
Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing

PID Controller Tuning Techniques: A Review
Hari Om Bansal, Rajamayyoor Sharma, P. R. Shreeraman

Electrical and Electronics Engineering Department, Birla Institute of Technology and Science
 Pilani, India

hobansal@gmail.com

Abstract- This paper presents a review of the current as well as
classical techniques used for PID tuning. PID controllers have
been used for industrial processes for long, and PID tuning has
been a field of active research for a long time. The techniques
reviewed are classified into classical techniques developed for
PID tuning and optimization techniques applied for tuning
purposes. A comparison between some of the techniques has
also been provided. The main goal of this paper is to provide a
comprehensive reference source for people working in PID
controllers.

Keywords- PID Controllers; Tuning; Classical Techniques;
Intelligent Computational Techniques

I. INTRODUCTION

Proportional Integral and Derivative (PID) controllers
have been used in industrial control applications for a long
time. PID controllers date to 1890s governor design [1]-[2].
Despite having been around for a long time, majority of
industrial applications still use PID controllers. According
to a survey in 1989, 90% of process industries use them [3].
This widespread use of PID in industry can be attributed to
their simplicity and ease of re-tuning on-line [4].

The PID controller is so named because its output sum
of three terms, proportional, integral and derivative term.
Each of these terms is dependent on the error value e
between the input and the output,

 output =
dt
de

dK
t

0
dte(t)iKe(t)pK ×+∫×+×

 (1)

where Kp, Ki and Kd are the P, I and D parameters
respectively. Ki and Kd can also be written as,

d

pdip T
1KK,TKiK ×=×= (2)

where Ti and Td are reset time and derivative time
respectively. These terms determine the type of system
response. The properties of P, I and D are discussed briefly
here.

Proportional term: This term speeds up the response as
the closed loop time constant decreases with the
proportional term but does not change the order of the
system as the output is just proportional to the input. The
proportional term minimizes but does not eliminate the
steady state error, or offset.

Integral term: This term eliminates the offset as it
increases the type and order of the system by 1. This term
also increases the system response speed but at the cost of
sustained oscillations.

Derivative term: This term primarily reduces the
oscillatory response of the system. It neither changes the
type and order of the system nor affects the offset.

A change in the proportionality constants of these terms
changes the type of response of the system. That is why PID
tuning, which is the variation of the PID proportionality
constants, is of utmost importance. This paper talks about
the different types of PID tuning techniques implemented
and the comparison between some of them.

There have been various types of techniques applied for
PID tuning, one of the earliest being the Ziegler Nichols
technique. These techniques can be broadly classified as
classical and computational or optimization techniques.

A. Classical Techniques

Classical techniques make certain assumptions about the
plant and the desired output and try to obtain analytically, or
graphically some feature of the process that is then used to
decide the controller settings. These techniques are
computationally very fast and simple to implement, and are
good as a first iteration. But due to the assumptions made,
the controller settings usually do not give the desired results
directly and further tuning is required. A few classical
techniques have been reviewed in this paper.

B. Computational or Optimization Techniques

These are techniques which are usually used for data
modeling and optimization of a cost function, and have been
used in PID tuning. Few examples are neural networks
(computational models to simulate complex systems),
genetic algorithm and differential evolution. The
optimization techniques require a cost function they try to
minimize. There are four types of cost functions used
commonly,

• Integral Absolute Error
IAE= (3)

• Integral Square error
ISE= (4)

• Integral Time Absolute Error
ITAE= (5)

• Integral Time square Error
ITSE= (6)

Computational models are used for self tuning or auto
tuning of PID controllers. Self tuning of PID controllers
essentially sets the PID parameters and also models the

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
169

process by using some computational model and compares
the outputs to see if there are any process variations, in
which case the PID parameters are reset to give the desired
response.

