

my)

2m

∥∥∥∥
B

=
1

2m

∥∥∥∥fa (2n2my)

2n
− fa (2my)

∥∥∥∥
B

≤ 1

2m

α

2

n−1∑
k=0

2s k

2k
‖2my‖sA

≤ α

2

∞∑
k=0

1

2(1−s)(k+m)
‖y‖sA . (2.8)
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As s < 1, the right hand side of (2.8) tends to 0 as m → ∞ for all y ∈ A.
Thus {fa(2ny)/2n} is a Cauchy sequence. Since B is complete, there exists a
mapping L : A→ B such that

L(y) = lim
n→∞

fa(2
ny)

2n
∀ y ∈ A.

Letting n→∞ in (2.7), we arrive the formula (2.2) for all y ∈ A. To prove L
satisfies (1.4), replace (x, y) by (2nx, 2ny) in (2.1) and divide by 2n, it follows
that

1

2n

∥∥∥fa(2n(x+ 2y)) + fa(2
n(x− 2y)) + 4fa(2

nx)− 3[fa(2
n(x+ y))

+ fa(2
n(x− y))]− fa(2n 2y) + 2fa(2

ny)
∥∥∥
B
≤ α

2n
{‖2nx‖sA + ‖2ny‖sA} .

Taking limit as n→∞ in the above inequality, we get

L(x+ 2y) + L(x− 2y) + 4f(x) = 3[L(x+ y) + L(x− y)] + L(2y)− 2L(y)

for all x, y ∈ A with x ⊥ y. Therefore L : A → B is an orthogonally additive
mapping which satisfies (1.4). To prove the uniqueness of L, let L′ be another
orthogonally additive mapping satisfying (1.4) and the inequality (2.2). Then

‖L (y)− L′ (y)‖B =
1

2n
‖L (2ny)− L′ (2ny)‖B

≤ 1

2n
(‖L (2ny)− fa (2ny)‖B + ‖fa (2ny)− L′ (2ny)‖B)

≤ 2 α

[2− 2s]

1

2n(1−s) ‖y‖
s
A

→ 0 as n→∞

for all y ∈ A. Therefore L is unique. This completes the proof of the theorem.

Now we will provide an example to illustrate that the functional equation
(1.4) is not stable for s = 1 in Theorem 2.1.
Example 2.1. Let φ : R→ R be a function defined by

φ(x) =

{
µx, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function f : R→ R by

f(x) =
∞∑
n=0

φ(2nx)

2n
for all x ∈ R.
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Then f satisfies the functional inequality

|f(x+ 2y) + f(x− 2y) + 4f(x)− 3f(x+ y)− 3f(x− y)

− f(2y) + 2f(y)| ≤ 30µ (|x|+ |y|) (2.9)

for all x, y ∈ R. Then there do not exist a additive mapping A : R→ R and a
constant γ > 0 such that

|f(x)− A(x)| ≤ γ|x| for all x ∈ R. (2.10)

Proof. Now

|f(x)| ≤
∞∑
n=0

|φ(2nx)|
|2n|

=
∞∑
n=0

µ

2n
= 2µ.

Therefore we see that f is bounded. We are going to prove that f satisfies
(2.9).

If x = y = 0 then (2.9) is trivial. If |x|+ |y| ≥ 1 then the left hand side of
(2.9) is less than 30µ. Now suppose that 0 < |x| + |y| < 1. Then there exists
a positive integer k such that

1

2k+1
≤ |x|+ |y| < 1

2k
, (2.11)

so that 2k−1x < 1, 2k−1y < 1, and consequently

2k−1(x), 2k−1(y), 2k−1(x+ y), 2k−1(x− y), ,

2k−1(x+ 2y), 2k−1(x− 2y), 2k−1(2y) ∈ (−1, 1).

