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Abstract

In this paper we establish some fixed point theorems in cone rectangu-
lar metric spaces setting. Our results improve and extend the recent known
results.
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1 Introduction

Jungck [14] proved a common fixed point theorem for commuting mappings as
generalizing the Banach’s fixed point theorem. The concept of the commutativ-
ity has generalized in several ways. For this Sessa [26] introduced the concept of
weakly commuting mappings, Jungck [15] extend this concept to compatible maps.
In 1998, Jungck and Rhoades [16] introduced the notion of weak compatibility and
showed that compatible maps are weakly compatible but the converse need not to
be true for example see [23].

Later Huang and Zhang [11] introduced the notion of cone metric spaces. They
replacing the set of real numbers by an ordered Banach space. They presented the
notion of convergence of sequences in cone metric spaces and proved some fixed
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point theorems. After that, many authors established many fixed point theorems of
contractive type mappings over acone metric spaces. For some fixed point theorems
in cone metric spaces we refer the reader to [1, 2], [4]-[8], [11]-[13], [17]-[19],
[21, 22, 24, 25], [27]-[30].

Recently, Rezapour and Hamlbarani [24] proved that there are no normal cones
with normal constant K < 1 and that for each h > 1 there are cones with normal con-
stant K > h. Also, omitting the assumption of normality, they obtain generalizations
of some results of [11].

Further Beiranvand, Moradi, Omid and Pazandeh [9] introduced the classes of
T-contractive mappings, which are depending on another function. Moradi in [20]
introduced the T-Kannan contractive mapping. Morales and Rojas [21], [22] have
extended the concept of T-contraction mappings to cone metric space by proving
fixed point theorems for T-Kannan, T-Chatterjea T-Zamfirescu, T-weakly contrac-
tion mappings. Sumitra, Rhymend Uthariargj and Hemavathy [29] proved a fixed
point theorem in the setting of cone metric space for T-Hardy-Rogers type contrac-
tion condition.

In 2000 Branciari [10] introduced aclass of generalized metric spaces by replac-
ing triangular inequality by similar ones which involve four or more points instead
of three and improved Banach contraction mapping principle.

Recently, Azam et.al [8] introduced the notion of cone rectangular metric space
and proved Banach contraction mapping principle in a cone rectangular metric
Space setting.

The paper is a continuation of the study of some fixed point theorems in cone
rectangular metric space setting. Our resultsimprove and extend the resultsin [8].

2 Preliminary Notes

In the present article E stands for a real Banach space. Now, we present some
necessary definitions and results, which will be needed in the sequel.

Definition 2.1. [11] Let P beasubset of E, then Piscalled a coneif thefollowing
conditions are satisfied:

(i) Pisclosed, nonempty, and P = {6},
(i) a,be R a,b>0,andx,y € Pimply that ax+ by € P,
(iii) PN(—P)={6}.

For agiven cone P C E, we define a partial ordering < on E with respect to P
by for X,y € E, we say that x <y if and only if y—x € P. We shall writex < y if
x<yandXx#Yy, aso, wewritex < yif y—x € intP, where intP denotes the interior
of P.
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Definition 2.2. [11] Let X be a nonempty set. Suppose that themap d : X2 — E
satisfies

(i) d(x,y) >0, ¥x,ye Xandd(x,y) =0ifandonlyif x=y,
(i) d(x,y) =d(y,x),
(iii) d(x,y) <d(x,z)+d(zy) for al x,y,z€ X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

The cone P iscalled normal if thereisaconstant K > 0 such that for al x,y € E
6<x<y implies |x|| <K]y|.

The least positive number K satisfying the above inequality is called the normal
constant of P.

Proposition 2.3. [24] Let (X,d) be a cone metric space with cone P not neces-
sary to be normal. Then for a,c,u,v,w € E, we have

(i) fa<haandhe [0,1),thena= 0.
(if) If 8 <u< cforeach 6 <« c, thenu=0.
(i) fu<vandv<w, thenu < w.

Example 2.4. [11] Lee E=R? P={(x,y) cE:x,y>0} c R%, X =R, and
d : X2 — E defined by
d(X,y) = (|X_y|7a|x_y|>7

where o > Oisa constant. Then (X, d) isa cone metric space.
Definition 2.5. [8] Let X be a nonempty set and the mapping d : X2 — E satisfies:
(i) d(x,y) > 0, Vx,yc X andd(x,y) = 8 ifand onlyif x =y,
(i) d(x,y) =d(y,x), for all x,y € X,

(iii) d(x,y) <d(x,z) +d(zw)+d(wy) for all x,y € X and for all distinct points
z,w e X\ {x,y}, (rectangular inequality).