The existent types of adaptive techniques are classified
based on the fact that if the process dynamics are varying [5],
then the controller should compensate these variations by
adapting its parameters. There are two types of process
dynamics variations, predictable and unpredictable. The
predictable ones are typically caused by nonlinearities and
can be handled using a gain schedule, which means that the
controller parameters are found for different operating
conditions with an auto-tuning procedure that is employed
thereafter to build a schedule. Different techniques have
been used to replace the gain schedule mentioned above. In
the discussion of various techniques its usage in self tuning
is also mentioned.

II. CLASSICAL TECHNIQUES

Most classical techniques make assumptions of the plant
model and try to derive the controller settings for these
general models. To determine the dynamics of these systems,
the step response of the systems are obtained. This response
is characterized by different equations, using which
different classical methods have been developed. Ziegler
and Nichols [6] proposes that many industrial processes have
step response as given in the Fig. 1. Where K being the
static gain, θ the dead time and τ1 the time constant. The
parameter a is determined by the intercept of the line
(tangent to the graph) with the y-axis and θ the x intercept.

Fig. 1 Step response of first order system[6]

Various methods used for PID tuning are discussed in the
following sections.
A. Ziegler Nichols Method

This is by far the most popular tuning method in use. It
was proposed by John Ziegler and Nathaniel Nichols [6] in
1942 and is still a simple, fairly effective PID tuning method.
There are two methods proposed by Ziegler and Nichols.
The proposed Ziegler Nichols setting is given in Table I.
This method was used to tune PID controllers for spindle
motor systems [8].

TABLE I DETERMINATION OF PARAMETERS

Controller Kp Ti TD

P 1/a - -

PI 0.9/a 3.33 θ -

PID 1.2/a 2 θ 0.5 θ

The second method is based on knowledge of the
response to specific frequencies. The idea is that the
controller settings can be based on the most critical
frequency points for stability. This method is based on
experimentally determining the point of marginal stability.
This frequency can be found by increasing the proportional
gain of the controller, until the process becomes marginally
stable. These two parameters define one point in the Nyquist
plot. The gain is called ultimate gain Ku and the time period
Tp. The PID parameter setting is given in [6].

The Ziegler and Nichols method is the first PID tuning
techniques made and they are made based on certain
controller assumptions. Hence, there is always a
requirement of further tuning; because the controller settings
derived are rather aggressive and thus result in excessive
overshoot and oscillatory response. Also for the first method
the parameters are rather difficult to estimate in noisy
environment. In the second method, as the system is driven
towards instability for determining the parameters,
practically this can be quite detrimental to the system.

B. Cohen Coon Method

Cohen and Coon [9] design a method with the PID
controller parameters decided based on a FOLPD model.
The main design requirement is the rejection of load
disturbances. The controller parameter settings are given in
[9].

Despite a better model, the results of the Cohen Coon
method are not much better than the Ziegler Nichols method.

III. COMPUTATIONAL AND INTELLIGENT OPTIMIZATION
TECHNIQUES

The various intelligent optimization techniques are
discussed below.

A. Immune Algorithm

Artificial Immune Systems (AIS) are computational
systems inspired by the principles and processes of the
vertebrate immune system, which learns about the foreign
substances to defend the body against them.

The immune system has two types of responses, primary
and secondary. The former is the response when it first
encounters the antigen. In this period, the system learns
about the antigen, creating a memory of it. The later occurs
when the antigen is encountered for the second time, which
is a more rapid and larger response. The cells primarily
involved in this system are B cells. Against the antigen, the
level to which a B cell is stimulated relates partly to how
well its antibody binds the antigen.

In [10] the algorithm is specified in detail. The input
data or reference level is taken as the antigen invading the

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
170

system, and then the system responds and learns till the
required solution is generated. In [10], the author has used
an immune algorithm to tune a PID controller based on gain
and phase margins. In [11], Kim and Chu used the algorithm
for disturbance function based tuning. The immune
algorithm is also used for auto tuning of PID controllers in
[12].