Therefore for each n = 0, 1, . . . , k − 1, we have

2n(x), 2n(y), 2n(x+ y), 2n(x− y)

2n(x+ 2y), 2n(x− 2y), 2n(2y) ∈ (−1, 1)

and

φ(2n(x+ 2y) + φ(2n(x− 2y)) + 4φ(2n(x))− 3φ(2n(x+ y))− 3φ(2n(x− y))

− φ(2n(2y)) + φ(2ny) = 0
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for n = 0, 1, . . . , k − 1. From the definition of f and (2.11), we obtain that

|f(x+ 2y) + f(x− 2y) + 4f(x)− 3f(x+ y)− 3f(x− y)− f(2y) + 2f(y)|

≤
∞∑
n=0

1

2n

∣∣∣φ(2n(x+ 2y) + φ(2n(x− 2y)) + φ(2n(x))− 3φ(2n(x+ y))

− 3φ(2n(x− y))− φ(2n(2y)) + 2φ(2ny)
∣∣∣

≤
∞∑
n=k

1

2n

∣∣∣φ(2n(x+ 2y) + φ(2n(x− 2y)) + φ(2n(4x))− 3φ(2n(x+ y))

− 3φ(2n(x− y))− φ(2n(2y)) + 2φ(2ny)
∣∣∣

≤
∞∑
n=k

1

2n
15µ = 2µ× 15

2k
= 30µ (|x|+ |y|) .

Thus f satisfies (2.9) for all x, y, z ∈ R with 0 < |x|+ |y| < 1.
We claim that an additive functional equation (1.4) is not stable for s = 1

in Theorem 2.1. Suppose on the contrary that there exist an additive mapping
A : R → R and a constant γ > 0 satisfying (2.10). Since f is bounded and
continuous for all x ∈ R, A is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem 2.1, A must have the
form A(x) = cx for any x in R. Thus we obtain that

|f(x)| ≤ (γ + |c|) |x|. (2.12)

But we can choose a positive integer m with mµ > γ + |c|.
If x ∈

(
0, 1

2m−1

)
, then 2nx ∈ (0, 1) for all n = 0, 1, . . . ,m− 1 . For this x,

we get

f(x) =
∞∑
n=0

φ(2nx)

2n
≥

m−1∑
n=0

µ2nx

2n
= mµx > (γ + |c|)x

which contradicts (2.12). Therefore the additive functional equation (1.4) is
not stable in sense of Ulam, Hyers and Rassias if s = 1, assumed in the
inequality (2.1).

Theorem 2.2. Let β and s(s < 2) be nonnegative real numbers. Let fq :
A→ B be an even mapping satisfying

‖D fq (x, y)‖B ≤ β {‖x‖sA + ‖y‖sA} (2.13)

for all x, y ∈ A, with x ⊥ y. Then there exists a unique orthogonally quadratic
mapping M : A→ B such that

‖fq(y)−M(y)‖B ≤
β

4− 2s
‖y‖sA (2.14)
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for all y ∈ A. The function M(y) is defined by

M(y) = lim
n→∞

fq(2
ny)

4n
(2.15)

for all y ∈ A.

Proof. Replacing (x, y) by (0, 0) in (2.13), we get fq(0) = 0. Setting (x, y) by
(0, y) in (2.13), we obtain

‖fq(2y)− 4fq(y)‖B ≤ β ‖y‖sA (2.16)

for all y ∈ A. Since y ⊥ 0 , we have∥∥∥∥fq(2y)

4
− fq(y)

∥∥∥∥
B

≤ β

4
‖y‖sA (2.17)

for all y ∈ A. Now replacing y by 2y and dividing by 4 in (2.17) and summing
resulting inequality with (2.17), we arrive∥∥∥∥fq(22y)

42
− fq(y)

∥∥∥∥
B

≤ β

4

{
1 +

2s

4

}
‖y‖sA (2.18)

for all y ∈ A. In general, using induction on a positive integer n, we obtain
that ∥∥∥∥fq(2ny)

4n
− fq(y)

∥∥∥∥
B

≤ β

4

n−1∑
k=0

2s k

4k
‖y‖sA (2.19)

