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Abstract

In this paper, we investigate two types of join preserving maps in
generalized residuated lattices. Two join preserving maps induces two
types of isotone and antitone Galois connections. Moreover, we study
the relations between join preserving maps and fuzzy relations.
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1 Introduction

Noncommutative structures play an important role in metric spaces, algebraic
structures (groups, rings, quantales, pseudo-BL-algebras)[3-9]. Georgescu and
Torgulescu [7] introduced pseudo MV-algebras as the generalization of the MV-
algebras. Georgescu and Leustean [6] introduced generalized residuated lattice
as a noncommutative structure. On the other hand, Kim [11] investigated that
join preserving maps induce formal, attribute oriented and object oriented
concept on a complete residuated lattices.

In this paper, we investigate two types of join preserving maps in general-
ized residuated lattices. Two join preserving maps ¢~ and ¢~ are investigated
under the conditions ¢7 (a¢®A) = a® ¢ (A) and ¢~ (AGa) = ¢~ (A)©a and
the weak conditions. Two join preserving maps induces two types of isotone
and antitone Galois connections. Moreover, we study the relations between
join preserving maps and fuzzy relations.
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2 Preliminaries

Definition 2.1 [4,5] A structure (L,V, A\, ®,—,=, L, T) is called a gener-
alized residuated lattice if it satisfies the following conditions:

(GR1) (L,V,A, T, 1) is a bounded where T is the universal upper bound
and L denotes the universal lower bound;

(GR2) (L,®,1) is a monoid,;

(GR3) it satisfies a residuation , i.e.

aOb<ciffa<b—ciffb<a=c

We call that a generalized residuated lattice has the law of double negation
if a = (a*)? = (a°)* where a° =a — 1 and a* =a = L.

Remark 2.2 [4-8] (1) A generalized residuated lattice is a residuated lattice
(—»==) iff ® is commutative.
(2) A left-continuous t-norm ([0, 1], <, ®) defined by a — b= V{c|a®c <
b} is a residuated lattice
(3) Let (L, <,®) be a quantale. For each z,y € L, we define

r—y=\{zel|lz0z<y}, s=>y=\{zel|lzoz<y}

Then it satisfies Galois correspondence, that is,

(xoy) <ziffx < (y — 2) iff y < (x = 2). Hence (L, V,\,®, —,=, L, T)
is a generalized residuated lattice.

(4) A pseudo MV-algebra is a generalized residuated lattice with the law
of double negation.

In this paper, we assume (L, A,V,®,—,=, L, T) is a generalized residu-
ated lattice with the law of double negation and if the family supremum or
infumum exists, we denote \/ and A.

Lemma 2.3 [4-8] For each z,y, z, z;,y; € L, we have the following proper-
ties.

MHHfy<z (z0y) <(r®z2),r—>y<zx—zand z -z <y — z for
—ec {—,=}.

2)zeoy<zAy<zVy.

(3) z = (Aier ¥i) = Nier(z = vi) and (Vier ;) = y = Aier(z; — y) for

4) = (Vier ¥i) = Vier(x = 4i), for —€ {—,=}.

5) (Nier ¥i) = y > Vier(zi — y), for =€ {—,=}.

6) (x0y)—z=rx—=>(y—2) and (zOy)=>2=y= (= 2).
Nr—=(y=z)=y=(r—z2z)andz= (y = 2) =y — (x = 2).
)xz@(x—y)<yand (x =y) Oz <y.
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)(a::>y)®(y:>z)<x:>zand(y—>z)®(x—>y)§55—>z.

0) (zoy)=x2—=y’and (zOy) =y = "

D=y <y=z)—(r=>z2and(y=2)<(r—y) = (r=2)
2) z; = Y < (Nier 1) = (Nier yi) for =€ {—, =}
3) xi = ¥ < (Vier 1) = (Vier yi) for =€ {—,=}.
4):E—>y—T1ffa:<y

5z —y=9y"=2"and x =y =y* — z*.
6)x®y—(m—>y) and (x = y*)" =y O .

