Mathematica Aeterna, Vol. 1, 2011, no. 03, 185 - 199

ORTHOGONAL STABILITY OF A MIXED TYPE ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION

K.RAVI

Department of Mathematics Sacred Heart College Tirupattur - 635 601 TamilNadu, India.

JOHN MICHAEL RASSIAS

Sections of Mathematics and Informatics Pedagogical Department E.E National and Capodistrian, University of Athens Agamenuntonos Str., Aghia Paraskevi, 15342 Athens, Greece.

R.MURALI

Department of Mathematics Sacred Heart College Tirupattur - 635 601 TamilNadu, India.

e-mail: ¹shckravi@yahoo.co.in, ²shcrmurali@yahoo.co.in e-mail: ²jrassias@primedu.uoa.gr

Abstract

In this paper, the authors investigate the orthogonal stability of a mixed type additive and quadratic functional equation of the form

 $f(x+2y) + f(x-2y) + 4f(x) = 3[f(x+y) + f(x-y)] + f(2y) - 2f(y) \quad (0.1)$

with $x \perp y$, where \perp is orthogonality in the sense of Rätz.

Mathematics Subject Classification: 39B55, 39B52, 39B82,46H25 Keywords: Hyers - Ulam - Aoki - Rassias stability, Ulam- Gavruta- Rassias stability, JMRassias stability, additive functional equation, quadratic functional equation, Orthogonality space

1 Introduction

The stability problem of functional equations originated from a question of S.M. Ulam [21] in 1940, concerning the stability of group homomorphisms.

Let (G_1, \cdot) be a group and let $(G_2, *)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$, such that if a mapping $h : G_1 \to G_2$ satisfies the inequality $d(h(x \cdot y), h(x) * h(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H : G_1 \to G_2$ with $d(h(x), H(x)) < \epsilon$ for all $x \in G_1$?

The case of approximately additive functions was solved by D.H. Hyers [9] under the assumption that G_1 and G_2 are Banach spaces. In 1951 and in 1978, a generalized version of the theorem of Hyers for approximately linear mappings was given by T. Aoki [1] and Th.M. Rassias [15]. The Hyers - Ulam - Aoki - Rassias stability originates from this historical backgrounds see [2, 3, 6, 16, 20]. In 1982, J.M. Rassias [13, 14] provided a generalizations of the Hyers stability theorem which allows the Cauchy difference to be bounded. The stability phenomenon that was proved by J.M. Rassias is called the Ulam - Gavruta - Rassias stability by [18]. Very recently J.M. Rassias [19] introduced a new concept on stability called JMRassias Mixed type product-sum of powers of norms stability.

There are several orthogonality notations on a real normed space are available. But here, we present the orthogonality concept introduced by J.Rätz[17]. This is given in the following definition.

Definition 1.1. [17] A vector space X is called an orthogonality vector space if there is a relation $x \perp y$ on X such that

- (i) $x \perp 0$, $0 \perp x$ for all $x \in X$;
- (ii) if $x \perp y$ and $x, y \neq 0$, then x, y are linearly independent;
- (iii) $x \perp y$, $ax \perp by$ for all $a, b \in \mathbb{R}$;
- (iv) if P is a two-dimensional subspace of X; then
 - (a) for every $x \in P$ there exists $0 \neq y \in P$ such that $x \perp y$;
 - (b) there exists vectors $x, y \neq 0$ such that $x \perp y$ and $x + y \perp x y$.

Any vector space can be made into an orthogonality vector space if we define $x \perp 0, 0 \perp x$ for all x and for non zero vector x, y define $x \perp y$ iff x, y are linearly independent. The relation \perp is called symmetric if $x \perp y$ implies that $y \perp x$ for all x, $y \in X$. The pair (X, \perp) is called anorthogonality space. It becomes orthogonality normed space when the orthogonality space is equipped with a norm.

The orthogonal Cauchy functional equation

$$f(x+y) = f(x) + f(y), x \perp y$$
 (1.1)

in which \perp is an abstract orthogonally was first investigated by S.Gudder and D. Strawther [8]. R. Ger and J. Sikorska discussed the orthogonal stability of the equation (1.1) in [7].

Orthogonal Stability of an Additive and Quadratic Functional Equation 187

Definition 1.2. Let X be an orthogonality space and Y be a real Banach space. A mapping $f : X \to Y$ is called orthogonally quadratic if it satisfies the so called orthogonally Euler-Lagrange quadratic functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.2)

for all $x, y \in X$ with $x \perp y$. The orthogonality Hilbert space for the orthogonally quadratic functional equation (1.2) was first investigated by F. Vajzovic [22].