B. Ant colony Optimization

Ant Colony Optimization (ACO) [13-14] is a recently
developed meta-heuristic approach to solving optimization
problems based on working of an ant colony. More
precisely, it is based on the ant colony finding the shortest
path to the food. Each ant tries to find the food through
some random path leaving behind a trail of pheromones.
The pheromone trail weakens with reducing no. of ants
passing through that path and strengthens with increasing no.
of ants passing through it. So basically it is a search
algorithm which depends on a number of ants acting
together moving towards the optimal solution.

According to Ibtissem Chiha et. al [15] the ants are driven
by a probability rule to choose their solution to the problem.
The probability rule between two nodes i and j, depends on
two factors,

 (7)

The factor ηij is the inverse of the cost function. This

factor does not change during algorithm execution; instead
the factor τij (related to pheromone which has an initial
value τ0) is updated after each iteration. The parameters α
and β enable the user to direct the algorithm search in favour
of the heuristic or the pheromone factor. The change in
pheromone quantity in each path is given by,

 (8)

LA is the solution of the ant A and Lmin is the best solution
found so far. The pheromone for the next iteration is
decided as,

 (9)

NA being the number of ants, ρ being the evaporation

rate, designed to allow elimination of bad choices.

Ant colony optimization was used for PID tuning in [15].
It was used to minimize a multi-objective function and its
results were found to be better than genetic algorithm and
Ziegler Nichols method. In [16] authors have demonstrated
the use of bees algorithm to tune a PID controller and
solving complex systems. The results of ACO, PSO and
bees algorithm are compared and presented in [17].

C. Bacteria Forage Technique

Since the selection behavior of bacteria tends to
eliminate entities with poor foraging strategies and favor the
propagation of genes of those that have successful foraging

strategies, they are applied to find an optimal solution
through methods for locating, capturing, and ingesting food
[18]. Foraging theory is discussed in [19].

All papers on PID tuning with bacteria foraging
technique [18], [20], [21] study the foraging behavior of E. Coli,
a common bacteria [22]-[23]. The behavior of E.Coli is
described in [18] as,

• If in a neutral medium, it alternates between tumbles
and runs and searches the environment.

• If swimming up a nutrient gradient (or out of
noxious substances) or swimming longer (up a
nutrient gradient or down a noxious gradient) it
seeks an increasingly favorable environment.

• If swimming down a nutrient gradient (or up a
noxious substance gradient), it searches to avoid
unfavorable environments.

E. coli occasionally engages in a conjugation that affects
the characteristics of a population of bacteria. There are
attractants that bacteria like, attraction to oxygen (aerotaxis),
light (phototaxis), temperature (thermotaxis), and
magnetotaxis (it is affected by magnetic lines of flux). Some
bacteria change their shape and number of flagella based on
the medium to reconfigure and ensure efficient foraging in a
variety of media. The main goal based on bacterial foraging
is to find the best position of the bacteria with respect to the
attractant and repellent profile. A hybrid approach
consisting of genetic algorithm and bacteria forage for
tuning of PID controller for AVR system is proposed in [21].

D. Genetic Algorithm

Genetic algorithm (GA) is a search algorithm that
explores the search space in a manner analogous to
evolution in nature [24]. It uses probabilistic rules to search
for and change the potential solutions in the search space,
using a cost function to analyze the fitness of solutions. GA
requires the solution to be represented in a way that is
analogous to genes so that the processes that bring about a
change in the genes (like mutation) can be used. Usually this
is done by representing the solutions in a binary format.

The standard genetic algorithm is given below and
flowchart of the algorithm is shown in Fig. 2.

• Initialization, firstly initial solutions are randomly
selected from the search space.

• Selection, during each iteration, a proportion of
solutions is selected, based on the fitness function
(fitter solutions are more likely to get selected), for
breeding the next generation of solutions. The
selection is done in a probabilistic manner.

• Reproduction, selected solutions are paired up and
crossover and mutation operation are performed to
get the next generation of solutions.

• Termination, the iterations are terminated when the
termination condition (time or accuracy) is reached.