) A zel“x = (Vier z:)" and Vier 27 = (Ajer 7:)"
8) A zel“x (Vierxi)o and Vierx?:(/\iel“xi>0-

3 Two types of join preserving operators

Definition 3.1 Let X and Y be two sets. Let w™,¢0~ : L — LY and
w, ¢ : LY — LX be operators.

(1) The pair (w™,w ) is called an antitone Galois connection between X
and Y if for A€ L* and Be€ LY, B<w™(A) iff A <w™(B).

(2) The pair (¢, ¢*) is called an isotone Galois connection between X
and Y if for A€ L* and B e LY, ¢7(A) < Biff A < ¢*(B).

Definition 3.2 An operator ¢~ : LX — LY is called a join preserving
operator, denoted by ¢~ € J(X,Y), if it satisfies

(1) 7 (Vier Ai) = Vier ¢~ (Ai), for {Ai}ier C L.

An operator 1~ : LX — LY is called a meet preserving operator, denoted
by v € M(X,Y), if it satisfies

(M) %7 (Aser Ai) = Nier 7 (4y), for {A;}ier € LY.

Theorem 3.3 Let ¢— : LX — LY be a join preserving operator. Define

Junctions wy’, &7 LX = LY and ¢, wg, &5 LY — LX as follows: , for all
AelX Be LY

¢ (B) =V{AeLX|¢7(A) < B},
wy'(A) = (¢7(A))°, wi(B)=¢"(B"),
£5(B) =MAe LY |¢7(A%) < B},
§;7(A) =V{BeL|& (B) <A}

Then the following properties hold:

(1) The pair (¢, %) is an isotone Galois connection with N;ep ¢ (B;) =
¢<_( el )

(2) a7 (A) < o7 (a®A) for Ae LY iff a = ¢7(B) < ¢ (o = B) for
BelLY.

(3) 7 (@A) <a®d(A) for Ae LY iff o~ (a = B) < a = ¢~ (B) for
BelL".
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)
Aw§ (B;) and wy’ (Vier Ai) = Awy (As).

)a© o7 (A) <o (a0 A) iffuy(a®C) <a—wy(C).
)97 (@0 A) <ae ¢ (A) iff a = wi(C) Swy' (a®C).

) a= ¢ (A) <o (a= A) iﬁwfg(B@a)Zaiwﬁ;(B).
) a=¢7(A) > ¢ (a=A) iffuf (BoOa) <a=wi(B).
) £5(B) = (¢ (B"))? with £ (Vier(Bi)) = Vier & (Bi) and

¢97(A)<Be A< ¢ (B) e & (B) < A

o (= A) iff (BOa) < (B)©a.
o (a=A) iff (BoOa) > &5 (B)©a.
(12) £57(A) = (67 (A)° with &5 (Nier (Ai)) = Nier & (Ai) and

$(A) S B=A<¢T(B) & § (B") < A"« B < (A)

(13) 0 ®¢7(A) < ¢7(a® A) for Ae LY iff o« = £7(B) > & (a — B)
for Be LY.

(14) a®¢7(A) > ¢7(a© A) for Ae LY iff « = £7(B) < & (a — B)
for Be LY.

(15) The pair (£57,€;7) is an isotone Galois connection.

(16) If o7 (A(x) © Tyay) = B, for all x € X, then ¢7(A) = V., ex B..

(17) If o7 (@O Tiay) = 057 (@@ Tyyy) forallz € X and ¢77, 037 € J(X,Y),
then ¢77 = @3-

Proof (1) Since ¢ is a join preserving map and ¢ (B) = V{4 € L* |
¢~ (A) < B}, we have

¢~ (A) < B o A< 6(B).

Hence (¢, ¢*) is an isotone Galois connection and ¢ (Ajer Bi) = Nier ¢ (B:)
from

Nier 8 (B;)) > A < ¢ (B) > A, Viel ©¢7(A)<B;, Viel
& ¢ (A) < Nier Bi, & 07 (Nier Bi) > A.