Several other functional equations and its stability in orthogonality spaces was discussed in [4, 10, 11, 12, 18, 19]. Fridoum Moradlou, Hamid Vaezi and G. Zamani Eskandani [5], obtained the general solution and the generalized Hyers-Ulam-Rassias stability of a functional equation deriving from quadratic and additive functions of the form

$$f(x+2y) + f(x-2y) + 4f(x) = 3[f(x+y) + f(x-y)] + f(2y) - 2f(y).$$
(1.3)

In this paper, the authors discussed the orthogonal stability of a mixed type additive and quadratic functional equation of the form

$$f(x+2y) + f(x-2y) + 4f(x) = 3[f(x+y) + f(x-y)] + f(2y) - 2f(y).$$
(1.4)

with $x \perp y$ and investigates its Hyers - Ulam - Aoki - Rassias stability of (1.4), where \perp is orthogonality in the sense of Ratz. Note that the function $f(x) = ax + bx^2$ is the solution of the functional equation (1.4).

Definition 1.3. A mapping $f : A \to B$ is called orthogonal additive and quadratic respectively, if it satisfies the mixed type functional equation (1.4) for all $x, y \in A$, with $x \perp y$ where A be an orthogonality space and B be a real Banach space.

Through out this paper, let (A, \perp) denote an orthogonality normed space with norm $\|\cdot\|_A$ and $(B, \|\cdot\|_B)$ is a Banach space. We define

$$D f(x,y) = f(x+2y) + f(x-2y) + 4f(x) - 3[f(x+y) + f(x-y)] - f(2y) + 2f(y).$$

for all $x, y \in A$, with $x \perp y$.

2 Hyers - Ulam - Aoki - Rassias Stability of (1.4)

In this section, we present the Hyers - Ulam - Aoki - Rassias stability of the orthogonal functional equation (1.4).

Theorem 2.1. Let α and s(s < 1) be nonnegative real numbers. Let $f_a : A \rightarrow B$ be an odd mapping satisfying

$$\|D f_a(x, y)\|_B \le \alpha \{\|x\|_A^s + \|y\|_A^s\}$$
(2.1)

for all $x, y \in A$, with $x \perp y$. Then there exists a unique orthogonally additive mapping $L : A \to B$ such that

$$\|f_a(y) - L(y)\|_B \le \frac{\alpha}{(2-2^s)} \|y\|_A^s$$
 (2.2)

for all $y \in A$. The function L(y) is defined by

$$L(y) = \lim_{n \to \infty} \frac{f_a(2^n y)}{2^n} \tag{2.3}$$

for all $y \in A$.

Proof. Replacing (x, y) by (0, 0) in (2.1), we get $f_a(0) = 0$. Setting (x, y) by (0, y) in (2.1), we obtain

$$\|f_a(2y) - 2f_a(y)\|_B \le \alpha \|y\|_A^s$$
(2.4)

for all $y \in A$. Since $y \perp 0$, we have

$$\left\|\frac{f_a(2y)}{2} - f_a(y)\right\|_B \le \frac{\alpha}{2} \|y\|_A^s$$
(2.5)

for all $y \in A$. Now replacing y by 2y and dividing by 2 in (2.5) and summing resulting inequality with (2.5), we arrive

$$\left\|\frac{f_a(2^2y)}{2^2} - f_a(y)\right\|_B \le \frac{\alpha}{2} \left\{1 + \frac{2^s}{2}\right\} \|y\|_A^s$$
(2.6)

for all $y \in A$. In general, using induction on a positive integer n, we obtain that

$$\left\| \frac{f_a(2^n y)}{2^n} - f_a(y) \right\|_B \le \frac{\alpha}{2} \sum_{k=0}^{n-1} \frac{2^{sk}}{2^k} \|y\|_A^s$$

$$\le \frac{\alpha}{2} \sum_{k=0}^{\infty} \frac{2^{sk}}{2^k} \|y\|_A^s$$
(2.7)

for all $y \in A$. In order to prove the convergence of the sequence $\{f_a(2^n y)/2^n\}$, replace y by $2^m y$ and divide by 2^m in (2.7), for any n, m > 0, we obtain

$$\left\| \frac{f_a(2^n 2^m y)}{2^{(n+m)}} - \frac{f_a(2^m y)}{2^m} \right\|_B = \frac{1}{2^m} \left\| \frac{f_a(2^n 2^m y)}{2^n} - f_a(2^m y) \right\|_B$$
$$\leq \frac{1}{2^m} \frac{\alpha}{2} \sum_{k=0}^{n-1} \frac{2^{sk}}{2^k} \| 2^m y \|_A^s$$
$$\leq \frac{\alpha}{2} \sum_{k=0}^{\infty} \frac{1}{2^{(1-s)(k+m)}} \| y \|_A^s.$$
(2.8)

