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Abstract-A novel modal space controller is developed for 
hydraulically-driven Stewart platforms. By exploiting properties 
of the joint-space inverse mass matrix of hydraulically driven 
Stewart platforms, through a mapping of the control and 
feedback variables from the joint space to the decoupling modal 
space, the new method transforms the highly coupled six-input 
six-output dynamics into six independent single-input single-
output (SISO) 1-DOF hydraulically driven mechanical systems. 
On the basis of the conventional joint space controller, a novel 
modal space control concept leads to a design method of modal 
space control with dynamic pressure feedback, which is used to 
solve the problem that the conventional controller could not 
make a damping on each degree of freedom separately. 
Simulation results indicate that the proposed controller is 
practical and yields good performance. 

Keywords-Stewart Platform; Decoupled Control; Pressure 
Feedback; Modal Space; Flight Simulation 

I. INTRODUCTION 

Hydraulically driven Stewart platforms [1] with 
advantages of high power-weight ratio, load carrying capacity, 
positioning accuracy, fast response, and high rigidity, have 
been widely used in various applications. A Stewart platform 
is a highly coupled system with complicated nonlinearities, so 
its control is very difficult. It is the characteristics of this 
mechanism that justifies the enormous attention paid to its 
diverse control strategies from various angles. These control 
strategies can be placed into two categories: joint space 
control (JSC) and task space control (TSC) [2], [3]. Further, 
these can also be divided into kinematics based control in 
terms of inverse and forward kinematics information, and 
dynamic model based control [4]-[7] which requires detailed 
system/model knowledge. The computed torque, inverse 
dynamics method and feedback linearization belong to the 
latter.  

However, the most popular control in the industrial 
applications is the inverse kinematic control due to its ease of 
implementation and safety logic design. With this method the 
controller is designed in joint space, assuming that the 
coupling effects between the actuators are negligible or just 
taken as external disturbance [8]. Usually a compromise has 
to be found between control performance and stability, so it is 
difficult to improve the performance to a higher level. 
However it is of great industrial significance to study on a 
novel joint space control strategy combined with extensive 
system/model knowledge for hydraulically driven Stewart 
platforms [7]. 

Several researchers has investigated coupling effects 
between actuators by exploiting properties of the joint-space 
inverse mass matrix [9]-[12], thus developed some decoupled 
control strategies [9]-[11] for a Stewart platform.  

McInroy [9], [10] proposed two decoupling algorithms by 
combining static input-output transformations with hexpod 
geometric design. Chen [11] loosened and removed severe 
constraints of prior decoupling methods on the allowable 
geometry and payload, thus greatly expanded the applications, 
and then proposed a decoupled control method applied to 
flexure-jointed hexapods for micro precision and vibration 
isolation applications, which have very limited stroke and no 
need to include typical position dependent nonlinearities. 

The above control methods also can be extended to be 
applied to the controlling of hydraulically driven Stewart 
platforms, but all these require great modifications to deal 
with pose dependent nonlinearities and dynamics of hydraulic 
actuators.  

Hoffman [12], however, has already showed that the 
hydraulically driven specific Stewart platform in any positions 
has six independent directions, a set of Eigen vectors, with the 
characteristics as described for the one degree of freedom 
system [4]. So it is possible to apply the methods and theories 
well suited for single DOF hydraulic mechanical systems to 
analyze and design the Stewart platform with the combination 
of decentralized feedback. 

Plummer [13] put forward a modal control approach 
which can improve dynamic response of the flight simulator 
motion system. The modes of vibration of the system are 
controlled individually. These modes are dependent on the 
inertial properties of the platform and the compliance of the 
actuators. 

For hydraulically driven Stewart platforms, a pressure 
feedback technology together with a joint space controller can 
be used to damp the system and to broaden the system 
bandwidth [8], [12]. If designing the pressure feedback in 
joint space, without considering coupling effects between all 
the actuators, even if it does work to a certain extent, one can 
only attenuate the resonance peaks of the lower Eigen 
frequencies of six rigid modes properly, and the peaking 
points of other relative higher Eigen frequencies will be over 
damped [4],[12]. So the resulting controlled system has a 
bandwidth corresponding to the lowest Eigen frequency [4]. 
This also exists in dynamic pressure feedback. Consequently 
this feature limits its applications significantly.  