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
171

GA is very popular in PID tuning, and has gained wide
applications in control systems [25]. Girishraj et. al [25] used
GA for improving performance of a PID controller used in
bioreactor and compared the performance with Ziegler
Nichols, Skogestad modification [26] and IMC rule [27] and
found that GA outperformed both in terms of overshoot,
disturbance rejection, gain margin and phase margin. The
limitations of GA in tuning a multivariable system were
explored in [28]. GA has been used in position and speed
control of a DC motor [29]-[30]. GA has been used for PID of
reverse osmosis and cascade control systems tuning in [31]-

[33].

Lot of work has been done in using GA along with other
computational techniques. In [21], Kim et al. use bacteria
forage along with GA for PID controller tuning of AVR
systems. GA was used with NN in [34] and with fuzzy logic
in [35] for developing self tuning methods.
E. Differential Evolution

Differential Evolution (DE) is a method for doing
numerical optimization without explicit knowledge of the
gradient of the problem to be optimized. The DE method is
originally due to Storn and Price and works on
multidimensional real-valued functions which are not
necessarily continuous or differentiable. DE optimizes a
problem by maintaining a population of candidate solutions
and creating new candidate solutions by combining existing
ones according to its simple formulae of vector-crossover
and -mutation, and then keeping whichever candidate
solution has the best score or fitness on the optimization
problem at hand. In this way the optimization problem is
treated as a black box that merely provides a measure of
quality given a candidate solution and the gradient is
therefore not needed. Differential evolution is used for
online PID tuning in [36].

F. Evolutionary Programming

 Generally, the EP algorithm for global optimization
contains four parts, initialization, mutation, competition, and
reproduction. Mutation is based on the current values and a
Gaussian random variable. Furthermore, a quasi-random
sequence (QRS) is used to generate an initial population for
EP [37] to avoid causing clustering around an arbitrary local

optimum [37]. Evolutionary programming was used in [38]
for PID tuning using IAE and compared with results of [39],
[40], [41], and [42] which were fuzzy logic based and the
results were superior for evolutionary programming and the
same as results with a genetic algorithm.

G. Artificial Neural Networks

An Artificial Neural Network (ANN), usually called
‘Neural Network’ (NN), is a mathematical model or
computational model that tries to simulate the structure
and/or functional aspects of biological neural networks. It
consists of an interconnected group of artificial neurons and
processes information using a connectionist approach to
computation. In most cases an ANN is an adaptive system
that changes its structure based on external or internal
information that flows through the network during the
learning phase.

 Though ANN can model even highly non linear
systems, it is not used in control due to limited applicability
in PID controllers [34], partially because the neural network
control design has some drawbacks because of some
intrinsic shortcomings of ANN theory, e.g., the number of
layers and the numbers of neurons per layer are often hard
to be determined. According to [43] SVM based self tuning
controller is simpler to implement.

Almost all work done using neural networks is for self
tuning PID controllers. The flow chart used in [34] for self-
tuning PID Control using GA and ANN is shown in Fig. 3.

Fig. 3 Flowchart of neural network based controller

Similarly, [44] uses neural networks for self-tuning
discrete PID controller, and compares to a relay method
proposed by Astrom and Hagglund [4] and obtains much
better results. In [43], Iplikci compared the results of self
tuning PID controller using neural networks and SVM, and
found that neural network based controller gave better
results in noiseless environments and SVM performed better
in noisy conditions. A NN-like self-tuning PID control
scheme applied in the motion control of a Two Wheeled
Vehicle (TWV) is presented in [45].

H. Simulated Annealing

Simulated Annealing (SA) simulates the process of
heating a metal above its recrystallisation temperature, and
cooling it to change the metal’s properties. The optimization

w(j)

J=k,k+1,…,N-1

e(k) u(k) y(k)

u(j) ym(j)
w(k)

PID
optimization

PID

Neural
Model

System

Fig. 2 Flowchart of genetic algorithm based tuning

Initialize Population

Measure fitness

Selection

Mutation

Crossover

Optimum solutions

Not optimum
solutions

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
172

Yes

Yes

Yes

No

 No

No

Yes

Solution
accepted?