As s < 1, the right hand side of (2.8) tends to 0 as $m \to \infty$ for all $y \in A$. Thus $\{f_a(2^n y)/2^n\}$ is a Cauchy sequence. Since B is complete, there exists a mapping $L : A \to B$ such that

$$L(y) = \lim_{n \to \infty} \frac{f_a(2^n y)}{2^n} \quad \forall \quad y \in A.$$

Letting $n \to \infty$ in (2.7), we arrive the formula (2.2) for all $y \in A$. To prove L satisfies (1.4), replace (x, y) by $(2^n x, 2^n y)$ in (2.1) and divide by 2^n , it follows that

$$\frac{1}{2^n} \left\| f_a(2^n(x+2y)) + f_a(2^n(x-2y)) + 4f_a(2^nx) - 3[f_a(2^n(x+y)) + f_a(2^n(x-y))] - f_a(2^n 2y) + 2f_a(2^ny) \right\|_B \le \frac{\alpha}{2^n} \left\{ \|2^nx\|_A^s + \|2^ny\|_A^s \right\}.$$

Taking limit as $n \to \infty$ in the above inequality, we get

$$L(x+2y) + L(x-2y) + 4f(x) = 3[L(x+y) + L(x-y)] + L(2y) - 2L(y)$$

for all $x, y \in A$ with $x \perp y$. Therefore $L : A \to B$ is an orthogonally additive mapping which satisfies (1.4). To prove the uniqueness of L, let L' be another orthogonally additive mapping satisfying (1.4) and the inequality (2.2). Then

$$\begin{split} \|L(y) - L'(y)\|_{B} &= \frac{1}{2^{n}} \|L(2^{n}y) - L'(2^{n}y)\|_{B} \\ &\leq \frac{1}{2^{n}} \left(\|L(2^{n}y) - f_{a}(2^{n}y)\|_{B} + \|f_{a}(2^{n}y) - L'(2^{n}y)\|_{B} \right) \\ &\leq \frac{2 \alpha}{[2 - 2^{s}]} \frac{1}{2^{n(1 - s)}} \|y\|_{A}^{s} \\ &\to 0 \text{ as } n \to \infty \end{split}$$

for all $y \in A$. Therefore L is unique. This completes the proof of the theorem. \Box

Now we will provide an example to illustrate that the functional equation (1.4) is not stable for s = 1 in Theorem 2.1.

Example 2.1. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$\phi(x) = \begin{cases} \mu x, & \text{if } |x| < 1\\ \mu, & \text{otherwise} \end{cases}$$

where $\mu > 0$ is a constant, and define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} \frac{\phi(2^n x)}{2^n} \qquad \text{for all} \quad x \in \mathbb{R}.$$

Then f satisfies the functional inequality

$$|f(x+2y) + f(x-2y) + 4f(x) - 3f(x+y) - 3f(x-y) - f(2y) + 2f(y)| \le 30\mu (|x|+|y|)$$
(2.9)

for all $x, y \in \mathbb{R}$. Then there do not exist a additive mapping $A : \mathbb{R} \to \mathbb{R}$ and a constant $\gamma > 0$ such that

$$|f(x) - A(x)| \le \gamma |x| \qquad for \ all \quad x \in \mathbb{R}.$$
(2.10)

Proof. Now

$$|f(x)| \le \sum_{n=0}^{\infty} \frac{|\phi(2^n x)|}{|2^n|} = \sum_{n=0}^{\infty} \frac{\mu}{2^n} = 2\mu.$$

Therefore we see that f is bounded. We are going to prove that f satisfies (2.9).

