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Abstract

This paper investigates the effects of thermal radiation on transient

MHD free convection flow over a vertical surface embedded in a porous

medium with periodic temperature. Analytical solutions are obtained

for the governing coupled dimensionless partial differential equations of

velocity and temperature. The results are discussed with the effects of

various dimensionless parameters such as R, radiation; M , magnetic;

χ, porosity and Ωτ , phase angle for the Prandtl number, Pr = 0.71

which represents air at 20o C and of 1 atmospheric pressure. The re-

sults showed sensitive dependence on the parameters. Also, quantitative

discussions are presented for the Skin friction and Heat flux.
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1 Introduction

Natural or free convection flows which are caused by buoyancy or reduced
gravity [24, 20] are due to spatial temperature variations that give rise to
corresponding variations in the density of fluids (both gases and liquids). It
is known that buoyancy induced flow within fluid-saturated porous media is
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encountered in a wide range of thermal engineering applications such as in
geothermal systems, oil extraction, ground water pollution, thermal insula-
tion, heat exchangers, storage of nuclear wastes, packed bed catalytic reactors,
atmospheric and oceanic circulation. Comprehensive discussions and or re-
views are found in literature [13, 6, 7, 21].

The study of flow for an electrically conducting fluid has many applica-
tions in engineering problems such as magnetohydrodynamics (MHD) genera-
tors, plasma studies, nuclear reactors, geothermal energy extraction, and the
boundary layer control in the field of aerodynamics [4]. Recent advances and
applications of MHD based microfluidic devices are extensively reviewed in
the paper by Qian and Bau [23]. Some of these devices include MHD-based
micro-pumps used for producing a mechanical force which sets the fluid into
motion; MHD-based microfluidic networks used for transporting fluids and
reagents across networks of conduits, where the flow control typically requires
the use of pumps and valves; MHD-based stirrers used for altering the flow
direction to enhance dispersion, and takes advantage of the ease with which
one can induce secondary flows; MHD-based liquid chromatography used for
the separation, purification, and detection of various biochemicals. Although,
some of these devices are fabricated with low temperature co-fired ceramic
tapes [27] (e.g. MHD-based microfluidic networks), significant heat genera-
tion or radiative heat transfer occurs due to the induction of eddy currents
in most of these engineering applications [17, 25, 26, 10]. Other examples
are, high temperature phenomena or high-power radiation sources commonly
encountered in solar physics-particularly in astrophysical studies [3], in com-
bustion applications such as fires, furnaces, IC engines, in nuclear reactions
such as in the sun or in nuclear explosions [13], in compressors in ships and
in gas flares from petrochemical industry [1, 22]. For air, the contribution
of radiation becomes significant when the wall temperature is in the range
6000 − 10, 000K. This situation is encountered for re-entry space vehicles.
Korycki [16] described radiative heat transfer as an important fundamental
phenomena existing in practical engineering such as those found in solar radi-
ation in buildings, foundry engineering and solidification processes, die forg-
ing, chemical engineering, composite structures applied in industry. Another
important feature that usually occurs in electronic devices over a period of
continuous usage is the hotness of the surface. This means that a poor design
could trap heat generated by the source of the power supply and could inca-
pacitate the efficiency and durability of the systems. Therefore, the efficiency
in the functioning of these systems is enhanced when they are subjected to ex-
ternal cooling devices like air conditioners, electric fans, and some others (e.g.
laptop computers) inbuilt storage devices that store electrical energy for them
to function for sometime even without external source of power supply [12].
The IC components of these electronic systems are thermally coupled to the
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surrounding via convection and radiation. Radiation has a significant role in
heat transfer in low-flow applications where there exists a larger temperature
gradient between the components and the surrounding.

A distinguishing feature of radiative heat transfer is that it is associated
with the radiation heat flux, which is proportional to the differences of individ-
ual absolute temperatures of the bodies each raised to the fourth power. This
is a primary difficulty in modelling radiation heat transfer problems in that
the radiation heat flux involves an integro-differential equation in the govern-
ing energy equation. Interestingly, computational fluid dynamics techniques
(e.g. finite difference methods) are being used to study complex problems in
fluid flow and heat transfer [8] because they are not easily amenable to analytic
and algebraic techniques due to the nonlinearities involved in the governing
equations. However, it is known that linear differential approximation of the
radiation heat flux is available [8, 9] and is widely applied [15, 18, 19] in prof-
fering analytical solutions. Such exact results serve as toolkits for numerical
experimentations. Therefore, the use of such linear approximation can surmise
the behaviour of solutions of the nonlinear system, at least near the equilibrium
point.

