
Journal of Control Engineering and Technology (JCET)

JCET Vol.1 No.1 July 2011 PP.17-22 www.ijcet.org ○C World Academic Publishing

Stereo Vision Navigation of Autonomous Mobile
Robot Based on Complex Positioning

Qiuhong Lu*, Shaoyuan Li, Guozheng Yan

School of Electronics, Information and Electrical Engineering,
Shanghai Jiao Tong University,

Shanghai, China
* luqiuhong1@sina.com

Abstract—A positioning and navigation method based on stereo
vision, compass and encoders is presented. It has been used in an
autonomous mobile robot which developed by the group of the
authors. The compass and encoders are used complementarily
each other to get correct position. 3D vision-based path-planning
makes the robot walk along a better path each calculation cycle
and avoid bumping other objects. This navigation system is
cheap and convenient to create, and is effective in practice.
Complex positioning, environment mapping, path-planning and
behavior-based navigation algorithm are discussed is this paper.

Keywords—Mobile Robot, Autonomous Navigation, Stereo
Vision, Behavior Control

I. INTRODUCTION
When we refer to a robot’s intelligence, a key problem is

how to solve its navigation in real environments. There have
been a lot of researches focusing on navigation algorithm,
especially visual navigation, which is regarded as the highest
level algorithm [1,2,3]. In the former studies, a stereo vision
navigation algorithm has been used in our robot [3].

There are four basic problems relative with navigation: (1)
apperceiving—the robot should interpret information from
sensors and pick up useful data from them; (2) positioning—
robot should know its own position and orientation in its
environment; (3) cognizing—the robot should decide how to
take action to achieve its goal; (4) motion controlling—the
robot should adjust its movement to get expected track.

In the above four problems, positioning ability is the most
basic problem for navigation. Assume that when the robot is
operating, after it receives a command “move from present
position to the goal”, what action should it take? Obviously, it
should know where itself is at first. As a person, because he/she
have the sense of geography location, he/she know where
himself /herself is in a room, or where the building are. He/she
does not have to know the coordinates of own position clearly,
but it is important for he/she to have the ability to remember
the scenes and ability to distinguish own location. For a mobile
robot, it is difficult to get the ability compared to a person. A
robot’s position is expressed as numerical format and is
processed in this format. First, set the coordinate system in a
certain point of its environment, then express its pose (position
and orientation) concerning the coordinate system in numerical
format.

In most mobile robot applications, two basic position-
estimation methods are employed together: absolute
positioning and relative positioning methods [1, 4-7].

Absolute positioning methods usually rely on (a) navigation
beacons, (b) active or passive landmarks, (c) map matching, or
(d) satellite-based navigation signals. Each of these absolute
positioning approaches can be implemented by a variety of
methods and sensors. Yet, none of the currently existing
systems is particularly elegant. Navigation beacons and
landmarks usually require costly installations and maintenance,
while map-matching methods are either very slow or inaccurate
[8], or even unreliable [9]. With any one of these
measurements it is necessary that the work environment either
be prepared or be known and mapped with great precision.
Satellite-based navigation (GPS) can be used only outdoors and
useless for robots walking indoors.

Relative positioning is usually based on dead-reckoning
(i.e., monitoring the wheel revolutions to compute the offset
from a known starting position). Dead-reckoning is simple,
inexpensive, and easy to accomplish in real-time. The
disadvantage of dead-reckoning is its unbounded accumulation
of errors. Another approach to the position determination of
mobile robots is based on inertial navigation with gyros and/or
accelerometers. It can lessen accumulation of errors, but these
sensors are exceedingly sensitive to drift, and any small drift
will be enlarged by accumulating [10, 11]. Electronic
compasses can determine the local vector toward the north
magnetic pole, so it has no accumulated errors, and it can avoid
the sensor’s drift problem of inertial navigation. Moreover,
compasses are easily and cheap to be installed in robots.

Thought over above positioning methods, we selected
compass assisted by encodes to do positioning work in the
navigation system of our autonomous robots. As shown in
Figure.1, a compass was fixed inside the robot and a stereo
camera was set in the front. We used a “Bumblebee” stereo
vision in this research. The camera can rotate in two directions
due to a Pan & Tilt mechanism under it. With a compass in its
sensor board, the robot can measure the orientation of itself
relative to the earth magnetic without accumulated errors. In
order to reduce the influence of the compass suffered from
outside magnetic field, encoders were used to correct angle
values from the compass in the positioning process. During the
walking behavior along the path preplanned, the robot
calculates its position continuously and compares with the
goal’s coordinates until it arrived at the target. And it will give

Journal of Control Engineering and Technology (JCET)

JCET Vol.1 No.1 July 2011 PP.17-22 www.ijcet.org ○C World Academic Publishing
18

up the chosen way and plan paths again if an obstacle stands in
front of it, because the obstacle-avoidance behavior has the
highest priority in all behaviors.