If x = y = 0 then (2.9) is trivial. If $|x| + |y| \ge 1$ then the left hand side of (2.9) is less than 30μ . Now suppose that 0 < |x| + |y| < 1. Then there exists a positive integer k such that

$$\frac{1}{2^{k+1}} \le |x| + |y| < \frac{1}{2^k},\tag{2.11}$$

so that $2^{k-1}x < 1$, $2^{k-1}y < 1$, and consequently

$$2^{k-1}(x), 2^{k-1}(y), 2^{k-1}(x+y), 2^{k-1}(x-y), ,$$

$$2^{k-1}(x+2y), 2^{k-1}(x-2y), 2^{k-1}(2y) \in (-1,1).$$

Therefore for each $n = 0, 1, \ldots, k - 1$, we have

$$2^{n}(x), 2^{n}(y), 2^{n}(x+y), 2^{n}(x-y)$$

$$2^{n}(x+2y), 2^{n}(x-2y), 2^{n}(2y) \in (-1,1)$$

and

$$\phi(2^n(x+2y) + \phi(2^n(x-2y)) + 4\phi(2^n(x)) - 3\phi(2^n(x+y)) - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + \phi(2^ny) = 0$$

for n = 0, 1, ..., k - 1. From the definition of f and (2.11), we obtain that

$$\begin{split} & \left|f(x+2y) + f(x-2y) + 4f(x) - 3f(x+y) - 3f(x-y) - f(2y) + 2f(y)\right| \\ & \leq \sum_{n=0}^{\infty} \frac{1}{2^n} \Big| \phi(2^n(x+2y) + \phi(2^n(x-2y)) + \phi(2^n(x)) - 3\phi(2^n(x+y)) \\ & - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + 2\phi(2^ny) \Big| \\ & \leq \sum_{n=k}^{\infty} \frac{1}{2^n} \Big| \phi(2n(x+2y) + \phi(2^n(x-2y)) + \phi(2^n(4x)) - 3\phi(2^n(x+y)) \\ & - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + 2\phi(2^ny) \Big| \\ & \leq \sum_{n=k}^{\infty} \frac{1}{2^n} 15\mu = 2\mu \times \frac{15}{2^k} = 30\mu \left(|x| + |y|\right). \end{split}$$

Thus f satisfies (2.9) for all $x, y, z \in \mathbb{R}$ with 0 < |x| + |y| < 1.

We claim that an additive functional equation (1.4) is not stable for s = 1in Theorem 2.1. Suppose on the contrary that there exist an additive mapping $A : \mathbb{R} \to \mathbb{R}$ and a constant $\gamma > 0$ satisfying (2.10). Since f is bounded and continuous for all $x \in \mathbb{R}$, A is bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 2.1, A must have the form A(x) = cx for any x in \mathbb{R} . Thus we obtain that

$$|f(x)| \le (\gamma + |c|) |x|. \tag{2.12}$$

But we can choose a positive integer m with $m\mu > \gamma + |c|$.

If $x \in \left(0, \frac{1}{2^{m-1}}\right)$, then $2^n x \in (0, 1)$ for all $n = 0, 1, \dots, m-1$. For this x, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{\phi(2^n x)}{2^n} \ge \sum_{n=0}^{m-1} \frac{\mu 2^n x}{2^n} = m\mu x > (\gamma + |c|) x$$

which contradicts (2.12). Therefore the additive functional equation (1.4) is not stable in sense of Ulam, Hyers and Rassias if s = 1, assumed in the inequality (2.1).

Theorem 2.2. Let β and s(s < 2) be nonnegative real numbers. Let $f_q : A \rightarrow B$ be an even mapping satisfying

$$\|D f_q(x,y)\|_B \le \beta \{\|x\|_A^s + \|y\|_A^s\}$$
(2.13)

for all $x, y \in A$, with $x \perp y$. Then there exists a unique orthogonally quadratic mapping $M : A \rightarrow B$ such that

$$\|f_q(y) - M(y)\|_B \le \frac{\beta}{4 - 2^s} \|y\|_A^s$$
(2.14)

for all $y \in A$. The function M(y) is defined by

$$M(y) = \lim_{n \to \infty} \frac{f_q(2^n y)}{4^n}$$
(2.15)

for all $y \in A$.