Chaudhary and Jain [5] presented an analytical study of magnetohydrody-
namic transient convection flow past a vertical surface embedded in a porous
medium with an oscillating temperature. Examples abound in literature,
where many industrial and technological systems are subjected to periodic
heating and cooling, such as during the combustion cycle, the valves of an in-
ternal combustion engine experience direct heating from the combusting gases,
cooling from the intake air and periods of thermal contact with the valve seat
[14], and many other examples like heat conduction in sliding solids, regener-
ative heat exchangers, solar heating systems and heat conduction between the
workpiece and the die in repetitive forming and rolling processes [11]. Most of
such applications involve conditions of high temperature phenomena or high-
power radiation sources. It is the objective of this paper, therefore, to advance
analytical solutions to the problem of the effects of thermal radiation on tran-
sient MHD free convection flow over a vertical surface embedded in a porous
medium with periodic boundary temperature. The analytical solutions give a
wider applicability in understanding the basic physics of any problem, which
are particularly important in industrial and technological fields.

In section 2, the mathematical formulation of the problem and dimension-
less forms of the governing equations are established. Solution method to
these equations for the flow variables are briefly examined in section 3. The
results of the previous sections are discussed in section 4. In section 5, general
concluding remarks of the results of the previous sections are given.
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2 Mathematical Formulation

Following the arguments presented by Chaudhary and Jain [5], an unsteady
free convection flow of an incompressible and electrically conducting viscous
fluid along an infinite vertical plate that is embedded in a porous medium is
considered. The x-axis is taken on the infinite plate and parallel to the free
stream velocity and y-axis normal to it. Initially, the plate and the fluid are at
the same temperature T

∞
. At time t > 0, the plate temperature is raised to

Tw and a periodic temperature is assumed to be superimposed on this mean
constant temperature of the plate. A magnetic field of uniform strength B0

is applied in the transverse direction of the plate and the induced magnetic
field is neglected. The flow is in the direction of the plate such that maximum
mean velocity Um is only attainable in between the wall of the plate and far
away from the plate. This implies that the flow is zero respectively at the wall
of the plate and far away from the plate (see the physical model Figure 1).
With the aid of the Boussinesq approximation, the governing equations of the
flow for an optically thin medium are then reduced to the following system of
equations:

∂u

∂t
= ν

∂2u

∂y2
+ gβ

(

T − T
∞

)

− σcB
2

0

ρ
u− ν

k
u, (1a)

∂T

∂t
= αd

∂2T

∂y2
− 1

ρcp

∂q

∂y
, (1b)

∂q

∂y
= 4 σ α

(

T 4 − T 4

∞

)

, (1c)

where u, t, y, ρ, αd, B0, k, ν, σc, α and σ represents flow, time, transverse coor-
dinate, fluid density, thermal diffusivity, applied magnetic field strength, per-
meability of porous medium, kinematic viscosity, electric conductivity of the
fluid, absorption coefficient or penetration depth and the Stefan-Boltzmann
constant. g is the acceleration due to gravity.

The initial and boundary conditions associated to equations (1) are

u = 0, T = T
∞

for all y , t ≤ 0, (2a)

u = 0 , T = Tw + ξ(Tw − T
∞
) cosω t at y = 0 , t > 0, (2b)

u → 0 , T → T
∞

as y → ∞ , t > 0. (2c)

Here ξ represents amplitude and ω, frequency of oscillation.