The technique presented here is an approach to design and 
tune the dynamic pressure feedback in decoupled modal space, 
and also is a proper solution to solve the above problems. 
With this method, each degree of freedom can be almost 
tuned independently and their bandwidths are totally raised 
near to the Eigen frequencies. Therefore the decoupled 
method proposed by [11],[12] is needed to transform the 
Stewart platform into six independent single DOF 
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hydraulically driven mechanical system, so this allows the 
dynamic pressure feedback to be designed and tuned in 
decoupled modal space.  

II. MODELLING 

In this section, the joint space dynamic model of a 6-dof 
electro-hydraulic Stewart platform servomechanism is 
developed.  

A. Stewart Platform Dynamics 

This is a six DOF closed kinematic chain mechanism 
consisting of a fixed base and a moveable platform with six 
electro-hydraulic actuators supporting it, see Fig.1 and Fig.2. 
At neutral position the body axes {M} attached to the 
movable platform are parallel to and coincide with the inertial 
frame {B} fixed to the base. 

 

Fig. 1 Schematic view of a hydraulically driven Stewart platform 

 
Fig. 2 Top view of a Stewart platform 

The Stewart platform studied in this paper is a typical 
multi rigid bodies system. Without considering elasticity of all 
the parts, and taking upper and lower joints as ideal ones, the 
Stewart platform consists of fourteen rigid bodies in total. 

Among them thirteen bodies are movable. In Fig.2, ia  
denotes the 3×1 vector of upper joint center point in body 

axes, ib  represents 3×1 vector of the lower joint center point 
in fixed base frame , and the sub index i is the actuator 
number. 

The equations of motion of the platform are derived using 
Kane’s method [4] and are written as 

T( , )t t t t l,x a   M q B q C q q q G J f                       (1) 

where, T[ x y z ]  q is the 6×1 vector of the 
platform position with respect to the fixed base frame, and 
contains translation and Euler angles. q  and q are the 6×1 
platform velocity vector and acceleration vector respectively, 
and both of them contain translation and angular components. 

af is the 6×1 vector of actuator output forces. tM is the 6×6 
mass matrix found in the base frame, and is described by 
Eqs.(A.1) in Appendix A with consideration of the inertial 
effects of the actuators. tB is the viscous friction 

coefficients. ( , )tC q q  is the 6×6 Coriolis/centripetal 

coefficients matrix. tG  is the gravity terms described in detail 

as Eqs. (A.2) in Appendix A. xlJ  is 6×6 Jacobian matrix 
relating the platform movements to the actuators length 
changes in joint space.  

For ease of control analysis and design, Coulomb, 
Coriolis/centripetal terms are not shown in this system and 
neither is the gravity term. Assuming that the system is 
proportional damping, then Eq.(1) is simplified as 

T
lx a tJ f M q                                    (2) 

Substituting lx J q l  into Eq. (2), we have 

   1T 1- -
a lx t lxf J M J l                               (3) 

where, l  is the 6×1 acceleration vector of the actuator length 
changes. The mass matrix, 1T 1- -

act lx t lxM J M J  known as the joint 
space mass matrix, as seen from the actuators contains the 
platform pose q  dependent Jacobian matrix and an almost 
constant platform mass matrix tM [4]. Then Eq. (3) is 
rewritten as 

lfJMJfM  
a

T
lxtlxa

-
act

11
                         (4) 

This Joint Space mass matrix determines the coupling 
effects between the actuators. Since the mass matrix is 
symmetric the eigenvector matrix can be made unitary. This 
results from the singular value decomposition 

T1 UUΣM -
act                                         (5) 

where,   T

1 2 3 4 5 6diag σ σ σ σ σ σΣ are 

singular values, and U  is a pose dependent unitary orthogonal 
matrix. One can get its linearised version for ease of real time 
implementation, under the assumption that all six actuators 
are identical and have the same mass, damping and stiffness, 
i.e. at neutral position all other matrix is a scalar times an 
identity matrix. This still holds if decentralized (diagonal 
feedback structure) is applied [4]. 