Then d is called a cone rectangular metric and (X, d) is called a cone rectangular
metric space.

Definition 2.6. [8] Let (X,d) be a cone rectangular metric space and {x,} bea
sequencein (X,d). Then
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(i) {xn} converges to x € X whenever for every c € E with 6 < c, thereisa
natural number ng such that d(x,, x) < ¢ for all n > ng, we denote this by

limxp,=X or X;— X,
n—oo

(i) {xn} isa Cauchy sequence whenever for every c € E with 6 < c, thereisa
natural number ng such that d(x,, X+m) < ¢ for all n > ng,

(iii) (X,d) is called a complete cone rectangular metric space if every Cauchy
sequencein (X, d) isconvergent in (X, d).

Notice that any cone metric space is a cone rectangular metric space but the
converseisnot truein general.

Example2.7. L E=R? P={(x,y) €E:x,y>0}, X =R, d: X? = E such
that

(070)7 ifX:y,
d(x,y) =< (3a,3), ifxandyarein {12}, x#Yy,
(a,1), ifxandycannotbothatatimein{l,2}, x#Yy,

where a > 0 is a constant. Then (X,d) is a cone rectangular metric space but it
is not a cone metric space since we have d(1,2) = (3a,3) > d(1,3) +d(3,2) =
(2a,2).

Definition 2.8. Let P be a cone defined as above and let ® be the set of non-
decreasing continuous functions ¢ : P — P satisfying:

(i) 6<¢(t)<tforalteP\ {6},
(ii) theseries S ¢"(t) convergefor allt € P\ {0}
n>0
From (i), we have ¢(8) = 6, and from (ii), we have Iing)qb”(t) =0 foralte
n—
P\{6}.
Definition 2.9. Let T and Sbe self maps of a nonempty set X. If w=Tx = S for

some x € X, then x is called a coincidence point of T and Sand w is called a point
of coincidenceof T and S.

Definition 2.10. [16] Two self mappings T and S are said to be weakly com-
patible if they commute at their coincidence points, that is, Tx = Sx implies that
TSX=STx.

Lemma2.11. [1] Let T and Sbe weakly compatible self mappings of nonempty
set X. If T and S have a unique point of coincidence w = Tx = S, then w is the
unique common fixed point of T and S,
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3 Main Results

We start with the following theorem.

Theorem 3.1. Let (X,d) be a complete cone rectangular metric space and let
the mapping T : X — X satisfy the following:

d(Tx, Ty) < ¢(d(x,y)) (1)
for all x,y € X, where ¢ € ®. Then T has a unique fixed point in X.

Proof. Let Xp be an arbitrary point in X. Define a sequence (x,) in X such that
Xnr1 = TXp, foraln=0,1,2,.... Weassumethat x, # X1 for al n € N. Then, by
(1) we have

d(TXn—1, TXn)
(d(Xn-1,%1)) = ¢ (d(TXn-2, TXn-1))
2(d(Xn-2,%1-1))

d(Xn, Xn+l>

¢
¢

VARVAN

< ¢"(d(x0,%1))-
Similarly fork=1,2,3,..., we get
d(Xn, Xn12) < ¢"(d(X0,%2k)), @)

d(%n, Xny2k1) < ¢"(d (X0, X2k41))- ©)
By using rectangular inequality and (2), we have

d (X0, %) < d(Xo,X1) +d(Xq,%2) + d(X2,Xs)
< d(x0,x1) + ¢ (d(x0,%1)) + $%(d(¥0, %2))-
d(X0,Xe) < d(Xo,X1) +d(X1,%2) + d(X2,X3) + d(X3,Xa) + d(Xa, Xs)
3
< 3 9(d00,) + 9%(d00,%2)).

By indiction we havefor each k= 2,3,4,...
2k-3

d0o.x2) < 3 9'(d(x0,x1)) + % (d(x0,%2))- @

Also, by using rectangular inequality and (3) we have

d(Xo,Xs) < d(Xo,X1) +d(X1,X2) 4+ d(X2, X3) + d(X3,X4) +d(X4,Xs5)

4
< 3 #'(d0a.x).
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By indiction we havefor eachk=0,1,2,3,4,...
2%
d(X0, Xok+1) < %4"(0'()(0,)(1))-
i=
Using (2) and (4) we havefor eachk =2,3,4,...,

d(Xn, Xns2k) < ¢"(d(Xo,X2x))
2k—3

< 9" ; 9'(d(x0,x1)) + % 2(d(x0,%2)))

2k-3

<9"(3 9'(dlxoxw) + dxo.x2)

+022(d(x0,x1) +d (X0, X2)))
2k—2

<473 #'(dbo ) + 00 %)
< ¢“<ii¢i<d<xo,xl> +d(%0,%)))
Similarly, using (3) and (5) we have for eachk = 0,1,2,3.4, ..
d(Xn, Xn+2k+1) < @"(d(X0, Xok+1))
< ¢“<<ii¢‘<d<m,xl>>>
< ¢“<2¢i<d<m,xl> +d(%0.%)))
< ¢“<ii¢i<d<m,xl> +d(%.%)))
Hence, for each m,

Al Yasm) < 875 #'(d00,52)+ d0030)).