The radiative flux equation (1c) is highly nonlinear in T . However, when
it is assumed that the temperature differences within the flow are sufficiently
small, then the linear differential approximation of Cogley-Vincenti-Gilles equi-
librium model [9] of the radiation flux becomes significant. In this case T 4 can



Effects of Thermal Radiation on Transient MHD 249

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y=0                                                          y       

u=0, T=Tw +ξ(Tw - T∞)cosωt                     u  0,T ∞T
∞

V
elocity P

rofile

Te
m

p
e
ra

tu
re

 P
ro

fileP
la

te

B0

x

y

Figure 1: Physical Model.

be expressed as a linear function of temperature in Taylor series about T
∞

neglecting higher order terms. Thus,

T 4 ∼= 4T 3

∞
T − 3T 4

∞
. (3)

Therefore, equation (1c) is now written as

∂q

∂y
= 16ασ T 3

∞

(

T − T
∞

)

. (4)

In order to facilitate the analysis, the following dimensionless variables and
parameters are employed:

Y =
yUm

ν
, U =

u

Um

, τ =
tU2

m

ν
, Θ =

T

T
∞

, Θw =
Tw

T
∞

, Ω =
ων

U2
m

,

M =
νσcB

2

0

ρU2
m

, Gr =
νβgT

∞

U2
m

, χ =
kU2

m

ν
, P r =

ν

αd

, R =
4νασT 3

∞

ρcpU2
m

. (5)
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Therefore, the dimensionless governing equations are

∂2U

∂Y 2
− ∂U

∂τ
+Gr (Θ− 1)− (M +

1

χ
)U = 0, (6a)

1

Pr

∂2Θ

∂Y 2
− ∂Θ

∂τ
− R (Θ− 1) = 0, (6b)

with the initial and boundary conditions

U = 0 ,Θ = 1 for all Y , τ ≤ 0, (7a)

U = 0 ,Θ = Θw + ξ(Θw − 1) cosΩτ at Y = 0 , τ > 0, (7b)

U → 0 ,Θ → 1 as Y → ∞ , τ > 0. (7c)

The parameters entering the problem areM , magnetic parameter; Gr, Grashof
number; χ, porosity parameter; Pr, Prandtl number; Ω, frequency of oscilla-
tion, and R, radiation parameter. The mathematical statement of the problem
embodies the solution of equations (6) subject to equations (7).

3 Main Analytical Results

The problem posed (6) represents a system of coupled and linear partial differ-
ential equations (PDEs). Exact results of equations (6) subject to equations
(7) are herein deduced by using Laplace Transform technique [2]. The energy
equation (6b) is uncoupled from the momentum equation (6a). One can ad-
vance solution for the temperature variable Θ(Y, τ) whereupon the solution of
U(Y, τ) is then derived. Therefore, the solution for the velocity and tempera-
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ture are respectively given as follows:

U(Y, τ) =
a1
2a4

[
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(

√

M +
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χ
Y
)
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)
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2
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χ
)
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√
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+ 1, (8b)

where

a1 = Gr(Θw − 1), a2 = Gr ξ(Θw − 1), a3 = Pr − 1, a4 = 4PrR−M − 1

χ
, I =

√
−1,

and erfc{·} being the complementary error function.

4 Discussion of Results

Equations (8a) and (8b) make it possible to investigate quantitatively the
manifestation of the effects of the various parameters entering the problem,
and these are M , magnetic parameter; Gr, Grashof number or free convec-
tion parameter; χ, porosity parameter; Pr, Prandtl number; Ω, frequency of
oscillation, and R, radiation parameter.

For the purpose of physical insights into the problem, the value of ξ is
chosen as 1.0, the magnetic field parameter M chosen as 2.0, 5.0, 10.0, 100.0
and the wall temperature Θw as 2.0. The Prandtl number, Pr is set equal to a
fixed value of 0.71 throughout the investigations, which physically corresponds
to an astrophysical body (air) at 20oC. Air is chosen because it is weakly
electrically conducting under certain circumstances. For the free convection
parameter, the value of Gr = 1.0 is considered. Typical values of the radiation
parameter, R; time, τ ; porosity parameter, χ and frequency parameter, Ω used
are indicated on the graphs. The maximum value of Y was chosen as 3 after
some preliminary investigations so that, the last two boundary conditions (7c)
are satisfied (i. e. U → 0 ,Θ → 1 as Y → ∞). The appearance of I =

√
−1 in
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the solutions (8a) and (8b) is indicative that the solutions are complex. Only
the real parts of these solutions are herein graphed for discussions.