The complex positioning, vision-based mapping and path-
planning and behavior-based navigation algorithm are
discussed in detail in this paper.

Figure 1. A mobile robot with navigation system

II. POSITIONING ALGORITHM

A. Dead-reckoning Positioning Technique
Encoders feed back revolution angles of the robot's wheels

in real-time. By accumulating revolutions of left and right
wheels, the robot can get its current position. This is a type of
positioning algorithm named as dead-reckoning, which is used
very popularly in mobile robotics.

The translational velocity and rotational angular velocity
are as follows:

[] ()

[] ()









−
=

+
=

B
vvt

vvtv

RL

RL

ω

2 (1)

where,

Lv and Rv is the right velocity and right velocity of the robot
respectively;

B is the distance between the two wheels.

We can write the formula of dead-reckoning in discrete form as
follows:









∆+=
∆+=
∆+=

++

++

++

11

11

11

sin
cos

nnn

nnnn

nnnn

uyy
uxx

θθθ
θ
θ

 (2)

where,

[nx ， ny ， nθ] is the pose vector of the robot at a certain
moment;

[1+nx ， 1+ny ， 1+nθ] is the new pose vector of the robot.

u∆ is the positional increment from old position to the new
one. It is the average of left and right wheel’s displacement
increments.

2

RLu ∆+∆
=∆ (3)

θ∆ is the orientation angle increment of the robot from old
orientation to the new one. It is in direct propotion to the
difference between two wheel’s displacement increments:

B
RL ∆−∆

=∆θ (4)

If know the original pose in advance, measure data of the
encoders fixed on left and right wheels, we can calculate the
robot’s new pose conveniently. Dead-reckoning is inexpensive,
has higher precision in short term and higher sampling speed,
so it is used widely. Also note that the new orientation is
derived from the wheel travel distance, which is likely to be
corrupted by wheel size errors, slippage, skidding, and related
effects. Moreover, the error will be zoomed by integral. So it is
not suit to long term situations.

B. Compass Positioning Technique
From the compass inside the robot, yaw, pitch (left-right)

and roll (front-rear) angles can be gained. The pose of the robot
can be calculated according to formula as follows.











∆+=
∆+=
∆+=
∆+=

++

++

++

++

11

11

11

11

sin
cossin
coscos

nnn

nnnn

nnnnn

nnnnn

uzz
uyy
uxx

θθθ
φ

φθ
φθ

 (5)

where,

[nx ， ny ， nθ] is the pose vector of the robot at a certain
moment;

[1+nx ， 1+ny ， 1+nθ] is the new pose vector of the robot;

u∆ is the positional increment from old position to the new one;

θ represents the yaw, andφ represents the pitch;

θ∆ is the orientation angle increment of the robot.

Robot can know its new pose through a compass. However,
the positioning results solely from compass is not enough or
reliable. At most points within a large area, the compass will
report an accurate heading. But there are always isolated spots
near ferrous objects; the compass may report results errors, as
much as 180°can easily occur.

3D Vision

Robot

Sensors
inside

Pan & Tilt

Journal of Control Engineering and Technology (JCET)

JCET Vol.1 No.1 July 2011 PP.17-22 www.ijcet.org ○C World Academic Publishing
19

C. Complex Positioning Technique
The two above methods have its own advantages and

disadvantages. Dead-reckoning is simple but has accumulation
of errors, where compass might be influenced greatly by
ferrous or electromagnetic environment. We can combine both
of them to get better positioning results.

Note that a compass may have unexpected errors, however,
orientation based on information supplied by shaft encoders
tends not exhibit sudden large errors. So we can use encoders
to reduce the influence of the compass suffered from outside
magnetic field [10].

Let recθ represent the best possible estimate yaw, compθ
represent the magnetic heading measured by the compass;

encθ represent the heading supplied by the encoders, which is
the tracking of the robot’s rotation and has no particular
relationship to north. If we want recθ to represent the robot’s

true heading and if recθ is derived from encθ , we will have:

correncrec θθθ += (6)

where

corrθ is a correction, which is the difference between the true
heading of the robot and the heading given by the encoders
alone. If we make a single measurement at a point far from any
interfering ferrous objects, we can write:

 enccompcorr θθθ −= (7)

Because compθ is usually correct, we can take an average,
that is:

correncrec θθθ += (8)

Note that corrθ represents an average over distance rather

than a time. Thus, the value encθ drifts slowly as the robot
moves, but is corrected by regular readings of the electronic
compass. The electronic compass gives an occasional
inaccurate reading when the robot comes within a few feet of a
ferrous object, but by averaging over a long distance, the
effects are damped out. By this mean, the robot can know its
own position clearly.