B. Hydraulic Modeling in Joint Space 

In this section, the basic structure of a hydraulically driven 
Stewart platform is given in Fig.3. The hydraulic servo valves 
are simplified as proportional gains under an assumption that 
their frequency bandwidths are far beyond the hydraulic 
actuators. With the consideration of the servo valve flow rate, 
leakage, hydraulic capacity, piston movement etc., the flow 
continuity of the chambers of the actuators is also shown here. 
The payload pressure LP , derived from the pressurization of 
the hydraulic actuators, acts on the effective operational area 

pA of the actuators, and generates the forces to move the 
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platform. The dynamic model of a Stewart platform described 
by Eq. (4) in joint space, is included here. The gravity term is 
considered and transformed into joint space by Jacobian 
matrix. The Coriolis/centripetal nonlinear terms are not 
included in this structure, which will be taken as uncertain 
external disturbance in control design. Here the system 
characteristics will be analyzed through linearization at 
neutral position and a decoupling transformation. Considering  

T
lxtlx JMJ 1

s

1

s

1 l l
s

1

cBceK

PA

qKaK Cui lLP

GJ T
lx

1

PA

 
Fig. 3 Joint space dynamic model of a hydraulically driven Stewart platform 

Eq. (4), the dynamic characteristics of the ith actuator, we can 
get  

  ij a,j
-
act lfi,j  


6

1

1M
                        (6a) 

where  1-

act i, jM  represents the element at the ith row and jth 

column of the inverse mass matrix in joint space, a, jf is a 

scalar describing the output force of actuator j, il
 is a scalar 

denoting the acceleration of the ith actuator length changes, 
and , 1 2 6i j ,  . 

Taken Laplace transforms, the flow continuity equation of 
the jth actuator is 

, ,

1
a q u j j p ce L jk k i l A s s k P

c
    
 

           (6b) 

where, ak is the control gain, qk , ,u ji are the flow rate 

coefficient and input current of the servo valve respectively, 

jl , pA , c , cek , ,L jP are the length, operational area, hydraulic 

capacity, general ratio of flow rate to pressure, payload 
pressure of the actuator, the sub index j stands for the actuator 
number, s is Laplace derivative operator.  

The net output force of the jth actuator is given as 

, ,a j p L j c jf A P b l s                       (6c) 

where, cb is the viscous damping coefficient.  

Rearranging Eq. (6b), the pressurization of the jth actuator 
chamber can be described by 

,
, 1

a q u j j p
L j

ce

k k i l A s
P

s k
c






                      (6d) 

Combining Eqs. (6a-6d), we have the dynamic equations 
in joint space as 

 
, 2 2

6 -1 2

1

2 2

1

,
1

c ce c
a q u j p j

p p

act ij
ce

p p

b k b
k k i A s s l

A cA
M i j l s

k
s

cA A



  
         

 
 
 


(7) 

Further the dynamic math model of all the six actuators is 
written as  

1 1
6 62 2 2 2

1
1 - -ce c ce c

act a q act u p
p p p p

k b k b
s s s s k k A

cA A A cA

    
                

E M l M i (8) 

where, 6 6E is a 6×6 identity matrix,  u u, jii ,  jll  with 

1, 2 6j   . Defining the new variables Tˆ l U l ， Tˆ
u ui U i , 

substituting them into Eq.（8）， the dynamic model in 
modal space is given by 

2
6 6 6 62 2 2 2

1 ˆˆ1c ce c ce
a q p

p p p p

b k b k
s s s k k A

cA cA A A 

    
                

uE E Σ Σ l Σi
(9) 

Defining 6 6c C E , c 6 6cb B E , 6 6ce cek Κ E , 
q 6 6qk K E  and 

a 6 6ak K E , Eq.9 can be rewritten into a more generalized 
form. 