2) (=)

a=¢"(B)<a=¢"(B) ifa® (a=¢(B)) <
iff o7 (@ ® (= ¢ (B))) <

Since a ® ¢ (A) < ¢7(a ® A) for A € L¥, then a ® ¢~
o7 (a® (a = ¢°(B))) < B. Thus ¢7(a = ¢°(B)) <
¢7(B) < ¢ (= B).

e
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(<)

67 (a@A) <o (@A) iffa® A< (67 (a0 A))
iff A<a= ¢ (¢~ (ao A)

Since a = ¢ (B) < ¢ (a = B), then
A<a=¢"(¢7 (a0 A) <¢7(a= ¢ (a®A)).

Hence 97 (A) <a=¢7 (a0 A) iff a®¢d7(A) < o7 (a® A).
3)(=)

¢ (a=B)< ¢ (a=B) iff o7 (¢*(a=B)) <a=B
iff « © ¢~ (¢ (o = B)) < B.

Since ¢ (@ ® A) < a® ¢ (A) for A € L, 97 (a® ¢ (o = B)) < B iff
0 ©¢(a = B) < ¢-(B) iff 6 (a = B) < a = ¢ (B).
(<)

a©¢7(A) Sa0¢7(A) iff g7(A) Sa= a0 ¢ (4)
iff A< o (a=a® o (A)).

Since ¢ (o = B) <a= ¢ (B),then A<a= ¢ (a@¢7(A)if a®© A<
¢ (a©¢7(A) iff 97 (@ ©A) Ca O ¢7(A).

(4) The pair (wy’,wg") is an antitone Galois connection from:

B <wy(A)iff B < (¢7(A)) iff ¢~ (A) < B*
iff A < ¢ (B*) = wi (B).

Moreover, wy’(Ver Ai) = Awy’ (A;) from:

/\wq?(Ai) >(C < w;(Ai) >C, Viel's w;)_(C') > A;, Viel
< w§(0> > Vier 4i, & w;(\/ier Ai) > C.

Other case is similarly proved.

(5) Let a ©® ¢7(A4) < ¢7(a ® A) be given. Then wy’(a ® C) = (¢~ (a ®
)’ < (a®¢7(0)" =a—¢7(C)° =a—w;(C).

Let wy’(@®C) < a — wy’(C) be given. Then ¢~ (a®©C) = (w;’ (a©C))* >
(a0 = wy(0) = (a = (67(C)°)* = a® ¢7(C) from Lemma 2.3(16). So,
a®¢7(A) < g7 (a0 A).

(7) Let a = ¢~ (A) < ¢ (a = A) be given. Then wi (B©Oa) = ¢~ ((BO
a)) =9 (a= B*) >a= ¢"(B") =a=wj(B).

Let wi (B ® @) > a = wj (B) be given. Since ¢ (a = B) = ¢~ ((«
B%)*) = wi (@ ®B®) > a = wi (B°) = a = ¢*(B), then a = ¢ (B
¢ (o= B).

IN©
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(6) and (8) are similarly proved as in (5) and (7), respectively.
(9) By Lemma 2.3(17), we have

§(B) =MAel¥|o7(A) < B}
= (V{4 e L¥ | A <o(BY)}) = (¢ (BY)".

It follows 5&7(\/%1“(3@')) = (¢<_(/\ieF(Bi)*))0 = \/ier(d_(Bf))o = Vier 5;_(32‘)
and ¢~ (A) < Be A< ¢7(B) & & (BY) < A
(10) Let @ = ¢ (A) < ¢ (e = A) be given. By Lemma 2.3(10), we have:

(¢ (B o))" = (¢ (a = BY))
(a= ¢ (B")" = (¢7(B)Oa
£ (B)© a.