≤ β

4

∞∑
k=0

2s k

4k
‖y‖sA

for all y ∈ A. In order to prove the convergence of the sequence {fq(2ny)/4n},
replace y by 2my and divide by 4m in (2.19), for any n,m > 0, we obtain∥∥∥∥fq (2n2my)

4(n+m)
− fq(2

my)

4m

∥∥∥∥
B

=
1

4m

∥∥∥∥fq (2n2my)

4n
− fq (2my)

∥∥∥∥
B

≤ 1

4m

β

4

n−1∑
k=0

2s k

4k
‖2my‖sA

≤ β

4

∞∑
k=0

1

2(2−s)(k+m)
‖y‖sA . (2.20)

As s < 2, the right hand side of (2.20) tends to 0 as m → ∞ for all y ∈ A.
Thus {fq(2ny)/4n} is a Cauchy sequence. Since B is complete, there exists a
mapping M : A→ B such that

M(y) = lim
n→∞

fq(2
ny)

4n
∀ y ∈ A.
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Letting n→∞ in (2.19), we arrive the formula (2.14) for all y ∈ A. To prove
M satisfies (1.4) and it is unique the proof is similar to that of Theorem 2.1

Now we will provide an example to illustrate that the functional equation
(1.4) is not stable for s = 2 in Theorem 2.2.
Example 2.2. Let φ : R→ R be a function defined by

φ(x) =

{
µx2, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function f : R→ R by

f(x) =
∞∑
n=0

φ(2nx)

4n
for all x ∈ R.

Then f satisfies the functional inequality

|f(x+ 2y) + f(x− 2y) + 4f(x)− 3f(x+ y)− 3f(x− y)

− f(2y) + 2f(y)| ≤ 5× 42
(
|x|2 + |y|2

)
(2.21)

for all x, y ∈ R. Then there do not exist a quadratic mapping Q : R→ R and
a constant γ > 0 such that

|f(x)−Q(x)| ≤ γ|x|2 for all x ∈ R. (2.22)

Proof. Now

|f(x)| ≤
∞∑
n=0

|φ(2nx)|
|4n|

=
∞∑
n=0

µ

4n
=

4µ

3
.

Therefore we see that f is bounded. We are going to prove that f satisfies
(2.21).

If x = y = 0 then (2.21) is trivial. If |x|2 + |y|2 ≥ 1

4
then the left hand side

of (2.21) is less than 20µ. Now suppose that 0 < |x|2 + |y|2 < 1

4
. Then there

exists a positive integer k such that

1

4k+1
≤ |x|2 + |y|2 < 1

4k
, (2.23)

so that 4k−1x2 <
1

4
, 4k−1y2 <

1

4
, and consequently

2k−1(x), 2k−1(y), 2k−1(x+ y), 2k−1(x− y), ,

2k−1(x+ 2y), 2k−1(x− 2y), 2k−1(2y) ∈ (−1, 1).
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Therefore for each n = 0, 1, . . . , k − 1, we have

2n(x), 2n(y), 2n(x+ y), 2n(x− y)

2n(x+ 2y), 2n(x− 2y), 2n(2y) ∈ (−1, 1)

and

φ(2n(x+ 2y) + φ(2n(x− 2y)) + 4φ(2n(x))− 3φ(2n(x+ y))− 3φ(2n(x− y))

− φ(2n(2y)) + φ(2ny) = 0

for n = 0, 1, . . . , k − 1. From the definition of f and (2.23), we obtain that

|f(x+ 2y) + f(x− 2y) + 4f(x)− 3f(x+ y)− 3f(x− y)− f(2y) + 2f(y)|

≤
∞∑
n=0

1

4n

∣∣∣φ(2n(x+ 2y) + φ(2n(x− 2y)) + φ(2n(x))− 3φ(2n(x+ y))

− 3φ(2n(x− y))− φ(2n(2y)) + 2φ(2ny)
∣∣∣

≤
∞∑
n=k

1

4n

∣∣∣φ(2n(x+ 2y) + φ(2n(x− 2y)) + φ(2n(4x))− 3φ(2n(x+ y))

− 3φ(2n(x− y))− φ(2n(2y)) + 2φ(2ny)
∣∣∣

≤
∞∑
n=k

1

4n
15µ =

4µ

3
× 15

4k
= 5× 42µ

(
|x|2 + |y|2

)
.