pqacec
p

ce
p

c
-

p

-

p

A
AAA

s
A

ss uiΣKKlΣKBEΣKBCC ˆˆ1111
2662

1
2

1
2

2 
































 

    (10) 
So along with the modal directions, the system is 

decoupled into six third-order subsystems in parallel, each of 
them consisting of one integrator in series with one second-
order system and having the same form as a single DOF 
hydraulically driven mechanical system. Then the ith order 
rigid mode can be described by 

2
2 2 2 2

1 ˆ ˆ1c ce c ce
i a q u,i p

p i p i p p

b k b k
s s s l k k i A

cA σ cA σ A A

    
                

   (11) 

Since usually the term
2

1c ce

p

b k

A


, thus the undamped Eigen 
frequencies h  can be considered according to the rigid modes 
and mainly determined by the hydraulic capacity, c, and the 
singular values of the inverse mass matrix, Σ .  

 1 2 6

T

h pA c                          (12) 

These singular values can be interpreted as the inverse of 
the generalized masses, which the actuators will have to 
accelerate in moving along the six orthogonal directions 
described by the columns of the unitary decoupling matrix U 
[4]. 

So far, with decoupled six SISO systems, it is possible to 
apply the methods and theories well suited to a single DOF 
hydraulic mechanical system to analyze and design the 
Stewart platform with the combination of decentralized 
feedback. 

For a single DOF hydraulically driven mechanical system 
with only mass payloads, its open loop transfer function is a 
type I system with respect to input signals, and a type 0 
system with respect to external disturbing forces [15]. 
Therefore, the tracking error ( )Y s  of each decoupled 
channel, caused by inputs ( )pR s  and external disturbance 

forces ( )F s , can be described by  

, , ,( ) ( ) ( ) ( ) ( )i e i p i ef i iY s s R s s F s          (13) 

with,  

,2
2

,,

,

,2
,2

,,

21
1

( )
21 ˆ1

h i

h ih i

e i

h i
a i q

h ih i

s s s

s

s s s k k







 
   

  
 

    
 

 

2

,

,2
,2

,,

1
1

21 ˆ1

ce

p cei
ef i

i h i
a i q

h ih i

k s
A ckY

F
s s s k k




 
 

    
 

    
 
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where, ,
ˆ

a ik is a scalar denoting the proportional gain in modal 

space. The steady state errors caused by external disturbance 
force can be described with  

2
,

ˆ
i ce

i a i q p

Y k

F k k A
                               (14) 

Theoretically, if external disturbance, such as gravity, can 
be fully compensated, a proportional position control is 
sufficient to achieve a performance without position errors, 
since each decoupled channel is a type I system. To ensure 
that the system is stable and has enough stability margins, the 
forward gain should satisfy the following inequality 
constraints [15].  

, ,
,

ˆ h i h i p
a i

q f

A
k k k

 
                            (15) 

where, fk  is a scalar denoting the position feedback gain.  

III. CONTROL DESIGN 

In this section, first a 1-dof hydraulically driven 
mechanical system is introduced and dynamic pressure 
feedback compensation is discussed. Second, two control 
strategies for a Stewart platform, including a joint space 
control and a modal space control, are summarized. 

A. Dynamic Pressure Feedback for 1-Dof Hydraulically 
Driven Mechanical System 

Now that the system has been decoupled into six SISO 
third order systems, it seems worthwhile to review a hydraulic 
actuator driving a mass. The linearised version from valve 
input to actuator position consists of a slightly damped second 
order system in series with an integrator. When controlled 
with proportional position feedback, only low performance 
can be obtained. To achieve higher bandwidth, the resonance 
of second order system has to be damped sufficiently. This 
can be done by pressure feedback [14], [15]. But the inner 
loop with pressure difference feedback will decrease the 
rigidity of the system. To solve this problem, an alternative 
method can be applied using dynamic pressure feedback, in 
which pressure difference feedback signals are filtered by a 
one-order high pass band filter [15].  