Proof. Replacing (x, y) by (0, 0) in (2.13), we get $f_q(0) = 0$. Setting (x, y) by (0, y) in (2.13), we obtain

$$\|f_q(2y) - 4f_q(y)\|_B \le \beta \|y\|_A^s$$
(2.16)

for all $y \in A$. Since $y \perp 0$, we have

$$\left\|\frac{f_q(2y)}{4} - f_q(y)\right\|_B \le \frac{\beta}{4} \|y\|_A^s$$
(2.17)

for all $y \in A$. Now replacing y by 2y and dividing by 4 in (2.17) and summing resulting inequality with (2.17), we arrive

$$\left\|\frac{f_q(2^2y)}{4^2} - f_q(y)\right\|_B \le \frac{\beta}{4} \left\{1 + \frac{2^s}{4}\right\} \|y\|_A^s \tag{2.18}$$

for all $y \in A$. In general, using induction on a positive integer n, we obtain that

$$\left\| \frac{f_q(2^n y)}{4^n} - f_q(y) \right\|_B \le \frac{\beta}{4} \sum_{k=0}^{n-1} \frac{2^{sk}}{4^k} \|y\|_A^s$$

$$\le \frac{\beta}{4} \sum_{k=0}^{\infty} \frac{2^{sk}}{4^k} \|y\|_A^s$$
(2.19)

for all $y \in A$. In order to prove the convergence of the sequence $\{f_q(2^n y)/4^n\}$, replace y by $2^m y$ and divide by 4^m in (2.19), for any n, m > 0, we obtain

$$\left\| \frac{f_q(2^n 2^m y)}{4^{(n+m)}} - \frac{f_q(2^m y)}{4^m} \right\|_B = \frac{1}{4^m} \left\| \frac{f_q(2^n 2^m y)}{4^n} - f_q(2^m y) \right\|_B$$
$$\leq \frac{1}{4^m} \frac{\beta}{4} \sum_{k=0}^{n-1} \frac{2^{sk}}{4^k} \| 2^m y \|_A^s$$
$$\leq \frac{\beta}{4} \sum_{k=0}^{\infty} \frac{1}{2^{(2-s)(k+m)}} \| y \|_A^s.$$
(2.20)

As s < 2, the right hand side of (2.20) tends to 0 as $m \to \infty$ for all $y \in A$. Thus $\{f_q(2^n y)/4^n\}$ is a Cauchy sequence. Since B is complete, there exists a mapping $M : A \to B$ such that

$$M(y) = \lim_{n \to \infty} \frac{f_q(2^n y)}{4^n} \quad \forall \quad y \in A.$$

Letting $n \to \infty$ in (2.19), we arrive the formula (2.14) for all $y \in A$. To prove M satisfies (1.4) and it is unique the proof is similar to that of Theorem 2.1 \Box

Now we will provide an example to illustrate that the functional equation (1.4) is not stable for s = 2 in Theorem 2.2.

Example 2.2. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$\phi(x) = \begin{cases} \mu x^2, & \text{if } |x| < 1\\ \mu, & \text{otherwise} \end{cases}$$

where $\mu > 0$ is a constant, and define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} \frac{\phi(2^n x)}{4^n}$$
 for all $x \in \mathbb{R}$.

Then f satisfies the functional inequality

$$|f(x+2y) + f(x-2y) + 4f(x) - 3f(x+y) - 3f(x-y) - f(2y) + 2f(y)| \le 5 \times 4^2 \left(|x|^2 + |y|^2\right)$$
(2.21)

for all $x, y \in \mathbb{R}$. Then there do not exist a quadratic mapping $Q : \mathbb{R} \to \mathbb{R}$ and a constant $\gamma > 0$ such that

$$|f(x) - Q(x)| \le \gamma |x|^2 \qquad for \ all \quad x \in \mathbb{R}.$$
 (2.22)

Proof. Now

$$|f(x)| \le \sum_{n=0}^{\infty} \frac{|\phi(2^n x)|}{|4^n|} = \sum_{n=0}^{\infty} \frac{\mu}{4^n} = \frac{4\mu}{3}.$$

Therefore we see that f is bounded. We are going to prove that f satisfies (2.21).

If x = y = 0 then (2.21) is trivial. If $|x|^2 + |y|^2 \ge \frac{1}{4}$ then the left hand side of (2.21) is less than 20μ . Now suppose that $0 < |x|^2 + |y|^2 < \frac{1}{4}$. Then there exists a positive integer k such that