Initial solution

Objective function
evaluation

Update the current
solution

Change
temperatur

Decrease
Temperature

Stop the
algorithm?

Final
solution

Generate
a

candidate
solution

technique involves perturbation of the design variables and
then observing the change in the objective function. If the
solution is better than the current solution, the design
variables are updated and the new solution is accepted
according to the Metropolis algorithm [46] based on
Boltzmann probability. The perturbations keep reducing
according to some reduction constant. The algorithm ends
when the desired solution to the objective function is
reached or the perturbations are too small for significant
change in the objective function. A flow chart of the
algorithm is shown in Fig. 4.

Simulated annealing has been used in PID tuning in [47]
for controllers for time-delay Systems for a high-
performance drilling process. The standard algorithm for SA
is computationally very intensive due to an extremely large
and nonlinear, multimodal search space [48]. So a modified
version of SA named Orthogonal Simulated Annealing
(OSA) is used in [49] for simultaneous optimization of
multiple fuzzy neural networks using in PID tuning of
various controllers.

I. Support Vector Machine

Support Vector Machine (SVM) is a set of related
supervised learning methods used for classification and
regression. In simple words, given a set of training examples,
each marked as belonging to one of two categories, an SVM

training algorithm builds a model that predicts whether a
new example falls into one category or the other. More
formally, a SVM constructs a hyperplane or set of
hyperplanes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks.

As put in [50], for the training sample xi ∈ R belonging
to the class yi ∈ {−1, 1}, each class can be linearly separated
and the discrimination function is described as follows,

 (10)
where w is an adjustable weight vector and b is the bias. The
separating hyperplane is the plane with f(x) = 0, and needs
to satisfy the following constraints such that the hyperplane
may be uniquely determined for all training data.

 (11)
The distance between the hyperplane and the nearest

training points (called margin) has to be maximized to
obtain the best separation.

SVM was used for PID tuning in [50] by dividing the
range of uncertainty of the parameters and then using
multiple SVM (decision tree structure with SVMs). Iplikci
[43] uses SVM in obtaining the nonlinear autoregressive with
exogenous inputs (NARX) model of the plant for both PID
parameter tuning and also correction of the PID output
during control, which was compared with Neural Networks
used for the same. In [51] Least Squares SVM (LS-SVM) is
used to design a self tuning PID. It is an extension of the
standard SVM, which involves equality instead of inequality
constraints in SVM and works with a least squares cost
function [52]. Zhao et al. [51] also states that this design does
not have the drawbacks which are present in the neural
network design, present due to some intrinsic shortcomings
of ANN theory, e. g., the number of layers and the numbers
of neurons per layer often being hard to determine.

J. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a popular
optimization technique developed by Eberhart and Kennedy
in 1995. In the technique, there is a population of particles
which move through the solution space to find the optima.
In PSO technique the system keeps a track of the best
solution obtained till now and each individual particle keeps
a track of its own individual best solution. Based on these
two, each particle moves to a new position decided by a
velocity and its current position. The velocity is dependent
on the global and particle’s best solution. As put in [53],

If the i-th particle of the swarm is represented by the D–
dimensional vector Xi = (xi1, xi2,..., xiD) and the best
particle in the swarm, i.e. the particle with the smallest
function value, is denoted by the index g. The best previous
position (the position giving the best function value) of the
i-th particle is recorded and represented as Pi =(pi1, pi2,...,
piD), and the position change (velocity) of the i-th particle is
Vi =(vi1, vi2 ,..., viD). The particles are manipulated
according to the equations,

 (12)
 (13)

Fig. 4 Flowchart of standard simulated annealing

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
173

Fuzzification

Inference
Engine

Rule Base

Defuzzification

where d = 1, 2, . , D; i = 1, 2,., N and N is the size of
population; w is the inertia weight; c1 and c2 are two
positive constants and r1 and r2 are random values in the
range [0, 1].