Figure 2 is due to the velocity solution for various flow parameters. It is
generally observed from Figure 2a, b, c, d that the velocity is both zero at the
plate and the edge of the boundary layer. Clearly, the flow satisfactorily obey
the initial and boundary conditions. The velocity increases steadily, reaches
a maximum and gradually decreases to catch up with the initial state in the
boundary layer. In general, the nature of the flow is of parabolic type. We
note from Figure 2 that although the boundary layer thickness is δU ≈ 3,
the maximum velocity occurs at Y ≈ 0.5. This implies that high velocity
gradients are observed only near the wall. In Figure 2a, b, c the maximum
velocity decreases with increasing radiation, time, magnetic strength. It is
noteworthy that the maximum velocity becomes increasingly pronounced as
these parameters decreases, indicating that the flow responds more and more
sensitively to these parameters within a narrow interval. On the other hand, in
Figure 2d the maximum velocity increases with increasing porosity parameter,
indicating that the flow responds more sensitively to χ within a wide interval.
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Figure 2: Velocity profiles for variations in the parameters: (a) Radiation, R;
(b) Time, τ ; (c) Magnetic, M ; (d) Porosity, χ.
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In particular, Figure 2c depict the influence of the magnetic parameter on
the velocity. It is observed that increase in the magnetic parameter reduces
the magnitude of the velocity. For sufficiently high M the velocity in the entire
flow is virtually constant, and thin boundary layers exist only near the wall.
For example, for M = 100 the velocity becomes constant half the entire cross
section, and only near the wall is the so-called Magnetic layer with high velocity
gradient observed. Here the maximum velocity occurs at Y ≈ 0.0039. The
application of the transverse magnetic field plays the role of a resistive type
force (Lorentz force) similar to drag force (that acts in the opposite direction of
the fluid motion), which tends to resist the flow thereby reducing its velocity.
On the other hand, Figure 2d which corresponds to the transient velocity due
to increasing χ, physically indicates that the presence of a porous medium
increases the resistance to flow and hence when χ = ∞, the effect of porosity
vanishes, which implies that the velocity would become greater in the flow
field.

Figure 3a, b and c demonstrates the temperature profiles for different values
of radiation parameter, time and phase variation, respectively. The magnitude
of temperature is maximum at the plate and then decays to zero asymptoti-
cally. It is observed from the Figure 3a that an increase in radiation parameter
reduces the thermal boundary layer thickness. In Figure 3b it is evident that
an increase in time makes the temperature to fall and gives reduction in the
thermal boundary layer thickness. Also, it is depicted in Figure 3c that in-
creasing phase angle makes the temperature distribution to fall.

Figure 4a and b, respectively, depicts the periodic temperature distribution
with variations of Ω at the surface Y = 0 and at a distance Y = 1 from the
heated surface. It is observed that at the surface Y = 0, the temperature
reached a maximum value of 3 and gradually reduces to catch up with the
initial temperature, whereas at the distance Y = 1 from the heated surface,
the temperature increases steadily from the initial temperature, attains a max-
imum and gradually reduces to the initial temperature. The results showed
that for Ω = π/6, the temperature distribution used minimal times τ = 2 and
τ = 2.2 to get to the initial temperature, while for Ω = π/2, the tempera-
ture distribution used maximal times τ = 5.8 and 5.85 to get to the initial
temperature, respectively for Y=0 and Y=1.

Knowing the velocity field, from the practical point of view, it is important
to know the effect of the radiation parameter on the skin-friction. The skin-
friction at the surface of the plate can be obtained easily from the following
non-dimensional relation

τs =
∂U

∂Y
|Y=0 . (9)

Table 1 shows values of the skin-friction for variations of radiation and time. It
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Figure 3: Temperature profiles as a function of Y for variations in the param-
eters: (a) Radiation, R; (b) Time, τ ; (c) Phase Angle, Ωτ .
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is seen that for both increasing variations of radiation parameter and time, the
skin-friction reduces, except for the value of R = 5.0 at τ = 1.2, which appears
erratic. Generally, the radiation parameter and time shift the fluid gradually
away from the plate, thereby reducing the shear on the plate. Of course, this
is observed from the Figure 2a, b with time playing a more dominant role than
the radiation parameter.

