
Journal of Control Engineering and Technology (JCET) 

DOI 10.5963/JCET0201005 
 
 
 

JCET Vol.2 No.1 January 2012 PP.30-35 www.ijcet.org ○C World Academic Publishing 
 

Wavelet Sliding Mode Control of Uncertain Nonaffine 
Nonlinear Discrete Time Systems 

A. Kulkarni, S. Puntambekar, V. Gupta 
Medicaps Institute of Tech. & Mgmt Indore, India 

 a.kulkarni17@gmail.com 
puntambekar180878@yahoo.co.in 

er_vinitgupta@rediffmail.com 

  
Abstract-In this paper, a wavelet based adaptive sliding mode 
control is designed for a class of discrete time uncertain nonlinear 
nonaffine systems. An equivalent affine like structure is first 
developed form the original nonaffine system and subsequently a 
wavelet based adaptive sliding mode tracking control scheme is 
developed for the affine like system.      Wavelet neural network 
(WNN) is used to mimic the uncertainties present in the system. 
Proposed scheme is derived to guaranty the necessary and sufficient 
reaching condition for sliding mode control in presence of modeling 
uncertainties and mathematical inaccuracies. A numerical example 
is provided to verify the effectiveness of theoretical development. 

Keywords-Adaptive sliding mode control; wavelet networks; 
discrete time nonlinear systems  

I. INTRODUCTION 
Over last few years, several efforts on the development of 

adaptive control strategies for uncertain discrete time nonlinear 
systems have been cited in the literature.  In these cases the 
common assumption was that the system is affine in input [1, 2]. 
However for discrete time nonaffine systems these strategies are 
not directly applicable. Commonly used strategy for this class of 
systems is to obtain an affine like structure for the original non 
affine discrete time system and subsequently a control strategy is 
developed [3,4].            

Sliding mode control (SMC) is an efficient controlling 
strategy for uncertain systems. Along with order reduction other 
features offered by this control strategy are fast response, 
insensatization towards uncertainties and disturbances. The SMC 
is variable structure control algorithm which drives state 
trajectories toward a specific hyperplane and maintains the 
trajectories sliding on hyperplane until the origin of the state 
space is reached [20]. Few effective strategies for the 
development of SMC algorithms for discrete-time systems have 
been sited in the literature. These schemes preserve the 
distinguished features of sliding mode control and at the same 
time limits the undesired effects of chattering [5-11]. 

Modeling uncertainties and mathematical inaccuracies 
usually degrades the performance of the controller, especially for 
nonlinear and complex control problems [12, 13].In such cases, 
some system identification tool is augmented with baseline 
controller. Neural Networks (NNs) have been proved a very 

efficient system identification tool due to its universal 
approximation property and learning capability [13]. Recently 
some researchers are inclined towards the development of 
adaptive control strategies using wavelet neural network as a 
system identification tool [17-19]. A wavelet network consists of 
single layer of translated and dilated versions of mother wavelet 
function. Wavelet Neural Networks are having superior 
approximation capabilities than conventional neural networks 
due to features like orthogonality, multiresolution, space and 
frequency localization properties [14, 15].  

In this work a wavelet based adaptive sliding mode control 
scheme is proposed to solve the tracking control problem of 
uncertain discrete time nonaffine nonlinear systems. Inspired by 
the approximation capabilities of the wavelet neural networks, 
this work utilizes the WNN as system identification tool.  

The paper is organized as follows: section II highlights the 
approximation features of WNN, system formulation is 
described in section III and controller designing and stability 
aspects are discussed in section IV. Effectiveness of the 
proposed strategy is illustrated through an example in section V 
while section VI concludes the paper. 

II. FUNDAMENTALS OF WAVELET NETWORKS 

A)  Wavelet Neural Network 
Wavelet network is a single layer network consisting of 

translated and dilated versions of orthonormal father and mother 
wavelet function. Basis functions are used in wavelet network 

span 
2 ( )L ℜ  subspace. Due to its universal approximation 

property any function 
2( ) ( )f x L∈ ℜ  can be approximated by 

linear combination of basis functions [10-11].  

Orthonormality is a promising feature of wavelet bases, it 
assures that coefficient needed for reconstruction of any function 
are fixed and unique and can be tuned independent of other 
wavelet bases.   