According to the analysis of [15], the dynamic pressure 
feedback correction is equivalent to an acceleration feedback 
without changing the undamped Eigen frequency ih . In this 

manner a closed loop bandwidth approximately equal to ih  

can be attained. 

Defining that h  is the original damping ratio and h  is 

the desired damping ratio, and then the dynamic pressure 
feedback gain dk p can be calculated by  

ihqia

pihh
pd kk

A
k




,

2)(2 
                                 (16) 

The cutting frequency of the high pass filter is assigned 
with

i 3h . A compromise of the damping ratio has to be 

achieved, because the damping ratio with higher value will 
also decrease the close loop bandwidth. 

B. Joint Space Controller  

A conventional joint space controller for a hydraulically 
driven Stewart platform consists of an inverse kinematics 

block and a position servo controller of hydraulic actuators. 
The control structure is shown in Fig. 4. The controller is a 
position control loop with proportional gains and it is 
designed in joint space with neglecting the coupling effects of 
all the actuators. The dynamic pressure feedback correction is 
also included to damp the hydraulic resonance peaks. This 
control strategy is very easy to implement, because there is no 
need to have much more knowledge about dynamic models. 
This can explain its popularity in industrial applications in 
spite of its poor performance. 

 Tdes zyxx  ,,,,,
i

m
ii bcTal  

aK

LP
s

1

dpK

l

c
1

 
Fig. 4 Joint space control with dynamic pressure feedback compensation 

In Fig. 4, the input reference signals are desired platform 
positions which are used to calculate actuator lengths 
commands through an inverse kinematics block, then sent to 
the servo controllers, in which there are three parameters 
required to be tuned, they are the proportional gain aK , cutting 

frequency 1 cτ and dynamic pressure feedback coefficient dpK . 

One can tune these parameters repeatedly until the expected 
performance is achieved according to one’s experiences. 

C. Modal Space Controller 

The structure of the modal space controller as shown in 
Fig.5 is very similar to the conventional joint space control, 
however the signals including control errors, control outputs 
and pressure difference feedbacks are transformed into the 
decoupled modal space by the unitary decoupling matrix, U, 
so the coupling effects between all the actuators are fully 
considered. The proportional gains and dynamic pressure 
feedback functions are also tuned in modal space.  

 Tdes zyxx  ,,,,,
i

m
ii bcTal  

aK

LP
s

1

dpK

l

c
1

TU

TU

U

GJ
Ak

k T
lx2

pq

ce 1

  

Fig. 5 Modal space control with gravity compensation 

The calculation of the unitary decoupling matrix is not 
shown in Fig.5, but this does not mean that it’s the least. In 
addition, the identification of the inertial parameters is needed 
to support the control algorithm fulfilment. The unitary 
decoupling matrix, U, will be chosen from the simplified 
linearised version at neutral position to the more complicated 
pose dependent one. The choosing criterion is to ensure both 
good performance and facilitating the real time 
implementation. In steady state, according to Eq. (14), the 
term of gravity compensation added at the controller output is 
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written as T 1

2

ce
lx

q p

k

k A
J G , so the steady errors caused by gravity 

can be reduced to almost zero [16]. So the control inputs of 
the servo valves can be expressed as 

T T
a,1 a,2 a,6

T

,1 ,2 ,6 T
dp,1 dp,2 dp,6 L

,1 ,2 ,6

T 1
2

diag( k k k )

s s s
diag k k k

s 1 s 1 s 1

u

c c c

c c c

ce
lx

q p

k

k A

  
  



   
  
   
      



i U U e

U U P

J G



 



     (17) 

where, the position error  com je  e l l , the unitary 

decoupling matrix  jkUU , the payload pressure  L LjPP , 

the Jacobian matrix  lx ij
JJ , the gravity term  jGG  with 

, , 1 2 6i j k ,  , 
coml is the actuator length command in terms of 

inverse kinematics. 