Table 1: Skin friction for variations of Radiation and time: Θw = 2, Ω = π/2,
ξ = 1, χ = 0.5, Pr = 0.71, M = 5, Gr = 1.

R τ = 0.8 τ = 1.2 τ = 1.6
Skin Friction Skin Friction Skin Friction

0.0 0.448120 0.303468 0.150877
0.5 0.372543 0.226238 0.088116
1.0 0.328549 0.191651 0.068358
1.5 0.299510 0.171517 0.058640
2.0 0.278496 0.157807 0.052587
2.5 0.262282 0.147577 0.048315
3.0 0.249201 0.139495 0.045076
3.5 0.238305 0.132904 0.040028
4.0 0.228900 0.101047 −0.125862
4.5 0.222186 −0.038309 −0.122198
5.0 0.157914 2999.962321 −0.118900

Knowing the temperature distribution, we can calculate the rate of heat
flux, qw , between the fluid and the wall of the plate. This is calculated from

qw =
∂Θ

∂Y
|Y=0, (10)

by virtue of equations (5). Table 2 accounts for effects of variations of radiation
parameter with respect to time on the heat flux. It is observed that for a
given time, the heat flux decreases with increasing radiation, and for a given
radiation, the heat flux increases with increasing time. The negative values of
the wall temperature gradient, are indicative of the physical fact that the heat
flows from the plate surface to the ambient fluid.

5 Concluding remarks

The problem of the effect of thermal radiation on transient MHD free convec-
tion flow over a vertical surface embedded in a porous medium with periodic
temperature has been examined. Analytical solutions of the flow variables are
presented. Some physical parameters were identified entering the problem.
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Table 2: Heat flux for variations of Radiation and time: Θw = 2, Ω = π/2,
ξ = 1, Pr = 0.71.

R τ = 0.8 τ = 1.2 τ = 1.6
Heat Flux Heat Flux Heat Flux

0.0 −0.133407 0.464618 0.641843
0.5 −1.201559 −0.391211 0.090880
1.0 −1.911244 −0.846424 −0.105841
1.5 −2.453020 −1.166046 −0.222694
2.0 −2.901896 −1.421827 −0.309106
2.5 −3.292097 −1.640235 −0.379658
3.0 −3.641514 −1.833686 −0.440377
3.5 −3.960615 −2.009037 −0.494330
4.0 −4.256080 −2.170519 −0.543295
4.5 −4.532461 −2.320945 −0.588402
5.0 −4.793021 −2.462298 −0.630419

It is generally observed that the flow variables are significantly influenced by
these parameters.

The primary findings are summarized as follows:

• The velocity increases and attains its maximum value in the vicinity of
the plate and then fades away to zero as Y → ∞.

• The temperature of the fluid decreases with increasing radiation. While
increasing radiation signifies reduction in the maximum velocity, for the
temperature it decreases the thermal boundary layer thickness, physi-
cally implying higher heat transfer to the plate.

• It is observed that increasing magnetic parameter reduces the magnitude
of the velocity. For sufficiently high M the velocity in the entire flow is
virtually constant, and only near the wall is the so-called Magnetic layer
with high velocity gradient or thin boundary layer observed.

• The velocity increases with increasing porosity parameter. Physically,
this implies that the presence of a porous medium increases the resistance
to flow, and greater velocity is experienced in the flow field when the
porosity parameter vanishes.

• The maximum velocity decreases with an increase in phase angle.

• The temperature decreases with an increase in phase angle.

• Increase in radiation parameter decreases the skin-friction and heat flux.
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It is hoped that the present investigation may serve as toolkits for the
verification of the efficiency and accuracy of numerical implementations. It is
noted here that the efficient computation of thermal radiation effect is essential
for the design and analysis of industrial thermal systems, such as furnaces,
boilers, burners, nuclear power plants, combustion products (such as H2O and
CO2) and gas turbines. The results of the problem are also of great interest in
geophysics in the study of interaction of the geomagnetic field with the fluid
in the geothermal region.
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