Other case and (11) are similarly proved.
(12)

&(A) =V{BeL | (B) <A}
=V{BeL"|¢7(A") < B} = (¢ (4))".

Other cases are similarly proved as (1) and (5).
(13) Let a ©® ¢ (A) < ¢~ (v ® A) be given. Then

= (¢7((a = A)))".
= (¢7(a© A7)’ < (2 © ¢7(A"))"
=a = (¢7(A))" = a = &7 (A).

Other case and (14) are similarly proved.

(15) Since 57 (B) < A iff B < £7(A) from the definition of §;7, then the
pair (§57,£;") is an isotone Galois connection.

(16) For all A € L¥, we write A =V, cx A(z) ® 1(,3. Thus,

P(A) = d(Viex A(2) © 11n)
= Veex ¢(A(2) © 1)
= szX BZ

(17) For A =V ,cx A(z) ® 1.3, we have

= V.ex $2(A(2) © 12y)
= ¢a(A).
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Example 3.4 Let X and Y be sets and R € L**Y. Define a function

7 LY = LY as ¢ (A)(y) = Veex(Alz) © R(z,y)).
(1) ¢7 is join preserving because

¢r (Vi Ai)(y) = Vaiex (Vi Ai(z)) © R(z,y)
= z( :(:EXA (ZL’) © R(l’,y))
= Vi 97 (Ai) ().

By Theorem 3.3, we obtain ¢y as follows

¢r (B)(x) = V{A(z)| o5 (A) < B}
V{A(2) | Veex(A(z) © R(z,y)) < B(y)}
V{A(z) | A(z) < Ayey (R(z,y) = B(y))}
= Nyey (R(z,y) = B(y))-

Thus, (¢7,¢5) is an isotone Galois connection with ¢ € M(Y,X) from
Theorem 3.3(1).

(2) Since o ® o7 (A) = ¢ (a ©® A), by Theorem 3.3(2,3), o = ¢ (B) =
qﬁg((oz):> B).

3

war(C) W) = (05 (C)°(y) = (Vaex Cz) © R(z,y))

= NAeex(C(2) © R(z,y))°

= Neex(C(z) = R%(z,y)). (by Lemma 2.3(10))
wg,(B)() ch(B*)(:B) /\yEY(R( y) = B*(y))

The pair (wg’,ws. ) is an antitone Galois connection.

(4) Since a© ¢ (A) = ¢5 (a® A), by Theorem 3.3(5-8), then wy’ (a©C) =
a — wy (C) and wi (B © a) =a = wi (B).

(5) By Lemma 2.3(10,15), we have

5
. (B)(@) = (65(89) (1) = (Ayev (R(z,y) = B*()))°
)° = Vyey (R (2, y) © B(y))")°

O ~—

Since {37 (A) = ( E(A*)) from Theorem 3.3(12), by Lemma 2.3(15), we
have from:

£ (A) (@(A*))O = (Voex(4*(2) © R(z,9)))’

A
/\weX(ROO(xv y) = A(x)).

The pair (£5,,£5.) is an isotone Galois connection.

(6) Since a © ¢5 (A) = ¢5 (a ©® A), by Theorem 3.3(10,11, 13,14), £ (B ©
a) = 5;;%(3) ® «a and 5(;;(04 —A)=a— 5(;;(14)
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Theorem 3.5 Let ¢~ : LX — LY be a join preserving operator. Define
functions wi”, £ LX = LY and ¢, wi, 5 LY — LX as follows: , for all
AcLX BelLY,

¢=(B) =V{AeL¥|¢~(4) < B},

wy (A) = (¢7(A))", wi(B)=9¢"(B%),
& (B) =NMAeL? | ¢7(A") < B},

& (A) =V{BeL"[{(B) <A}

Then the following properties hold:

(1) 7 (A)oa < ¢7(A®a) for Ae LY iff a = ¢=(B) < ¢<(a — B) for
BelL".

(2) o7 (A)ea> ¢~ (A0a) for Ae LY iffa — ¢=(B) > ¢<(a — B) for
BelL".