Wavelets are derived from the basic requirement of 
multiresolution analysis, which provides a mathematical 
framework to describe the increment in information from coarse 
approximation to finer approximation. Multiresolution analysis 
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is basically a decomposition of space
2 ( )S L∈ ℜ , with following 

properties [16] 

(a) Whole space S is constructed as a sequence of nested and 

closed finite dimensional subspace iS  

1 0 1 2           S S S S n Z−⊂ ⊂ ⊂ ⊂ ⊂ ∀ ∈    

(b)
{ }0n

n Z

S
∈

=


 

 (c)
2 ( )n

n Z

S L
∈

= ℜ


 

 So any function f S∈  can be approximated with desired 

accuracy by its projection i if P f= on iS , i.e., 
lim ii

f f
→∞

=
. 

(d)

1( ) (2 )

( ) ( 2 )
i i

i
i i

f x S f x S
f x S f x k S

+

−

∈ ⇔ ∈
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(e) Multiscale structure provides an orthogonal split of 
1iS + into low and high frequency parts  and i iS W  respectively. 

1i i iS S W+ = ⊕  
    if 

     if    
i j

i j

W W i j
W S j i

⊥ ≠

⊂ >  

 Decomposition of the whole space S can be expressed as 

1 2 0 1i i i iS S W W W W W− − −= ⊕ ⊕ ⊕ ⊕ ⊕   
Normally, the wavelet bases are derived using dyadic 

translation and binary dilation of scaling function Sφ ∈  and 
wavelet function Sϕ ∈ . At any resolution j  

/ 2( ) 2 (2 )      ,j j
jq x x q j q Zφ φ= − ∈  

{ }( ),j jqS span x q Zφ= ∈
 

and 
/ 2( ) 2 (2 )      ,j j

jq x x q j q Zϕ ϕ= − ∈  

     { }( ),j jqW span x q Zϕ= ∈
 

It follows that any function ( ( ))f x k  in S can be expressed 
as a wavelet series expansion 

2 2

, ,
1 1

( ( )) ( ( )), ( ( )) ( ( ))
N M

j q j q
j N q M

f x k x k f x k x kφ φ
= =

= ∑ ∑
                       (1) 

Convergence of the wavelet series can be expressed as 

2 2

, ,1, 1 1 12, 2

lim ( ( )) ( ( )), ( ( )) ( ( )) 0       
N M

j q j qN M j N k MN M

f x k x k f x k x kϕ ϕ
→−∞

= =→+∞

− =∑ ∑
(2) 

For nonlinear system modeling the structure of the wavelet 
network can not be taken infinitely large so truncating the 
wavelet series to finite numbers of resolutions and translates at 
each resolution the above expression can be approximated as 

2

, ,
1

( ( )) ( ( )), ( ( )) ( ( )) ( ( ))       
j

j

MN

j q j q
j J q M

f x k x k f x k x k x kφ φ ε
≥ =

= +∑ ∑
   (3) 

where J is lowest resolution, N ∈  represents the highest 

resolution while 
1 , , 2j jq M M = ∈  

 represents the number 

of translates at jth  resolution and ( ( ))x kε  is the approximation 
error defined as    

2

, ,
1

( ( )) ( ( )) ( ( )), ( ( )) ( ( ))       
j

j

MN

j q j q
j J q M

x k f x k x k f x k x kε ϕ ϕ
≥ =

= − ∑ ∑
  (4) 

Owing to the property of multi resolution analysis (3) can be 
expressed as 

2

, ,
1

2

, ,
1

( ( )), ( ( )) ( ( ))

(( ( )))   (5)
( ( )), ( ( )) ( ( )) ( ( ))

J

J

j

j

M

J q J q
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j q j q
j J q M
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φ φ

ϕ ϕ ε
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≥ =

 
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∑
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For a function of the form ( ( )) : nf x k ℜ → ℜ , wavelet 
network model can be extended to multidimensional wavelet 
network by tensor product of single dimensional wavelet bases 
[13]. 

, , , ,
1 1
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n n
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(7) 

where , ( )J q kα , ( )j q kβ are weights of wavelet basis functions  

Now (7) can be rewritten as  

( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ))T Tf x k k x k k x k x kα φ β ϕ ε= + +             (8) 

where 

1 2,..,
J J

T

JM JMk k k α( ) = α ( ) α ( )  and
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1 2 1 2, , , , ,
J J N N

T

JM JM NM NMk k k k kβ β β β β ( ) = ( ) ( ) ( ) ( )   

 are 
the scaling and wavelet weight vectors respectively. 