$$\frac{1}{4^{k+1}} \le |x|^2 + |y|^2 < \frac{1}{4^k},\tag{2.23}$$

so that $4^{k-1}x^2 < \frac{1}{4}$, $4^{k-1}y^2 < \frac{1}{4}$, and consequently

$$2^{k-1}(x), 2^{k-1}(y), 2^{k-1}(x+y), 2^{k-1}(x-y), ,$$

$$2^{k-1}(x+2y), 2^{k-1}(x-2y), 2^{k-1}(2y) \in (-1,1).$$

Therefore for each $n = 0, 1, \ldots, k - 1$, we have

$$2^{n}(x), 2^{n}(y), 2^{n}(x+y), 2^{n}(x-y)$$

$$2^{n}(x+2y), 2^{n}(x-2y), 2^{n}(2y) \in (-1,1)$$

and

$$\phi(2^n(x+2y) + \phi(2^n(x-2y)) + 4\phi(2^n(x)) - 3\phi(2^n(x+y)) - 3\phi(2^n(x-y))) - \phi(2^n(2y)) + \phi(2^ny) = 0$$

for n = 0, 1, ..., k - 1. From the definition of f and (2.23), we obtain that

$$\begin{split} |f(x+2y) + f(x-2y) + 4f(x) - 3f(x+y) - 3f(x-y) - f(2y) + 2f(y)| \\ &\leq \sum_{n=0}^{\infty} \frac{1}{4^n} \Big| \phi(2^n(x+2y) + \phi(2^n(x-2y)) + \phi(2^n(x)) - 3\phi(2^n(x+y)) \\ &\quad - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + 2\phi(2^ny) \Big| \\ &\leq \sum_{n=k}^{\infty} \frac{1}{4^n} \Big| \phi(2n(x+2y) + \phi(2^n(x-2y)) + \phi(2^n(4x)) - 3\phi(2^n(x+y)) \\ &\quad - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + 2\phi(2^ny) \Big| \\ &\leq \sum_{n=k}^{\infty} \frac{1}{4^n} 15\mu = \frac{4\mu}{3} \times \frac{15}{4^k} = 5 \times 4^2\mu \left(|x|^2 + |y|^2 \right). \end{split}$$

Thus f satisfies (2.21) for all $x, y, z \in \mathbb{R}$ with $0 < |x|^2 + |y|^2 < \frac{1}{4}$.

We claim that the quadratic functional equation (1.4) is not stable for s = 2in Theorem 2.2. Suppose on the contrary that there exist a quadratic mapping $Q : \mathbb{R} \to \mathbb{R}$ and a constant $\gamma > 0$ satisfying (2.22). Since f is bounded and continuous for all $x \in \mathbb{R}$, Q is bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 2.2, Q must have the form $Q(x) = cx^2$ for any x in \mathbb{R} . Thus we obtain that

$$|f(x)| \le (\gamma + |c|) |x|^2.$$
(2.24)

But we can choose a positive integer m with $m\mu > \gamma + |c|$.

If $x \in \left(0, \frac{1}{2^{m-1}}\right)$, then $2^n x \in (0, 1)$ for all $n = 0, 1, \dots, m-1$. For this x, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{\phi(2^n x)}{4^n} \ge \sum_{n=0}^{m-1} \frac{\mu(2^n x)^2}{4^n} = m\mu x^2 > (\gamma + |c|) x^2$$

which contradicts (2.24). Therefore the quadratic functional equation (1.4) is not stable in sense of Ulam, Hyers and Rassias if s = 2, assumed in the inequality (2.13).

Now we are ready to prove our main theorem.

Orthogonal Stability of an Additive and Quadratic Functional Equation

Theorem 2.3. Let θ and s(s < 1) be nonnegative real numbers. Let $f : A \rightarrow B$ be a mapping satisfying

$$\|D f(x,y)\|_{B} \le \theta \{\|x\|_{A}^{s} + \|y\|_{A}^{s}\}$$
(2.25)

for all $x, y \in A$, with $x \perp y$. Then there exists a unique orthogonally additive mapping $L : A \to B$ and a unique orthogonally quadratic mapping $M : A \to B$ such that

$$\|f(y) - L(y) - M(y)\|_B \le \left[\frac{\theta}{2 - 2^s} + \frac{\theta}{4 - 2^s}\right] \|y\|_A^s$$
 (2.26)

for all $y \in A$. The function L(y) and M(y) are defined in (2.3) and (2.15) respectively for all $y \in A$.