Thus f satisfies (2.21) for all x, y, z ∈ R with 0 < |x|2 + |y|2 < 1

4
.

We claim that the quadratic functional equation (1.4) is not stable for s = 2
in Theorem 2.2. Suppose on the contrary that there exist a quadratic mapping
Q : R → R and a constant γ > 0 satisfying (2.22). Since f is bounded and
continuous for all x ∈ R, Q is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem 2.2, Q must have the
form Q(x) = cx2 for any x in R. Thus we obtain that

|f(x)| ≤ (γ + |c|) |x|2. (2.24)

But we can choose a positive integer m with mµ > γ + |c|.
If x ∈

(
0, 1

2m−1

)
, then 2nx ∈ (0, 1) for all n = 0, 1, . . . ,m− 1 . For this x,

we get

f(x) =
∞∑
n=0

φ(2nx)

4n
≥

m−1∑
n=0

µ(2nx)2

4n
= mµx2 > (γ + |c|)x2

which contradicts (2.24). Therefore the quadratic functional equation (1.4)
is not stable in sense of Ulam, Hyers and Rassias if s = 2, assumed in the
inequality (2.13).
Now we are ready to prove our main theorem.
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Theorem 2.3. Let θ and s(s < 1) be nonnegative real numbers. Let f :
A→ B be a mapping satisfying

‖D f (x, y)‖B ≤ θ {‖x‖sA + ‖y‖sA} (2.25)

for all x, y ∈ A, with x ⊥ y. Then there exists a unique orthogonally additive
mapping L : A→ B and a unique orthogonally quadratic mapping M : A→ B
such that

‖f(y)− L(y)−M(y)‖B ≤
[

θ

2− 2s
+

θ

4− 2s

]
‖y‖sA (2.26)

for all y ∈ A. The function L(y) and M(y) are defined in (2.3) and (2.15)
respectively for all y ∈ A.

Proof. Let fe(y) =
fq(y) + fq(−y)

2
for all y ∈ A, then fe(0) = 0. Hence

‖Dfe(x, y)‖ ≤ θ

2
{(||x||sA + ||y||sA) + (|| − x||sA + || − y||sA)}

≤ θ(||x||sA + ||y||sA). (2.27)

By Theorem 2.2, we have

‖fe(y)−M(y)‖B ≤
θ

4− 2s
‖y‖sA (2.28)

for all y ∈ A. Also, let fo(y) =
fa(y)− fa(−y)

2
for all y ∈ A, then fo(0) = 0.

Hence

‖Dfo(x, y)‖ ≤ θ

2
{(||x||sA + ||y||sA) + (|| − x||sA + || − y||sA)}

≤ θ(||x||sA + ||y||sA). (2.29)

By Theorem 2.1, we have

‖fo(y)− L(y)‖B ≤
θ

2− 2s
‖y‖sA (2.30)

for all y ∈ A. Define
f(y) = fe(y) + fo(y) (2.31)

for all y ∈ A. From (2.28),(2.30) and (2.31), we arrive

‖f(y)− L(y)−M(y)‖B = ‖fe(y) + fo(y)− L(y)−M(y)‖B
≤ ‖fe(y)−M(y)‖B + ‖fo(y)− L(y)‖B

≤
[

θ

2− 2s
+

θ

4− 2s

]
‖y‖sA

for all y ∈ A. Hence the theorem is proved.
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Example 2.3. Let φ : R→ R be a function defined by

φ(x) =

{
µ(x+ x2), if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function f : R→ R by

f(x) =
∞∑
n=0

(2n + 1)

(2n)2
φ(2nx) for all x ∈ R.