For the ease of programming, each element of ui  in Eq. 
(17) is given here as 

6 6 6
,

, , , 2
1 1 1 , 1

c k ce
u i ik jk a k j ik jk dp k Lj ij j

j k k c k q p

s k
i U U k e U U k P J G

s k A


  

   
            
          (18) 

 
Analyzing Eqs.(17,18), when 

,1 ,2 ,6a a ak k k    and 

,1 ,2 ,6dp dp dpk k k   , the modal space controller degenerates 

into the conventional counterpart. 

IV.  SIMULATION RESULTS 

In this section, two control strategies applied to a flight 
simulator motion system are evaluated. Its configuration 
parameters are shown in Table 1. 

TABLE I 

CONFIGURATION PARAMETERS  

 Descriptions Values Units

Ra Distribution Radius of Upper Joint 
Points 

2.1148 m 

Rb Distribution Radius of Lower Joint 
Points 

2.5170 m 

h Platform Height in Neutral Position 2.6519 m 

ms Payload Mass 13642.000 kg 

IXX Moment of Inertia 46477.100 kg m2

IYY Moment of Inertia 49396.100 kg m2

IZZ Moment of Inertia 53865.000 kg m2

Xcg X Component of Mass Center Position 0.000 m 

Ycg Y Component of Mass Center Position 0.000 m 

Zcg Z Component of Mass Center Position -1.772 m 

da Short Section of Upper Platform 0.2286 m 

db Short Section of Fixed Base 0.2285 m 

The setup parameters of hydraulic actuators are shown in 
Table 2. 

TABLE II  

HYDRAULIC ACTUATOR SETUP PARAMETERS 

 Descriptions Values Units 

ia Inertia of Actuator Upper Part around 
Gimbal Point 

76.12 kg m2 

ib Inertia of Actuator Lower Part around 
Gimbal Point 

25.13 kg m2 

ma Mass of Actuator Upper Part 50.34 kg 

mb Mass of Actuator Lower Part 152.69 kg 

ra Mass Center Position of Actuator Upper 
Part Relative to Upper Gimbal Point 

0.993 m 

rb Mass Center Position of Actuator Lower 
Part Relative to Lower Gimbal Point 

0.993 m 

kq Discharge Flow Ratio of Servo Valve 0.00064 m3/s/A 

Ps Supply Pressure 12 MPa 

QN Max. Valve Flow 0.0064 m3/s 

c Hydraulic Stiffness 92564 MPa/ 
m3 

Ap Operational Area 0.0099 m2 

bc Viscous Friction Coefficient 7000 N s m-1

kce General Ratio of Flow Rate to Pressure 6.6564e-
11 

m3/s /Pa

The undamped Eigen frequencies of the motion system as 
shown in Table 3 are calculated using Eq. (11). 

TABLE III 

EIGEN FREQUENCIES 

Modal direction Hydraulic Eigen 
Frequency (Hz) 

1. (-y,rx) Negative Lateral Motion and 
Positive Roll 

9.326 

2. (-x,-ry) Negative Longitudinal Motion 
and Negative Pitch 

9.088 

3. -z , Heave 7.842 
4. Rz , Yaw 6.433 
5. (-y,-rx) Negative Lateral Motion and 

Negative Roll  
2.912 

6. (x,-ry) Positive Longitudinal Motion and 
Negative Pitch 

2.896 

The simulation model is built in Simulink®. It consists of 
six blocks on top level. The first is a signal generator used to 
generate platform trajectories, such as square waves, sine 
waves and band limited white noises. The second is the 
inverse kinematics block used to calculate the actuators 
commands with respect to platform trajectories. The third is 
the hydraulic system block including controller and hydraulic 
actuators model. The fourth is the plant block representing the 
equations of motion built using SimMechanics®, a proven 
copy referring to a demo provided by the Mathworks, Inc, 
with considering actuators inertial effects, gravity and 
Coriolis/centripetal forces. This means that the nonlinearities 
neglected in control analysis and design, are reconsidered in 
simulation stage. The fifth is the forward kinematics block 
used to compute the platform positions from the measured 
actuator lengths in real time, and its algorithm has been 
proven right and practical in reference [4]. The sixth is the 
inverse dynamics block used to calculate the unitary 
decoupling matrix, U and gravity compensation terms, and its 
algorithm is shown in Appendix A. Although that can also be 
found in literature [4], a slight modification is made by just 
considering additional inertial contributions of the lower parts 
rotation of the actuators. 
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Fig. 6 Block diagram of the hydraulically driven Stewart platform 
Next, the resulting performance characteristics of the 