Proof. Let
$$f_e(y) = \frac{f_q(y) + f_q(-y)}{2}$$
 for all $y \in A$, then $f_e(0) = 0$. Hence
 $\|Df_e(x, y)\| \le \frac{\theta}{2} \{ (||x||_A^s + ||y||_A^s) + (||-x||_A^s + ||-y||_A^s) \}$
 $\le \theta(||x||_A^s + ||y||_A^s).$
(2.27)

By Theorem 2.2, we have

$$\|f_e(y) - M(y)\|_B \le \frac{\theta}{4 - 2^s} \|y\|_A^s$$
 (2.28)

for all $y \in A$. Also, let $f_o(y) = \frac{f_a(y) - f_a(-y)}{2}$ for all $y \in A$, then $f_o(0) = 0$. Hence

$$\|Df_o(x,y)\| \le \frac{\theta}{2} \left\{ (||x||_A^s + ||y||_A^s) + (||-x||_A^s + ||-y||_A^s) \right\}$$

$$\le \theta (||x||_A^s + ||y||_A^s).$$
(2.29)

By Theorem 2.1, we have

$$\|f_o(y) - L(y)\|_B \le \frac{\theta}{2 - 2^s} \|y\|_A^s$$
 (2.30)

for all $y \in A$. Define

$$f(y) = f_e(y) + f_o(y)$$
 (2.31)

for all $y \in A$. From (2.28),(2.30) and (2.31), we arrive

$$\begin{split} \|f(y) - L(y) - M(y)\|_{B} &= \|f_{e}(y) + f_{o}(y) - L(y) - M(y)\|_{B} \\ &\leq \|f_{e}(y) - M(y)\|_{B} + \|f_{o}(y) - L(y)\|_{B} \\ &\leq \left[\frac{\theta}{2 - 2^{s}} + \frac{\theta}{4 - 2^{s}}\right] \|y\|_{A}^{s} \end{split}$$

for all $y \in A$. Hence the theorem is proved.

195

Example 2.3. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$\phi(x) = \begin{cases} \mu(x+x^2), & \text{if } |x| < 1\\ \mu, & \text{otherwise} \end{cases}$$

where $\mu > 0$ is a constant, and define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{n=0}^{\infty} \frac{(2^n + 1)}{(2^n)^2} \phi(2^n x) \qquad \text{for all} \quad x \in \mathbb{R}.$$

Then f satisfies the functional inequality

$$|f(x+2y) + f(x-2y) + 4f(x) - 3f(x+y) - 3f(x-y) - f(2y) + 2f(y)| \le 50\mu (|x|+|y|)$$
(2.32)

for all $x, y \in \mathbb{R}$. Then there do not exist a additive mapping $A : \mathbb{R} \to \mathbb{R}$ and $Q : \mathbb{R} \to \mathbb{R}$ and a constant $\gamma > 0$ such that

$$|f(x) - A(x) - Q(x)| \le \gamma |x + x^2| \qquad for \ all \quad x \in \mathbb{R}.$$
(2.33)

Proof. Now

$$|f(x)| \le \sum_{n=0}^{\infty} \frac{|2^n + 1|}{|2^n|^2} \phi(2^n x) = \frac{10}{3}\mu.$$

Therefore we see that f is bounded. We are going to prove that f satisfies (2.32).

If x = y = 0 then (2.32) is trivial. If $|x| + |y| \ge 1$ then the left hand side of (2.32) is less than 50μ . Now suppose that 0 < |x| + |y| < 1. Then there exists a positive integer k such that

$$\frac{1}{2^{k+1}} \le |x| + |y| < \frac{1}{2^k},\tag{2.34}$$

so that $2^{k-1}x < 1$, $2^{k-1}y < 1$, and consequently

$$2^{k-1}(x), 2^{k-1}(y), 2^{k-1}(x+y), 2^{k-1}(x-y), ,$$

$$2^{k-1}(x+2y), 2^{k-1}(x-2y), 2^{k-1}(2y) \in (-1,1).$$

Therefore for each $n = 0, 1, \ldots, k - 1$, we have

$$2^{n}(x), 2^{n}(y), 2^{n}(x+y), 2^{n}(x-y)$$

$$2^{n}(x+2y), 2^{n}(x-2y), 2^{n}(2y) \in (-1,1)$$

and

$$\begin{split} \phi(2^n(x+2y) + \phi(2^n(x-2y)) + 4\phi(2^n(x)) - 3\phi(2^n(x+y)) - 3\phi(2^n(x-y)) \\ &- \phi(2^n(2y)) + \phi(2^ny) = 0 \end{split}$$