III. ENVIRONMENT MAPPING
When the robot has known its real-time position, it should

know how to get to the goal and protect itself against bumping
into any object on its way. The stereo camera installed in the
front of the robot takes charge of this task. While it is running,
the robot turns the camera rotate left-right and up-down. By
this way, the robot can get environment information around
itself, create the map of environment, then judge where it can
go.

A. The Principle of Stereo Vision

Stereo vision is an essential technology of getting 3D
information from images. It is also called “binocular vision”.
Two CCD cameras catch two images of the same scene from
different point of view, just as the human’s eyes. Based on the
principle of stereo parallax, by establishing correspondence
between a same point in two images, the depth of the point is
calculated. By this way, we can achieve the 3D measuring of
all features in the scene.

It needs three steps to perform stereo processing:

1. Establish correspondence between image features in
different views of the scene.

2. Calculate the relative displacement between feature
coordinates in each image.

3. Determine the 3D location of the feature relative to the
cameras, using the knowledge of the camera geometry.

First step is image matching. Figure 2 is an example, where
the point Aright corresponds to the point Aleft; similarly, point
Bright corresponds to the point Bleft. In order to find the best
pixel Pr from the right image matching the pixel P1 in the left
image, we need to search for all pixels along the same row in
the right image as in the left image. Simply, set a rectangle
window around the candidate pixel Pr and the same size
window around the testing pixel P1; calculate the simular level
between two windows; the pixel Pr has the greatest similarity
will be picked out.

 (a) left image (b) right image

Figure 2. Stereo matching

There are several estimation methods for matching two
images: Sum of Absolute Difference (SAD), Sum of Squared
Difference (SSD), Normalized Cross Correlation (NCC) and
etc. The stereo image matching in this research uses SAD. Its
extimation function is as follows:

]][[][][min
2

2

2

2

max

min

iydixIiyixI left

m

mi

m

mj
left

d

dd
+++−++∑ ∑

= =
=

 (9)

where,

mind and maxd are the minimum and maximum disparities;

m is the mask(window) size;

leftI and rightI are the left and right images.

After all pixel matching, we can calculate the disparity of
every pixel, the depth of every point by formula as follows,

Journal of Control Engineering and Technology (JCET)

JCET Vol.1 No.1 July 2011 PP.17-22 www.ijcet.org ○C World Academic Publishing
20

d
fBz ×= (10)

where,

B is the baseline;

f is the foci of cameras.

and every point's 3D coordinates by formula as follows,










×=

×=

f
yzy

f
xzx

l

l

 (11)

where,

lx and ly are the coordinates of the point's projection in the left
image respectively.

According to the above method, depth data can be
calculated. Figure 3 shows the left image, right image and
depth image. The robot can do environment mapping, path-
planning and autonomous navigation with these depth
information.

Figure 3. Left image, right images and depth image[12]

B. Transformation of Coordinates
The 3D coordinates information of the object derived from

the stereo vision are the representations in the camera's world
system. The robot has to do coordinates conversion to
transform these information into its world system, before it can
use them to do environment mapping and navigation.

In Figure 4 we create the robot's world coordinate system
XYZ and the camera's world coordinate system xyz. The origin
of XYZ is the centre of the two wheel's axis, X is to front, Y is to
left, and Z is to up. The origin of xyz is the centre of the right
camera, x is to right, y is to down and z is to font. There is a
relationship between XYZ and xyz:









+−=
+=
+=

HyZ
AzX

BxY 2
 (12)

where,

B is the baseline of the camera;

H is the vertical distance between the origin of the robot system
and the camera;

A is the horizontal distance between the origin of the robot
system and the camera.

Figure 4. Robot's and camera's world coordinate systems

C. Mapping
After getting the depth information and transforming them

to its world, the robot gets coordinates of each object which it
encounters, then creates a map of around environment.

First, we cut out a window from the visual field of the robot
(get rid of pixels include incomplete information or difficult to
process, only process partial information to reduce calculating
amount). Then transform the coordinate information to the
values in the robot’s world coordinate system. A grid map with
depth information is built as in Figure 5.