This is one of the ways in which the PSO algorithm can
be developed. PSO has been used in PID tuning in [53] for a
ball and hoop system with ISE as the cost function, where
its performance was compared to Genetic algorithm and
Ziegler & Nichols and it was found to outperform both of
them in terms of settling time, overshoot, and equaled
genetic algorithm based tuning in rise time. In [17], PSO
was compared with ant colony optimization and bee’s
algorithm for all four cost functions, and PSO obtained the
best fitness value (better rise time and settling time) for all
cost functions, though the best overshoot was in case of ant
colony optimization in all cases. PSO also was the fastest
among the three. Giriraj Kumar et al. [54] also uses PSO
based tuning for high performance drilling systems.

Maolong [55] consider social behavior too complex to be
described by PSO. Quantum-behaved particle swarm
optimization (QPSO) is a stochastic optimization algorithm
that was originally motivated by the thinking model of an
individual of the social organism [55]. QPSO gave even
better results than PSO, GA and Ziegler Nichols on
accounts of rise time, overshoot and settling time [55]. PSO
has also been used for self tuning PID in [56] and when
compared with real coded genetic algorithm (RGA), it
produced better results.

K. Fuzzy Logic

Fuzzy logic control is one of the interfaces between
control engineering and artificial intelligence. The Fuzzy
logic controller (FLC) adds to the conventional PID
controller to adjust the parameters of the PID controller on-
line according to the change of the signals error and change
of the error. The design specifications of the FLC vary with
the plant being used and the PID controller parameter ranges
in combination with which it is to be used. The basic
building block of the controller remains similar. Fig. 5
shows the commonly used FLC and its role in the PID
tuning as described in [57].

As shown in Fig. 6, the error and derivative of the error
are inputs to the fuzzy interface. The model most commonly
employed in the fuzzy interface is the Mamdani model, as
defined in [58]. The operation of the Mamdani rule base can
be broken down into four parts,

1) Mapping each of the crisp inputs into a fuzzy
variable (fuzzification);

2) Determining the output of each rule given its fuzzy
antecedents;

3) Determining the aggregate output(s) of all fuzzy
rules;

4) Mapping the fuzzy output(s) to crisp output(s)
(defuzzification).

Fig. 6 Flow chart of a FLC based controller

The fuzzy rules depend on the plant to be controlled and
the type of the controller and from practical experience [59].
Jantzen [60] states that integral rule bases might be difficult
to design. Hence, PD fuzzy based system along with integral
error control is an ideal design. There exist also designs
where a PI-like fuzzy controller and PD –like fuzzy
controllers are used in cohesion to achieve a PID-like
controller.
L. Response Surface Method

The response surface methodology (RSM) is a collection
of mathematical and statistical techniques that are useful for
modeling and analysis in applications, where a response
interest is influenced by several variables and the objective
is to optimize this response. RSM has been developed by
Box and Wilson (1951) to explore the potential of statistical
design in industrial experiments. This methodology has
gained extensive application in a wide variety of industrial
processes. RSM constructs polynomial approximations to
build functional relationships between design variables and
performances. The input variables are sometimes called
independent variables or factors, and the performance
measures or quality characteristics are called as responses.
For the most response surface, the relationship between the
response variable of interest (y) and the factors (x1,
x2, . . . ,xk) may be described in the following second-order
equation.

εββββ ++++== ∑∑∑
>===

n

ji
jiij

n

i
iii

n

i
iio xxxxxfy

1,11

2

1
)(

(14)

where ε represents the noise or error observed in the
response y, β is polynomial coefficient, and n is the number
of factors. Eq. (14) can also be expressed in a matrix form
as

 ε+= XBY (15)

The method of least squares is used to estimate the
polynomial coefficients in approximating polynomials such
that the sum of squares of the errors is minimized. Then
matrix B of polynomial coefficients can be obtained from
the formula

 () YXXXB TT 1−
= (16)

Reference

Output

Kp, Ki, Kd Fuzzy
Inference

PID controller Plant

d/dt

Fig. 5 Basic block diagram for fuzzy control

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
174

The response surface analysis is done in terms of the
fitted surface. Once a response surface model is obtained,
statistical analysis technique such as analysis of variance
(ANOVA) can be used to check the fitness of the model.
The tuning of a PID controller using RSM is explained in
[61-64].