for n = 0, 1, ..., k - 1. From the definition of f and (2.34), we obtain that

$$\begin{split} |f(x+2y) + f(x-2y) + 4f(x) - 3f(x+y) - 3f(x-y) - f(2y) + 2f(y) \\ &\leq \sum_{n=0}^{\infty} \frac{2^n + 1}{4^n} \Big| \phi(2^n(x+2y) + \phi(2^n(x-2y)) + \phi(2^n(x)) - 3\phi(2^n(x+y)) \\ &\quad - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + 2\phi(2^ny) \Big| \\ &\leq \sum_{n=k}^{\infty} \frac{2^n + 1}{4^n} \Big| \phi(2n(x+2y) + \phi(2^n(x-2y)) + \phi(2^n(4x)) - 3\phi(2^n(x+y)) \\ &\quad - 3\phi(2^n(x-y)) - \phi(2^n(2y)) + 2\phi(2^ny) \Big| \\ &\leq \sum_{n=k}^{\infty} \frac{2^n + 1}{4^n} 15\mu = \frac{10}{3}\mu \times \frac{15}{2^k} = 50\mu \left(|x| + |y| \right). \end{split}$$

Thus f satisfies (2.32) for all $x, y, z \in \mathbb{R}$ with 0 < |x| + |y| < 1.

We claim that an additive-quadratic functional equation (1.4) is not stable for s = 1 in Theorem 2.3. Suppose on the contrary that there exist an additive mapping $A : \mathbb{R} \to \mathbb{R}$ and $Q : \mathbb{R} \to \mathbb{R}$ and a constant $\gamma > 0$ satisfying (2.10). Since f is bounded and continuous for all $x \in \mathbb{R}$, A and Q are bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 2.3, A must have the form A(x) = cx and $Q(x) = cx^2$ for any xin \mathbb{R} . Thus we obtain that

$$|f(x)| \le (\gamma + |c|) |x + x^2|. \tag{2.35}$$

But we can choose a positive integer m with $m\mu > \gamma + |c|$.

If $x \in \left(0, \frac{1}{2^{m-1}}\right)$, then $2^n x \in (0, 1)$ for all $n = 0, 1, \dots, m-1$. For this x, we get

$$f(x) = \sum_{n=0}^{\infty} \frac{(2^n + 1)}{(2^n)^2} \phi(2^n x) \ge \sum_{n=0}^{m-1} \frac{\mu(2^n + 1)}{(2^n)^2} (x + x^2) = m\mu(x + x^2) > (\gamma + |c|) (x + x^2)$$

which contradicts (2.35). Therefore the additive functional equation (1.4) is not stable in sense of Ulam, Hyers and Rassias if s = 1, assumed in the inequality (2.25).

References

 T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

- [2] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
- [3] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ Hamburg., 62 (1992), 59-64.
- [4] F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) 54, (1986),63-71.
- [5] Fridoum Moradlou, Hamid Vaezi, G. Zamani Eskandani, Hyers-Ulam-Rassiass Stability of a quadratic and additive functional equation in quasi- Banach spaces, Mediterr. J. Math. 6, (2009), 233-248.
- [6] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
- [7] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43, (1995), 143-151.
- [8] S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. 58, 1995, 427-436.
- [9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941) 222-224.
- [10] M.S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations Appl. 11, No. 11, (2005), 999-1004.
- [11] M.S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. 318, No. 1, (2006), 211-223.
- [12] C. Park, On the stability of the orthogonally quartic functional equations, Bull. Iranian Math. Soc. 31 (1), (2005), 63-70.
- [13] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982) 126-130.
- [14] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108 (1984), 445-446.
- [15] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
- [16] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251, (2000), 264-284.

- [17] J. Rätz, On orthogonally additive mappings, Aequationes Math. 28, (1985), 35-49.
- [18] K. Ravi and M. Arunkumar, On the Ulam- Gavruta- Rassias stability of the orthogonally Euler- Lagrange type functional equation, IJAMAS, 7, No. Fe 07, (2007), 143-156.
- [19] K. Ravi, M. Arunkumar and J.M. Rassias, Ulam stability for the orthogonally general Euler- Lagrange type functional equation, IJMS, 3, No.8, (2008), 36-47.
- [20] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53, (1983), 113-129.
- [21] S.M. Ulam, Problems in Modern Mathematics, Rend. Chap.VI, Wiley, New York, 1960.
- [22] F. Vajzovic, Uber das Funktional H mit der Eigenschaft: $(x, y) = 0 \Rightarrow$ H(x + y) + H(x - y) = 2H(x) + 2H(y), Glasnik Mat. Ser. III 2 (22), (1967), 73-81.