1 2
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ϕ

ϕ ϕ
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 
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and 1 2( ( )) ( ( )),.., ( ( ))
J J

T

JM JMx k x k x kφ φ φ =   are wavelet and 
scaling vectors respectively.  

It can be shown that, for an arbitrary constant 0λ > , there 

exist a finite integer NJ  and real constant optimal weight vectors 
*, β∗α  such that the unknown nonlinear function ( ( ))f x k  can 

be approximated as follows       
22

* *
, , , ,
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where ( ( ))x kε  denotes the approximation error and is assumed 

to be bounded by ( ( ))x kε λ≤ and Ω  is a compact set. 

Optimal parameter vectors needed for best approximation of 
the function are difficult to determine so defining an estimate 
function as 

ˆ ˆˆ( ( )) ( ( )) ( ( ))T Tf x k x k x kα φ β ϕ= +                                    (10)                                                

where
ˆˆ , βα  are the estimates of 

*, β∗α respectively. Defining the 
estimation error as           

{ }
ˆ( ( )) ( ( )) ( ( ))

( ) ( ( )) ( ( )) ( ( ))T T

f x k f x k f x k

k x k k x k x kφ β ε

= − =

α + ( )ϕ +







            (11)                                

where     
ˆˆk k k kβ β β∗ ∗α( ) = α − α( ), ( ) = − ( )

                            

By properly selecting the number of resolutions, the 

estimation error ( ( ))f x k

 can be made arbitrarily small on the 

compact set so that the bound 
( ( ))f x k

 ≤ mf holds for 
all  nx ∈ Ω ⊂ ℜ .  

The residual part ( )xε  can be assumed to be bounded by a 
linear in parameter function 

( ( )) ( )Tx k z kε γ≤                                                              (12) 

where  
4γ ∈ℜ  represents unknown optimal weight vector while 

ˆˆ( ) 1, ( ) , ( ) ( ) , ( ) ( )
T

z k x k x k k x k kα β =   .  Assuming that 

ˆ( )kγ  be the estimate of γ , estimation error will be 
ˆ( ) ( )k kγ γ γ= −  .Adaptation laws for the online tuning of 

ˆ垐( ), ( ) and ( )k k kα β γ  will be derived in following section. 

III. SYSTEM FORMULATION 
Consider a discrete time nonlinear nonaffine system of the 

form  

1 2

2 3

1

( 1) ( )
( 1) ( )

( 1) ( ( ) ( ))
( ) ( )
n

x k x k
x k x k

x k g x k u k
y k x k

+ =
+ =

+ =
=



                                                (13) 

where [ ]1 2( ) ( ), ( ),..., ( ) , ( ) , ( )T n
nx k x k x k x k u k y k= ∈ℜ ∈ℜ ∈ℜ   

are state vector, control input and output respectively.  
1( ( ), ( )) : ng x k u k +ℜ → ℜ  is the unknown nonlinear function of 

state variable and input. In this work unknown system dynamics 
is approximated by a wavelet network. 

By applying the transformation, system (13) can be 
expressed in an affine like form   

1 2

2 3

1

( 1) ( )
( 1) ( )                                                               (14)

( 1) ( ( ) ( )) ( ) ( ) ( ( ), ( )) ( )
( ) ( )
n

x k x k
x k x k

x k g x k u k u k u k f x k u k u k
y k x k

+ =
+ =

+ = − + = +
=



 

In transformed system (14), uncertainty ( ( ), ( ))f x k u k is 
approximated by a wavelet network.  

The objective is to design adaptive sliding mode controller to 
achieve the desired tracking performance simultaneously 
nullifying the effect of modeling inaccuracies. 

IV. WAVELET SLIDING  MODE  CONTROLLER DESIGN 

Let ( ) n
dy k ∈ℜ  be the desired trajectory vector and 

assuming that its past values for previous ( 1)n −  instances are 
known. 