Figure 5. Mapping

Where, x is to right and z is to up; pixels in the upmost row
are corresponding to object points farthest from the robot;
pixels in the undermost row are corresponding to object points
nearest to the robot. The window is divided into small grids
uniformly. Each grid represents a certain practice size. Suppose
that a grid is corresponding to an area of 10cm*10cm, the
robot’s width is 30cm, when a grid is taken by obstacles, the
area of 3*3 around it is impassable for the robot.

There are five steps in the mapping algorithm:

red

green

Journal of Control Engineering and Technology (JCET)

JCET Vol.1 No.1 July 2011 PP.17-22 www.ijcet.org ○C World Academic Publishing
21

1. Scan the map grid by grid along x direction and row by
row from down to up. Each grid has two flags: Obstacle_flag
and Passable_flag.

2. For each scanning point, mark its state according to
obstacle evaluation algorithm: if there is an obstacle, set
Obstacle_flag=1(true); otherwise, Obstacle_flag=0(false).
Obstacle flags are figured as symbol * (is true)and △(is false)
in Figure 5 respectively.

3. Use m*m mask to each scanning point, if
Obstacle_flag=1(true), then set all points behind the mask
Passable_flag＝0(false); otherwize, all points Passable_flag＝
1(true). Passable flags are represented as red (is false) and
green (is true) in Fig. 2. A red area is impassable where a green
one is on the contrary.

4. Passable_flag is always false if only it is set to false once.
Set its initial value true, an “and’ operation can be used here:
Passable_flag=(last_Passable_flag) and (new_Passable_flag).
As shown in Figure 5, a red area may cover part grids of a
green area.

5. The grids on the edges of the map difficult to be
estimated will mark with unknown area, colored yellow.

IV. PATH-PLANNING ALGORITHM
According to the map of the environment, the robot can

calculate a best path to the goal away from obstacles. There are
two processes as obstacle evaluation and path choosing.

A. Obstacle evaluation
This process is to define what is an obstacle that the robot

should avoid.

1. slope obstacles

A slope threshold is applied to detect obstacles too steep for
the robot to climb. It is preset and can be adjusted in practice.
For one evaluating grid (i，j), its following grid is (i，j+1) ，
the slope will be:

 slope=arctan((y[i, j+1]- y[i, j])/w) (13)

wherein, w is the width of the grid, y is the height of the
object in the grid.

2. overhanging obstacles

This threshold is applied to detect “overhanging” obstacles
that don’t touch the ground. The robot can not pass a hanging
object whose height is lower than the robot height. Two
thresholds are preset here, the low limit and the high limit. The
low limit can not be less than the height of the robot, while the
high limit can not be greater than the height of sills which the
robot can climb.

In a grid y coordinates are the heights of objects. If the
minimum height is smaller than the low limit, and the
maximum height is bigger than the high limit, there will be a
overhanging object, so we mark the grid with obstacle_flag=
true. If the minimum height is smaller than the low limit, but
the maximum height is smaller than the high limit, the robot
ignores the object because the robot can climb over it.

Note here the height value y should be subtracted the radius
of the robot’s wheel, because the origin of the robot’s world
coordinate system is the centre of the two wheels axes, but the
thresholds are preset based on the ground.

B. Path Choosing
 Starting from the radial upright forward from the center of

the robot, draw a cluster of curves leftward and rightward. One
curve is corresponding to a path of the robot. The paths have
the same translational velocity, but different rotational angular
velocity. One method of ours is to set the diameter of the robot
is D, a path is corresponding to an arc in a circle whose
diameter is several times of D respectively. According to
diameters of arcs, all rotational angular velocities have been
calculated.

A path is an optional path just when all grids in it are
passable (green). If a path includes any impassable grid, it will
be removed. If there are more than one optional paths, it is
necessary to choose the best one. A lot of method can to use in
path choosing. A simple is the nearest rule, i.e. choose the path
in the end the robot is the nearest to the goal.

Figure.6 shows the terrain map and path-planning map.
Each grid represents the practical space 0.1m*0.1m. There are
23 paths in all, and the robot is located at the start of the 23
paths. The robot deals with information in the area 3 meters
before itself every pace, which is 20cm.

In the figure, red grids are impassable with obstacles, green
grids are passable without obstacles, and yellow grids are
unknown area. Red paths are impassable and green paths are
passable. The white path is the optimum one which the robot is
walking on currently.

Figure 6. Path-planning based on map

V. BEHAVIOR-BASED NAVIGATION ALGORITHM
The navigation algorithm presented in this paper includes

four steps: (1) goal set, (2) positioning, (3) obstacle avoidance,
(4) path-planning. We use behavior-based control algorithm in
programming.