IV. CONCLUSIONS

A large number of techniques used for PID tuning were
reviewed in this paper. A brief description of the technique
was followed by discussion of the work done in tuning and
self tuning of PID controller using the technique. If some
comparative analysis was carried out, it was mentioned and
the results of the comparison were also elucidated. A
comprehensive comparative study of all the techniques,
tested simultaneously under different conditions, still needs
to be conducted to gauge the comparative performance of
different techniques on a common platform.

REFERENCES
[1] S. Bennett, A History of Control Engineering 1930-1955, IEE

Control Engineering Series 47, 1993.
[2] S. Bennett, “Nicholas Minorsky and the Automatic Steering

of Ships,” IEEE Control Systems Magazine, vol. 4, no .4, pp.
10–15, 1984.

[3] M. Araki, PID Control in Control systems, Robotics and
Automation, vol II, edited by Heinz Unbehauen,
Encyclopedia of Life Support Systems (EOLSS), Developed
under the Auspices of the UNESCO, Eolss Publishers,
Oxford ,UK.

[4] K. J. Astrom and T. Hagglund, PID controllers, Theory,
design and tuning, 2nd edition, Instrument Society of America,
1995.

[5] T. Hagglund and K. J Astrom, “Industrial Adaptive
Controllers Based on Frequency Response Techniques,”
Automatica, vol. 27, no. 4, pp. 599-609, 1991.

[6] J. G. Ziegler and N. B Nichols, “Optimum Settings for
Automatic Controller,” Transaction of ASME, vol. 64, pp.
759-768, 1942.

[7] J. C. Cool, F. J. Schijff, T. J. Viersma, and Regeltechniek,
Control Engineering, Delta Press, Amerongen, 1991.

[8] C. S. Soh, C. Bi and K. C. Chua, “Direct PID Tuning For
Spindle Motor Systems,” Asia-Pacific Magnetic Recording
Conference, Singapore, pp. 1-2, Nov-Dec.2006.

[9] G. H. Cohen, and G. A. Coon, “Theoretical considerations of
retarded control,” Transactions of ASME, vol. 75, pp. 827-
834, 1953.

[10] Dong Hwa Kim, Tuning of PID Controller Using Gain/Phase
Margin and Immune Algorithm, IEEE Mid-Summer
Workshop on Soft Computing in Industrial Applications,
Helsinki University of Technology, Espoo, Finland, pp. 6-74,
2005.

[11] Dong Hwa Kim and Jae Hoon Cho, “Intelligent Tuning of
PID Controller with Disturbance Function Using Immune
Algorithm,” International Conference on Computational
Intelligence for Measurements and Applications, vol. 1, pp.
286-291, 2004.

[12] Shi Zhongzhi, Shi Zhongzhi, Shi Zhongzhi, “Auto-tuning of
reference model based PID controller using immune
algorithm,” Proceedings of the World on Congress on
Computational Intelligence, pp. 483-488, 2002.

[13] M. Dorigo and G. Dicaro, The Ant Colony Optimization
Meta-heuristic, In New Ideas in Optimization, McGraw Hill,
London, UK, pp. 11–32, 1999.

[14] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant
Algorithms for Discrete Optimization,” Artificial Life, vol. 5,
no. 2, pp. 137–172, 1999.

[15] Ibtissem Chiha, Noureddine Liouane and Pierre Borne,
“Multi-Objective Ant Colony Optimization to tuning PID
controller,” International Journal of Engineering, vol. 3, no. 2,
pp. 11-16, 2009.

[16] D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, and
M. Zaidi, “The Bees Algorithm, A Novel Tool for Complex
Optimisation Problems,” Proc. 2nd Virtual International
Conference on Intelligent Production Machines and Systems,
Elsevier (Oxford), pp. 454-459, 2006.