motion system will be outlined. The describing function 
enables the characterization of some of the parameters, which 
are considered most important in control, like bandwidth, 
damping, and interaction in multivariable system [4]. Both the 
amplitude and phase frequency characteristics of the motion 
system from 0.5 to 40 Hz are shown in figures. Direct 
comparison of both the modal space controller and the 
conventional controller is also given. 

The Bode plots of the closed loop system from the desired 
to actual positions applying the basically conventional control 
strategy and the modal space controller at the neutral position 
are shown in Fig.7 and Fig.8.  
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Fig. 7 Frequency response of the modal space controlled motion system  
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Fig. 8 Frequency response of the conventionally controlled motion system  

For the modal space control, it can be seen in Fig.7 that 
the -3dB point can be found at 8 Hz for pitch (ry) and roll (rx), 
4 Hz for heave (z), 3Hz for yaw. In surge(x) and sway(y) the 
bandwidth is just only 1.5 Hz which is the lowest compared to 
other directions. The -90 deg bandwidth can be found at 5 Hz 
for pitch (ry) and roll (rx), 3.5 Hz for heave (z), 3Hz for yaw 
(rz), 1.5 Hz for surge(x) and sway(y). The highest bandwidths 
are attained with pitch (ry), roll (rx) and somewhat lower with 
heave (z). All responses are reasonably flat without peaking 
more than a few percent above 0 dB. 

For reference purposes, a conventional approach was used 
to control the same motion system. The frequency response is 
given in Fig.8. Since there is no compensation for different 
natural frequencies, some responses, like surge (x) and sway 
(y), demonstrate peaks much more than others (such as pitch 
(ry) and roll (rx), which are over damped). Except for surge 
and pitch, the bandwidth is as low as 1.5Hz. 

As expected, with the conventional controller it is 
impossible to tune the bandwidths of the platform position 
loops on each degree of freedom separately. Furthermore, a 
compromise has to be found between peaking (up till 3 dB) of 
the lowest bandwidth loops of surge (x) and sway (y) and the 
over damped response of pitch (ry) and roll (rx). The 2 Hz 
bandwidth of roll (rx) and pitch (ry) is also a maximum 
attainable bandwidth using this control structure being limited 
by the lowest Eigen frequency of the platform. 

With the conventional controller the bandwidth of x and y 
is 2.5Hz attainable, higher than that with the modal space 
controller, which is only 1.5Hz. It seems to give an 
impression that the dynamic performance along these degrees 
of freedom is deteriorated using the novel controller. In fact, 
the bandwidth of the conventional control is achieved at the 
expense of higher overshoot and poor performances of the 
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other degrees of freedom. The bandwidth of the modal space 
controller can be tuned to a higher level, as the same as the 
conventional control, but that will not meet the requirements 
of a flight simulator motion system in which flat frequency 
response is preferable. On the contrary, with the modal space 
controller, obviously each degree of freedom can be almost 
tuned independently, and their bandwidths are totally raised 
near to the Eigen frequencies. Particularly the roll and pitch 
are improved from 2Hz to 8Hz, yaw is raised from 2Hz to 
3Hz, and the heave increased from 1.5Hz to 4Hz. The 
comparison of two control strategies indicates that the modal 
space control is superior to the conventional. 