Defining the state tracking error vector 

( ) ( ) ( )de k x k y k= −                                                                  
(15) 

with ( ) ( ) ( )        1, ,i i de k x k y k i n i n= − + − =                                                      

So the error dynamics of the system (13) becomes  
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1( 1) ( )    1 1
( 1) ( ( ), ( )) ( ) ( 1)

i i

n d

e k e k i n
e k f x k u k u k y k

++ = ≤ ≤ −
+ = + − +                    (16) 

A linear functional sliding surface is defined as 

( ) ( )s k ce k=                                                                               
(17) 

where [ ]1 2, , , n
nc c c c= ∈ℜ  is a vector of positive constant 

values, selected such that the poles of the systems are located 

inside the unit circle. Then ( 1)s k +  is defined as 

1 2 2 3 1( ) ( ) ( ) ( ( ), ( ))
( 1)

( ( ) ( 1))
n n n n

n d

c e k c e k c e k c f x k u k
s k

c u k y k
−+ + + + 

+ =  + − + 



                                                                                                               
                                                                                                     

(18) 

In this expression the component ( ( ), ( ))n nc f x k u k is modeled 
by using a wavelet network. 

For discrete time systems an inequality of the form 

[ ]( ) ( 1) ( ) 0s k s k s k+ − <                                                          
(19) 

is necessary but not sufficient condition to be used as reaching 
law, as it does not assures the convergence towards the sliding 
surface.  

In order to assure reaching condition constraint imposed by 
following inequality is also required to be satisfied  

( 1) ( )s k s k+ <                                                                        
(20) 

By combining (18) and (19) an efficient sliding mode control 
law can be constructed. [6] 

 Defining the control effort as  

( ) ( ) ( )eq ru k u k u k= +                                                               
(21)          

                                                              where the equivalent 
control tern is defined as  

1 2 2 3 1
1( 1) ( ( ) ( ) ( )

( )
ˆ ( ( ), ( )) ( ))

d n n
neq

d

y k c e k c e k c e k
cu k

f x k y k s kµ

−
 + − + + + − 

=  
 − 



 (22) 

here 
ˆ ( ( ), ( ))df x k y k is the wavelet approximation of uncertain 

term ( ( ), ( ))n nc f x k u k  and 0 1µ< <  . 

The robust control term is defined as  

1 ˆ( ) ( ( ) ( )sgn( ( )))T
r

n

u k k z k s k
c

γ= −
                    

(23) 

With the help of the proposed tuning laws presented in the 

next part of this section, the error term ( )f k  is reduced to a 
small arbitrary value which is further attenuated by robust 

control term ( )ru k . 

Weight update rules for wavelet network parameters and 
weight parameters for adaptive approximation of residual term 
are based on Lyapunov based adaptation methodology and are 
given as 

垐�( 1) ( ) ( )
垐�( 1) ( ) ( )
垐�( 1) ( ) ( )

k k k

k k k
k k k

α α α

β β β
γ γ γ

+ = + ∆

+ = + ∆
+ = + ∆

1

2

3

( ) ( ) ( ( ))
( ) ( ) ( ( ))
( ) ( ) ( )

k s k x k
k s k x k
k s k z k

α τ φ
β τ ϕ
γ τ

∆ = −
∆ = −

∆ = −                                                  
(24) 

where 1 2 3, ,τ τ τ  are the learning rates with positive constants.  

Theorem: For the system of the form (13), with sliding 
surface (17) , if weight parameters are adaptively tuned as per 
laws proposed in (24) then the wavelet based sliding mode 
control law (21), (22) and (23) guarantees the convergence of 
every trajectory of closed loop system to the sliding surface 
satisfying the inequalities (19) and (20). 

V. PROOF: CONSIDER A FUNCTION OF THE FORM 

1

2 3

1( ) ( )( ( 1) ( )) ( )( ( 1) ( ))

1 1( )( ( 1) ( )) ( )( ( 1) ( ))      (25)

T

T T

V k s k s k s k k k k

k k k k k k

α α α
τ

β β β γ λ γ
τ τ

∆ = + − + + − +

+ − + + −

  

   

 

    
Substituting control law ( )u k (21), (22) in above equation 

1

2 3

1
垐( ) ( )( ( ) ) ( )( ( 1) ( ))

1 1垐 垐( )( ( 1) ( )) ( )( ( 1) ( ))

T
n r

T T

V k s k f s k c u k k k

k k k k k k

µ α α α
τ

β β β γ γ γ
τ τ

∆ = − + + + − +

+ − + + −









1

2 3

1 ˆ( ) ( )( ( ( )) ( ) ) ( ) ( )

1 1ˆ ˆ( ) ( ) ( ) ( )