(3) The pair (w¢ ,wy) s an antitone Galois connection with wy (Ver Ai) =
Nz (A) and wi (Vi Br) = A (By).
)97 (A)©a<o7(Aoa) iffwy (CoOa) <a= wy (0O).
)07 (Ao a) <¢7(A)Oaiffa= wy(C) <wy (CoOa).
) a— ¢ (A) <9 (a— A) iff wi (a® B) > a— wi (B).
) a— ¢ (A) > ¢ (a— A) iffuj (a® B) <a%w¢ (B).
) £5(B) = (6 (BY)" with &5 (Ve (B)) = Vaer £5(B,) and

57 (A) S B o A<6T(B) & 6 (B) < A

(4
(5
(6
(7
(8

(9) @ = ¢5(4) < 6 (a = A) iff & (@ © B) < a 0 £5(B).
(10) @ = 65 (A) > = (a = A) ff £ (@ © B) > a © & (B).
(11) €57 (A) = (07 (A%)* with &5 (Nier(Ai)) = Nier €5 (As) and

$(A) < B A< ¢7(B) & &5 (B°) < A"« B < 7(A")

(12) p7(A) O a < 97 (A@a) for Ae LY iffa = £5(B) > 5 (a = B)
for B e LY.

(13) o7 (A) O a > ¢~ (A®a) for Ae L* iffa = £57(B) < &5 (a = B)
for Be LY.

(14) The pair (£57,€57) is an isotone Galois connection.

(15) If 7 (T 12y © A(x)) = B, for all x € X, then ¢~ (A) =V ex B..

(16) I[f 67(T oy ©0) = 67’ (T @) for allw € X and 67, 67" € J(X,Y),
then ¢77 = @3-

Proof (1) (=)

a = ¢=(B) < a— ¢=(B) iff (a = ¢=(B)) ©a < ¢(B)
iff 9= (0 = ¢~ (B)) © a) < B.
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Since ¢~ (A) ®a < ¢7(A® a) for A € L, ¢7(a — ¢=(B)) ® a < B iff
o7 (a— ¢=(B)) <a— Biff a - ¢=(B) < ¢=(a — B).
(<)

PT(A0a) <7 (Ada) fACa <o (p7(AG a))
iff A<a— ¢=(67(AGa)).

Since a = ¢<(B) < ¢=(a = B), A< ¢ (a—= ¢~ (A0 )) iff p7(A) < a —
P (A a)iff o7 (A) Oa <7 (AO a).
(3) It follows from

B<w?(A) & B< (7(A) & ¢ (4) < B" e A< ¢°(B°) = wi(B).

(4) Let ¢7(A) ®©a < ¢7 (A © a) be given. Then wy (C © a) = (¢7(C ©
a)) < (¢7(C)©a) =a= ¢~ (C0) =a= w7 (C).

Since wila®C) = (@7 (Coa) <a=w(C)=a= (¢ (0) =
(¢~ (C)© ) S0, 7 (C) O a <9~ (C O ).

(6) Let a = ¢=(B) < ¢~ (a — B) be given. Then wi (a ® B) = ¢~ ((a ®
B)’) =¢=(a = B°) > a— ¢=(B") = a —» wj (B).

Let wi (o ® B) > a — wj (B) be given. Since ¢~ (a — B) = ¢~ ((a ©
B*)") = wi (@ ® B*) > a = wi (B*) = a = ¢=(B), then « — ¢=(B) <
¢»<(a — B).

(9) By Lemma 2.3(10), we have:

& (aoB) =(@7((0©B))" = (¢ (a = B)*
(@ = ¢=(BY)" = a© (67(B")"
a© &5 (B).

(12) 97 (A) 0 a < ¢7(A@a) for A e LY iff o — £57(B) < &5 (a — B) for
BelL".

|| IA

(67 ((a = A4)°)".

(07 (A" ©a)) < (67(4%) © a)*

= 0= (67(4)" = a = &(4).