Figure 7 is the behavior control block diagram of the
navigation algorithm of the robot. The bottom behavior is life,
also called as behavior surviving. The second layer is the
avoid/path-planning behaviors implemented by stereo vision.
These behaviors can be implemented all together. After

Chosen
path

Passable
path

Impassable
path

Journal of Control Engineering and Technology (JCET)

JCET Vol.1 No.1 July 2011 PP.17-22 www.ijcet.org ○C World Academic Publishing
22

mapping and path-planning, avoidance is also achieved, so
other sensors are not necessary here for obstacle avoidance.
The third layer is autonomous positioning behavior of the robot,
which can be achieved by dead-reckoning with compass and
encoders. The top layer is goal picking, which is achieved by
picking points from the images caught by stereo vision.

Figure 7. Behavior control block diagram of vision navigation

VI. CONCLUSIONS
In this paper, a complex of compass and encoders

positioning technique and a navigation method based on stereo
vision are presented. It has been used in an autonomous mobile
robot which developed by the authors. The compass reduces
possible accumulated errors of dead-reckoning and encoders
correct possible great compass errors. By this complex
positioning method, the robot can get accurate pose data.

Based on the stereo camera, depth information helps the
robot take a better path each cycle and avoid bumping others.
During running, the position of the robot is compared with the
position of goal, when their difference is less than the preset
threshold, robot will stop.

This navigation system is convenient and cheap to
configure. It is able to assist the robot get the goal position

appointed in the program at the beginning with less than 0.5
meter errors.

REFERENCES
[1] Chenavier, F., Crowley, J.,“ Position Estimation for a Mobile Robot

Using Vision and Odometry” . Proceedings of IEEE International
Conference on Robotics and Automation, Nice, France, May 12-14, pp.
2588-2593. 1992

[2] Eric Krotkov, Martial Hebert, and Reid Simmons. “Stereo Perception
and Dead Reckoning for a Prototype Lunar Rover”. Robotics Institute
Carnegie Mellon University

[3] ZHANG Guo-wei, Lu Qiu-hong,“A Path-planning algorithm of mobile
robots Based on Stereo Vision”, 2008 sino-European Workshop on
Intelligent Robots and System,2008.12

[4] Borenstein, J., Koren, Y., “Motion Control Analysis of a Mobile
Robot.Transactions of ASME”, Journal of Dynamics, Measurement
and Control, Vol. 109, No.2, pp. 73-79. 1987

[5] Hollingum, J., “Caterpillar make the earth move: automatically”. The
Industrial Robot, vol. 18, no. 2, pp. 15-18. 1991

[6] Evans, J. M., “HelpMate: An Autonomous Mobile Robot Courier for
Hospitals”，1994 International Conference on Intelligent Robots and
Systems (lROS '94). München, Germany, September 12-16, pp. 1695-
1700. 1994

[7] Siegwart,R., Nourbakhsh,I.R., “Autonomous Mobile Robots”. Press
of Xi’an Jiaotong University，2006,9

[8] Cox, I. J.,“ Blanche — An Experiment in Guidance and Navigation of
an Autonomous Robot Vehicle”. IEEE Transactions on Robotics and
Automation, vol. 7, no. 2, April, pp. 193-204. 1991

[9] Congdon, I. et al., CARMEL Versus FLAKEY — A Comparison of
Two Winners”. AI Magazine Winter, pp. 49-56. 1992

[10] Barshan, B., Durrant-White, H.F., “An Inertial Navigation System for a
Mobile Robot. Proceedings of the 1st IAV”, Southampton, England,
April 18-21, pp. 54-59. 1993

[11] Barshan, B., Durrant-White, H.F., “Orientation Estimate for Mobile
Robots Using Gyroscopic Information”. 1994 International Conference
on Intelligent Robots and Systems (lROS '94). München, Germany,
September 12-16, pp. 1867-1874. 1994

[12] Point Grey Research Corporation. Bumblebee Stereo Vision Camera
Systems. 2007,9

	I. INTRODUCTION
	II. Positioning Algorithm
	A. Dead-reckoning Positioning Technique
	B. Compass Positioning Technique
	C. Complex Positioning Technique

	III. Environment Mapping
	A. The Principle of Stereo Vision
	B. Transformation of Coordinates
	C. Mapping

	IV. PATH-PLANNING ALGORITHM
	A. Obstacle evaluation
	B. Path Choosing

	V. BEHAVIOR-BASED NAVIGATION ALGORITHM
	VI. Conclusions
	References