T
n r

T T

V k s k f x k s k c u k k

k k k k

µ α α
τ

β β γ γ
τ τ

∆ = − + + ∆ +

∆ + ∆









 

Substituting ( ( ))f x k

(11) and adaptation laws for 
ˆˆ ( ) and ( )k kα β∆ ∆   (24) in above equation, 

3

1 ˆ( ) ( )( ( ( )) - ( ) ) ( ) ( )T
n rV k s k x k s k c u k kε µ γ γ

τ
∆ = + + ∆
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2

3

1 ˆ( ) ( ( )) - ( ) ( ) ( ) ( )T
n rs k x k s k c u s k k kε µ γ γ

τ
≤ + + ∆

 

Substituting ( ( ))x kε (12) in above equation 

2

3

1 ˆ( ) ( )- ( ) ( ) ( ) ( )T T
n rs k z k s k c u s k k kγ µ γ γ

τ
≤ + + ∆

2

3

1
垐( ) ( ( ) ( )) ( )- ( ) ( ) ( ) ( )T T T

n rs k k k z k s k c u s k k kγ γ µ γ γ
τ

≤ + + + ∆ 

 
Substituting ru  and adaptation laws for ˆ( )kγ∆  (23) in above 
equation  

2- ( )s kµ≤                                                                          (26) 

Therefore ( )V k∆  is negative which implies the convergence 
of system trajectories to sliding surface and   boundedness of all 
the closed loop signals. 

VI. SIMULATION RESULTS 
Simulation is performed to verify the effectiveness of 

proposed wavelet based sliding mode control strategy. 
Considering a system of the form 

1 2

2 3

1 1 2
3 2

12

1

( 1) ( )
( 1) ( )

0.62 ( )sin(2 ( )) 0.1 ( ) ( )
( 1) sin( ( ))

(10 ( ))10 ( )
( ) ( )

x k x k
x k x k

x k x k x k u kx k u k
x kx k

y k x k

+ =
+ =

+ = + +
++

=                                                                                           
(27) 

System belongs to the class of discrete time uncertain 
nonlinear systems defined by (9) with 3n = .The sampling   time 
T  is taken as 0.05 sec . The proposed controller strategy is 
applied to this system with an objective to solve the tracking 
problem of system. 

The desired trajectory is taken as 

0.8sgn(sin1.3 )            0  400
sin(.5 )                      400 500 
cos(.5 )                 501 600 
0.7sgn(sin 2 )             600< 800
0.8cos(1.5 )              800 1000

d

kT k
kT k

y kT k
kT k

kT k

π
π
π

π
π

≤ ≤
 < ≤= < ≤

≤
< ≤



                  (28) 

Initial conditions are taken as ( ) [ ]0 1.8,1.2,1.5 Tx = .          
Controller parameters are taken as [0.1,0.075,0.234]; 0.1c µ= = . 
Wavelet network used for modeling the uncertainties is 
constructed by using three dimensional Daubechies wavelet 

(db3), J is kept 2 with 2 7
J

M =
 while N  is selected as 5 and 

translates are made double when resolution is increased 

by1 .Wavelet parameters for wavelet network are tuned online 
using the proposed adaptation laws, initial conditions for all the 
wavelet parameters are set to zero. To avoid chattering 
sgn( ( ))s k is replaced by following saturation function 

( )                ( ) 0.05
( )

sgn( ( ))         ( ) 0.05

s k s k
r k

s k s k

 ≤= 
>                         (29) 

 Simulation results are shown in Fig.1 and Fig.2. Fig.1 
reflects the efficient tracking performance of the proposed 
controller scheme. Due to fast and efficient learning ability of 
wavelet network, system response rapidly tracks the desired 
trajectory with rapidly decaying transient observed during initial 
phase of the simulation. Tracking efficiency of the proposed 
scheme is also illustrated by inserting bounded spikes in the 
desired trajectory. Fig.2 shows tracking error and sliding 
function for the system under consideration. As observed from 
the figure tracking error and sliding surface are always close to 
zero.  
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Figure 1  System Output and Control Effort 
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Figure 2  Tracking Error and Sliding Surface 

VII. CONCLUSION 
A wavelet based sliding mode control scheme is proposed for 

a class of discrete time uncertain nonlinear systems. Wavelet 
networks are used for approximating the uncertain system 
dynamics. Adaptation laws are developed for online tuning of 
the wavelet parameters. The theoretical analysis is validated by 
the simulation results. 
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