Transients’ response results as shown in Fig.9-10 are also 
provided here to show characteristics of the system in time 
domain. Step inputs are fed into the system along each DOF 
in proper sequence. Inputs amplitude is 1 deg along the 
rotation axes and 3 mm along the translation axes respectively. 
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Fig. 9 Short time response with step position inputs of Tthe modal space 
control 
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Fig. 10  Short time response with step position inputs of the conventional 
control 

The simulation results show that it is very effective to 
design and tune the system in modal space, and the bandwidth 
is increased dramatically except surge (x) and sway (y) 
motions. However the system bandwidth is still limited by the 
hydraulic Eigen frequencies. Some other methods are required 
to be introduced to broaden the system bandwidth further. 
Maybe a velocity feedback in modal space is a candidate 
solution. 

In addition, there are still some open issues about putting 
the modal space controller into practice. First, to avoid 
modelling errors violating the dynamic performance, practical 
and effective model parameters identification technologies, 
including geometrical structure, inertial parameters, and 
configuration parameters of the hydraulic actuators, are 
needed. Secondly, some tests and trials are required to find a 
trade-off between model complexities and feasibility of real 
time code implementation. Third, the effects of transmission 
line dynamics on the dynamic pressure feedback can not be 
ignored in practice [17], [18].  

V. CONCLUSIONS 

By making a singular values decomposition of the joint-
space inverse mass matrix of a hydraulically driven Stewart 
platform and mapping the control and feedback variables 
from the joint space to the decoupling modal space, the highly 
coupled six-input six-output dynamics can be transformed 
into six independent single-input single-output (SISO) 1-DOF 
hydraulically driven mechanical systems. So it is possible to 
use the design and control methods well suited for 1-DOF 
hydraulically driven mechanical systems to deal with Stewart 
platforms. 

Generally, the proportional control together with dynamic 
pressure feedback correction is used in industrial applications. 
It is impossible to achieve good performance by just using the 
conventional joint space control in which coupling effects 
between all the actuators are not considered thoroughly. The 
simulation results indicate that the conventional controller can 
only attenuate the resonance peaks of the lower Eigen 
frequencies of six rigid modes properly, and the peaking 
points of other relative higher Eigen frequencies are overly 
damped. So the system bandwidth is limited by the lower 
Eigen frequencies. 

To solve the above problems, a novel modal space 
controller with dynamic pressure feedback correction is 
developed. Though the structure of a modal space controller is 
very similar to the conventional joint space control, the 
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signals including the control errors, control outputs and 
pressure feedbacks are transformed into the decoupled modal 
space. The proportional gains and dynamic pressure feedback 
parameters are also tuned in modal space. With this method 
each degree of freedom can be almost tuned independently 
and their bandwidths are totally raised near to the Eigen 
frequencies. The simulation results indicate that, in 
comparison with the conventional joint space controller, the 
modal space controller is practical and can improve the 
dynamic performance of each degree of freedom.  
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APPENDIX A 

Considering inertial effects of all the actuators of a 
Stewart platform, the mass matrix is described by 
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where, il is the 3×1 vector between the upper and lower 

gimbal points of an actuator, 
in,l  is the 3×1 unit vector of il , 

T is the rotation matrix, m

iA is a skew symmetric matrix of the 

vector ia , 
iam and 

ibm are the upper part mass and lower part 

mass of an actuator respectively, 
iar is the distance from upper 

joint point to the mass centre of the actuator upper part, 
ibr is 

the distance from lower joint point to the centre of mass of the 
actuator lower part, 

iai and 
ibi  are scalar values representing 

inertia moments of upper part and lower part of actuators 
around gimbal point . 

The gravity terms of the gross payload of the platform can 
be given as 
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where, g is the gravity acceleration vector. 

Although Eqs.(A.1-A.2) can also be found in [4], a slight 
modification is made here by just considering additional 
inertial contributions of lower parts rotation of actuators, 
which has been ignored in [4]. 

APPENDIX B 

The forward kinematics has been tackled numerically by 
performing the Newton-Raphson (NR) iteration scheme [4] 
given as  

1
1 , ( )( )k k l sx k measured k


   q q J q l l                           (B.1) 

where k is iteration number, measuredl  are measured actuator 

lengths. We should take note of ,l sxJ different from xlJ . The 

convergence conditions of NR-iteration of Eq. (B.1) have 
been investigated and proven in [4]. 
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