(15) and (16) follow that for all A € L*, A =V, cx (T © A(2)).
Other cases are similarly proved as same methods in Theorem 3.3.

£ (a= A)

Example 3.6 Let X and Y be sets and R € L**Y. Define a function

67+ L - LY as 07(A)y) = Voex(R(z,y) © A(x)). Since ¢7 is join
preserving, by Theorem 3.5, we obtain ¢} as follows

¢ (B)(x) = V{A(z) € L" | ¢5 (A) < B}

= V{A(z) € L* | A(@) < Ayey (R(z,y) = B(y))}
= Nyev (R(z,y) = B(y))
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Thus, (¢%, ¢57) is an isotone Galois connection.
(1) Since ¢7 (A) © a = ¢57 (A ® a), by Theorem 3.5(1,2), o — ¢5(B) =
¢k (@ = B).
)
Wi (O)y) = (07 (C)*(y) = (Voex R(z,y) © C(x))"

Neex (R(z,y) © C(x))*
Naex (C(z) = R*(x,y)). (by Lemma 2.3(10))

wi, (B)(z) =7 (B)(x) = Ajey (R(z,y) = B°(y))
= Nyey (B(y) = R*(z,y)). (by Lemma 2.3(15)).
The pair (w7 ,ws, ) is an antitone Galois connection.
(3) Since ¢% (A) © a = ¢ (A © a), by Theorem 3.5(4-7), wy” (C © a) =
a = wy (C) and wi (o © B) = a — wj_(B).
(4) By Lemma 2.3 (10,15), we have

§a(B)(x) = (dﬁ?(Bo))*(x = (Ayev (R(z,y) = B°(y)))*
= Vyev (B(y) = R(x,9)*))* = Vyey (B(y) © R*(x,y))")*
= Vyey (B(y) © R™(x,y))

Since £ (A) = (¢§(AO)>* from Theorem 3.5(11), by Lemma 2.3(15), we

have from:

The pair (£5,,£;,) is an isotone Galois connection.
(5) Since ¢ (A)©a = ¢ (AGa), by Theorem 3.5(9,10,12,13), {5 (a©B) =
a®& (B)and & (a = A) = a = ;7 (A).

Theorem 3.7 Let £57,&5 € J(Y, X) be given in Theorems 5.3 and 3.5.
Then the following properties hold:

(1) €5 = 67 and &5 = ¢
2 55_;} = ¢~ andf?% =¢.

)
(2)
(3) w?f =wy and w;f =wy .
(4)

4 wg‘% :wj andwg} :%7'
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Proof (1) f%(B) £ (B
(2) &2 (A) =657 (A7)° = (
(3 )wgﬁ(B) = (£57(B)" =
(4 )Wg:(A) &5 (A7) = (w3

)" = (¢7(B")" = ¢(B).

¢7(A™))0 = ¢7(A).

(6=(B)" = ¢=(B°) =
5 (A0)" = (wg(A))”

wg (B).
w3 (A).

Example 3.8 Let £ (B)(x) = Vyey (R®(z,y) © B(y)) and &5 (B)(z) =
Vyey (B(y) © R*(z,y)) be given in Examples 3.4 and 3.6. We obtain

&6 (B)(@) =05 (B)(x) = Ajey (R(z,y) = B(y)),
& (B)(@) =0k (B)(7) = Aev (R(z,y) = B(y)),
& (A)y) = 0x (A)(Y) = Vaex(R(z,y) © Alz)),
& (A)y) =07 (A)Y) = Veex(Alz) © R(z, 7)),
wet (B)() = wi (B)@) = Ayey (Bly) = B(x,y)),
W?gé(B)@) = wi,(B)(x) = Nyey (B(y) = R*(z,9)),
wz (Ay) = w5, (A)y) = Ayey (Al@) = B (x,y)),
Wi (A)Y) = wgr (DY) = Ayev (Az) = Bz, 9))-
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