(5)

(6)

Since i Eocpi (d(x0,x1) +d(x0,%2)) converge, where d(xo,X1) +d(Xo,%2) € P\ {6},

and P isclosed, then Eodﬂ(d(xo,xl) +d(xo,%2)) € P\ {8}. Hence

00

¢n(%¢i(d(X0,X1) +d(x0,%2))) =+ 6 asn— oo,
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Hence, for given ¢ >> 6 thereisanatural number ng € N such that
¢WZf%meo+dwmm»%<c ¥n > no, (7)
i=

Thusfrom (6) and (7), we have
d(Xn,Xner) < C vn > Np.

Then (x,) is a Cauchy sequence in X. Since X is a complete, there exists a point
g in X such that r!|_>m Xn = rI]|_>m TX,_1 = 0. We prove that Tq = g. Givenc > 6 we
choose a natural numbers kq, ko such that

C C
d(g,%n) < 3 Vn>kg,  d(Xnp1,%n) < 3 vn > k.

By rectangular inequality we have

d(Tq,q) <d(Tqg,Txn) +d(TXn, TX—1) +d(TXn—1,Q)
< ¢(d(0,%n)) +d(Xn+1,%0) +d(Xn, Q)
< d(Q,%n) +d(Xn+1,%n) +d(Xn, Q)

Catiti=c
37373 °

for all n > k where k = max{ky,ko}. Since cisarbitrary we have
d(Tq,0) < % vYme N.
Since & — 8 asm— o, we conclude
%—d(Tq,q) — —d(Tg,q) a m-— co.
Since P is closed, —d(Tq,q) € P. Hence d(Tq,q) € PN —P. Then d(Tq,q) = 6.
Therefore Tq = q. Hence q isafixed point of T. Now, we prove the uniqueness of

the fixed point. Let p be another fixed point of T, that isp = T p, then

d(g,p) =d(Tq,Tp) < ¢(d(q,p)) < d(q, p).
Henceq = p. O

Corollary 3.2. Let (X,d) be a complete cone rectangular metric space, and let
the mapping T : X — X satisfy the following:

d(T™ T™y) < (d(x.y)) (8)

for all x,y € X, where ¢ € ®. Then T has a unique fixed point in X.
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Proof. From Theorem (3.1), we conclude that T™ has a unique fixed point say q.
Hence
Tq=T(T"a) =T™"*q=T"(Tq).

Then Tqisalso afixed point to T™. By uniqueness of q, we have Tq = q. O

Corollary 3.3. (Theorem 3[8]) Let (X,d) be a complete cone rectangular metric
space, and let the mapping T : X — X satisfy the following:

d(Tx,Ty) < Ad(x,y) (9)
for all x,y € X, where A € [0,1). Then T hasa unique fixed point in X.

Proof. Define¢ : P— Pby ¢(t) = At. Thenitisclear that ¢ satisfiesthe conditions
in definition (2.8). Hence the result follows from Theorem (3.1). O

Theorem 3.4. Let (X,d) be a cone rectangular metric space, and let the map-
pingsS, T : X — X satisfy the following:

d(Tx, Ty) < ¢(d(SX, &) (10)

for al x,y € X, where ¢ € d. Suppose that T(X) C §(X), and S(X) or T(X) is
a complete subspace of X, then the mappings Sand T have a unigue coincidence
point in X. Moreover, if Sand T are weakly compatiblethen Sand T have a unique
common fixed point in X.