Then f satisfies the functional inequality

|f(x+ 2y) + f(x− 2y) + 4f(x)− 3f(x+ y)− 3f(x− y)

− f(2y) + 2f(y)| ≤ 50µ (|x|+ |y|) (2.32)

for all x, y ∈ R. Then there do not exist a additive mapping A : R → R and
Q : R→ R and a constant γ > 0 such that

|f(x)− A(x)−Q(x)| ≤ γ|x+ x2| for all x ∈ R. (2.33)

Proof. Now

|f(x)| ≤
∞∑
n=0

|2n + 1|
|2n|2

φ(2nx) =
10

3
µ.

Therefore we see that f is bounded. We are going to prove that f satisfies
(2.32).

If x = y = 0 then (2.32) is trivial. If |x|+ |y| ≥ 1 then the left hand side of
(2.32) is less than 50µ. Now suppose that 0 < |x|+ |y| < 1. Then there exists
a positive integer k such that

1

2k+1
≤ |x|+ |y| < 1

2k
, (2.34)

so that 2k−1x < 1, 2k−1y < 1, and consequently

2k−1(x), 2k−1(y), 2k−1(x+ y), 2k−1(x− y), ,

2k−1(x+ 2y), 2k−1(x− 2y), 2k−1(2y) ∈ (−1, 1).

Therefore for each n = 0, 1, . . . , k − 1, we have

2n(x), 2n(y), 2n(x+ y), 2n(x− y)

2n(x+ 2y), 2n(x− 2y), 2n(2y) ∈ (−1, 1)

and

φ(2n(x+ 2y) + φ(2n(x− 2y)) + 4φ(2n(x))− 3φ(2n(x+ y))− 3φ(2n(x− y))

− φ(2n(2y)) + φ(2ny) = 0



Orthogonal Stability of an Additive and Quadratic Functional Equation 197

for n = 0, 1, . . . , k − 1. From the definition of f and (2.34), we obtain that

|f(x+ 2y) + f(x− 2y) + 4f(x)− 3f(x+ y)− 3f(x− y)− f(2y) + 2f(y)|

≤
∞∑
n=0

2n + 1

4n

∣∣∣φ(2n(x+ 2y) + φ(2n(x− 2y)) + φ(2n(x))− 3φ(2n(x+ y))

− 3φ(2n(x− y))− φ(2n(2y)) + 2φ(2ny)
∣∣∣

≤
∞∑
n=k

2n + 1

4n

∣∣∣φ(2n(x+ 2y) + φ(2n(x− 2y)) + φ(2n(4x))− 3φ(2n(x+ y))

− 3φ(2n(x− y))− φ(2n(2y)) + 2φ(2ny)
∣∣∣

≤
∞∑
n=k

2n + 1

4n
15µ =

10

3
µ× 15

2k
= 50µ (|x|+ |y|) .

Thus f satisfies (2.32) for all x, y, z ∈ R with 0 < |x|+ |y| < 1.

We claim that an additive-quadratic functional equation (1.4) is not stable
for s = 1 in Theorem 2.3. Suppose on the contrary that there exist an additive
mapping A : R → R and Q : R → R and a constant γ > 0 satisfying (2.10).
Since f is bounded and continuous for all x ∈ R, A and Q are bounded on
any open interval containing the origin and continuous at the origin. In view
of Theorem 2.3, A must have the form A(x) = cx and Q(x) = cx2 for any x
in R. Thus we obtain that

|f(x)| ≤ (γ + |c|) |x+ x2|. (2.35)

But we can choose a positive integer m with mµ > γ + |c|.
If x ∈

(
0, 1

2m−1

)
, then 2nx ∈ (0, 1) for all n = 0, 1, . . . ,m− 1 . For this x,

we get

f(x) =
∞∑
n=0

(2n + 1)

(2n)2
φ(2nx) ≥

m−1∑
n=0

µ(2n + 1)

(2n)2
(x+x2) = mµ(x+x2) > (γ + |c|) (x+x2)

which contradicts (2.35). Therefore the additive functional equation (1.4) is
not stable in sense of Ulam, Hyers and Rassias if s = 1, assumed in the
inequality (2.25).
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