Proof. Let Xp be an arbitrary point in X since T (X) C S(X) we can choose x; € X
such that Txg = Sx1. Continuing this process, having chosen x, in X, we obtain xp 1
such that Txp = Sp11, for all n=0,1,2,.... We assume that Tx, # Tx,_1 for al
n € N. Then, by (10) we have

d(Txn, TXn11) < ¢(d(Sn, Xnt1)) = ¢ (d(TXa-1, TXn))
< $2(d(Sn-1, %))

< ¢"(d(Txo,Txq))-
Similarly fork=1,2,3,..., we get
d(TXanXfH—Zk) < ¢n(d(TX07TX2k)>7 (11)
d(TXn, TXns2k1) < 0™ (d(Txo, TXoks1))- (12)
By using rectangular inequality and (11), we have
d(Tx0, Tx4) < d(x0, Tx1) +d(Txq, Tx2) +d(Tx2, TXs)
< d(Txo, Txa) + ¢ (d(Tx0, Txa)) + *(d(Tx0, TX2)).
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d(TXo, Txg) < d(TXo, TXy) +d(Tx1, TX2) +d(Tx2, Tx3) +d(TX3, TXq) + d(TXg, TXg)
3 .
< _%d)'(d(TXo,TXl)) +¢*(d(Txo, Txo)).

By indiction we havefor each k= 2,3,4,...
23

d(Txo, Txak) < % ¢'(d(Tx0, Tx1)) + 2 2(d(Txo, Tx2)). (13)
i=
Also, by using rectangular inequality and (12) we have
d(TXo, Txs) < d(TXp, TXy) +d(Tx1, TX2) +d(Tx2, Tx3) +d(TX3, TXq) + d(TXg, TXs)

4
< 3 9'(d(T0.Tx)

By indiction we havefor eachk=0,1,2,3,4,...
2k

d(Tx0, TXar1) < %¢i(d(TX07TX1))~ (14)
i=
Using (11) and (13) we havefor each k= 2,34, ..., we have

d(TXn, TXnt2c) < ¢"(d(Txo, Txk))
k-3
<" % ¢'(d(Txo, Txa)) + 9% 2(d(Tx0, Tx2)))

K3
< ¢"( Z) ¢'(d(Txo, Tx1) +d(Txg, Tx2))

+22(d(Txo, Tx1) +d(Tx0, TX2)))

k-2
< ¢ ; 9'(d(Txo, Txa) +d(Tx0, Tx2)))

< 7(3 ¢/ To) +d(Tx0.Toa),

Similarly, using (12) and (14) we havefor eachk=0,1,2,3,4,..., we have
d(Txn, Txnp2kr1) < ¢"(d(Txo, TXoky1))

K
< ¢”((.;¢'(d(TXo,TX1)))

2k
< ¢n(_;¢i(d<TXO,TXl) +d(Txo, Tx2)))

< 47(3 '(A(Tr0. T +0(T0Toz).
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Hence, for each m we conclude

(T Do) < 973 (A0 Tx) +d(Tr0 T (19

Since E ¢! (d(Txo, Tx1)+d(Txo, TX2)) converge, whered(Txo, Tx1) +d(TXo, TX2) €
i=0

P\ {6}, and P isclosed, then E ¢'(d(Txo, Tx1) +d(Txo, Tx2)) € P\ {6}. Hence
i=0

o"( %‘pi(d(TXO,TXl) +d(Tx, TX))) — 6 asn— oo
i=
Hence, for given ¢ > 0 thereis a natural number ng € N such that
¢n(%¢i(d(TXO7TX1> +d(Tx, Txp))) < ¢ Vn=>np. (16)
i=

Thus from (15) and (16), we have
d(TXn,TXrH_m) <K C vn> No.

Then (Txp) is a Cauchy sequence in X. Suppose T(X) is a complete subspace of
X, then thereexistsapoint g in T (X) such that rIILm TX, = rIILm HXni1 = Q. Also, we
can find apoint p € X such that Sp = q.
We prove that Tp = g. Given ¢ > 6 we choose a natural numbers kp, ko such
that
c c
d(g, ) < 3 ">k d(Txn, TXn_1) < 3 >k

By rectangular inequality we have

d(Tp,a) <d(Tp,Txn) +d(TXr, Xn) +d(SXn, q)
< ¢(d(Sp,Sxn)) +d(TXn, TXn—1) +d(SXn, Q)
< d(q, S%n) +d(TXn, TXn-1) +d(SXn, Q)

C C C

é + :__)’ + :—)’ =C,

for al n > k where k = max{ky,k>}. Since c is arbitrary we have d(Tp,q) = 6.
Therefore T p = Sp = g. Hence q is a coincidence point of Sand T. Now, we prove
the uniqueness of the coincidence point. Let u be another coincidence point of S
and T, that isu= Sv= Ty, then

d(q7 U) = d(T p7TV) < ¢<d<sp7s‘/)) = ¢(d(q7 U)) < d(q,U),

acontradiction. Henceq=u. SinceSand T areweakly compatible, by Lemma(2.11)
g is the unigue common fixed point of Sand T. O

<
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Corollary 3.5. Let (X,d) be a cone rectangular metric space, and let the map-
pingsS, T : X — X satisfy the following:

d(Tx, Ty) <Ad(&,9y) (17)

for all x,y € X, where A € [0,1). Supposethat T(X) C §X), and S(X) or T(X) is
a complete subspace of X, then the mappings Sand T have a unigue coincidence
point in X. Moreover, if Sand T are weakly compatiblethen Sand T have a unique
common fixed point in X.

Proof. Define¢ : P— Pby ¢(t) = At. Thenitisclear that ¢ satisfiesthe conditions
in definition (2.8). Hence the result follows from Theorem (3.4). 0

Remark 3.6. If we put S= 1, in Theorem (3.4) where | is the identity mapping,
we have Theorem (3.1).

Theorem 3.7. Let (X,d) be a cone rectangular metric space, and let the map-
pings f, T : X — X satisfy the following:

d(Tfx, Tfy) <¢(d(Tx Ty)) (18)

for all x,y € X, where ¢ € ®@. Suppose that T is one to one, T(X) is a complete
subspace of X, then the mapping f hasa uniquefixed point in X. Moreover, if f and
T are commuting at the fixed point of f, then f and T have a uniqgue common fixed
pointin X.

Proof. Let Xp be an arbitrary point in X. Define a sequence (xn) in X such that
Xnr1 = Txp, foraln=0,1,2,.... We assumethat x, # X1 for al n € N. Then, by
(18) we have

d(TXn, TXnr1) =d(T FXn_1, T fXn)
(d(TXn-1, TXn))
Z(d(TXn—27 TXn—l))

VARVAN

¢
¢

< ¢"(d(Txo,Tx1)).
Similarly fork=1,2,3,..., we get

d(Txn, TXni2¢) < @"(d(TXo, TX)), (19)

d(TXn, Txnp2kr1) < @"(d(Txo, TXok1))- (20)

Using the same argument in the proof of theorem (3.4) to prove that (Tx,) is a
Cauchy sequencein X.
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Since T (X) isacomplete subspace of X, then thereexistsapoint gin T (X) such
that rI]|_>m TXni1 = r!|_>m T X, =q. Also, wecanfind apoint p € X suchthat Tp=q.

Weprovethat T fp = Tp. Given c > 6 we choose a hatural number ki, ko such
that

d(q, ) < % VN> ke, d(Tx, Tx 1) < % VN > ko,
By rectangular inequality we have
d(Tp, Tfp) <d(Tp,Txy) +d(Txn, T Xq) +d(T fxn, Tfp)
< d(g, Tn) +d(TXn, TXn+1) + @ (d(TXn, T))
< d(g, Txn) +d(TXn, TXnr1) +d(TXn, Q)

c c c
< 3 + 3 + 3= C,
for al n> k where k = max{ky,ko}. Since cisarbitrary we haved(Tp, T fp) = 6.
Therefore Tp=Tfp=gq. Since T isoneto one, p= fp. Hence p is afixed point
of f. Now, we prove the uniqueness of the fixed point of f. Let r be another fixed
point of f thatisr = fr then

d(Tp,Tr)=d(Tfp, Tfr) < ¢(d(Tp,Tr)) <d(Tp,Tr).

Hence Tp=Tr. Since T isone to onewe conclude p=r.

Since f and T are commuting at the fixed pointof f, Tfp= fTp=Tp. There-
fore Tp is afixed point of f. Since f has a unique fixed point, Tp = p. Hence
Tp=fp=p. O

Remark 3.8. Ifweput T =1, in Theorem (3.7), where | isthe identity mapping,
we have Theorem (3.1).

Example 3.9. Let X = {1,2,3,4},E = R?and P = {(x,y) : X,y > 0} isa cone
in E. Defined : X2 — E asfollowing:
d(1,2) =d(2,1) = (3,6),
d(2,3)=d(3,2) =d(1,3) =d(3,1) = (1,2),
d(1,4)=d(4,1) =d(2,4) =d(4,2) = (2,4).
Then (X,d) is a complete cone rectangular metric space. e define the mappings
ST:X — Xasfollowing

2, ifx=1,

. 3, ffx#4,7 o 1, ffx:2,
1, ifx=4, 3, ifx=3,

4, ifx=4.

Clearly T(X) C S(X), S(X) is a complete subspace of X, and the pairs (T,S) is
weakly compatible. The inequality (10) holdsfor all x,y € X, where ¢ (t) = %t, and
3 isthe unigue common fixed point of the mappings Sand T.
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