[17] Karl O. Jones, andré Bouffe, Comparison of bees algorithm,
ant colony optimization and particle swarm optimization for
PID controller tuning, Proceedings of the 9th international
Conference on Computer Systems and Technologies and
Workshop For PhD Students in Computing, CompSysTech 08,
374, ACM, New York, IIIA. 9-1 – IIIA. 9-6.

[18] Dong Hwa Kim, and Jae Hoon Cho, “Robust Tuning of PID
Controller Using Bacterial-Foraging- Based Optimization,”
Journal of Advanced Computational Intelligence and
Intelligent Informatics, vol. 9, no. 6, pp. 669-676, 2005.

[19] Stephens, D.W. and Krebs J. R., Foraging Theory, Princeton
University Press, Princeton, New Jersey, 1986.

[20] Dong Hwa Kim1 and Jae Hoon Cho, “Adaptive Tuning of
PID Controller for Multivariable System Using Bacterial
Foraging Based Optimization,” Atlantic Web Intelligence
Conference, pp. 231-235, 2005.

[21] Dong Hwa Kim, Jae Hoon Cho, “A Biologically Inspired
Intelligent PID Controller Tuning for AVR Systems,”
International Journal of Control, Automation, and Systems,
vol. 4, no. 5, pp. 624-636, 2006.

[22] K. M. Passino, Biomimicry of Bacterial Foraging for
Distributed Optimization, University Press, Princeton, New
Jersey, 2001.

[23] K. M. Passino, “Biomimicry of bacterial foraging for
distributed optimization and control,” IEEE Control Systems
Magazine, vol. 22, no. 3, pp. 52-67, 2002.

[24] M. Salami and G. Cain, “An Adaptive PID Controller Based
on Genetic Algorithm Processor,” IEE Genetic Algorithms in
Engineering Systems, Innovations and Applications
Conference, Publication No. 414, 12-14 September, 1995.

[25] S. M. G. Kumar, R. Jain, and N. Anantharaman, “Genetic
Algorithm Based PID Controller Tuning for a Model
Bioreactor,” Indian Chemical Engineer, vol. 50, no. 3, pp.
214-226, 2008.

[26] S. Skogestad, “Simple Analytic Rules for Model Reduction
and PID Controller tuning,” Journal of Process Control,
vol.13, pp. 291-309, 2003.

[27] B. W. Bequette, Process Control, Modeling, Design, and
Simulation, Prentice Hall, Inc., New Jersey, 2003.

[28] Karl O. Jones and Wilfried Hengue, Limitations of
multivariable controller tuning using genetic algorithms,
International Conference on Computer Systems and
Technologies – CompSysTech 2009, IIIA.20-1 – IIIa.20.5.

[29] Neenu Thomas, P. Poongodi, “Position Control of DC Motor
Using Genetic Algorithm Based PID Controller,” Proceedings
of the World Congress on Engineering, London, U.K., vol. 2 ,
pp. 1618-1622, 2009.

[30] M. B. B. Sharifian, R. Rahnavard and H. Delavari, “Velocity
Control of DC Motor Based Intelligent methods and Optimal

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
175

Integral State Feedback Controller,” International Journal of
Computer Theory and Engineering, vol. 1, no. 1, pp. 1793-
1801, 2009.

[31] Cătălin Nicolae CALISTRU, “PID Robust Control via
Symbolic Calculus and Global Optimization Techniques,” 7th
International Conference on Development and Application
Systems, pp. 313-318, 2004.

[32] M. V. Sadasivarao and M. Chidambaram, “PID Controller
tuning of cascade control systems using genetic algorithm,”
Journal of Indian Inst. Sci., vol. 86, pp. 343–354, 2006.

[33] Jin-Sung Kim, Jin-Hwan Kim, Ji-Mo Park, Sung-Man Park,
Won-Yong Choe and Hoon Heo, “Auto Tuning PID
Controller based on Improved Genetic Algorithm for Reverse
Osmosis Plant,” International Journal of Computer Systems
Science and Engineering, vol. 3, no. 4, pp. 232 – 237, 2008.

[34] DOLEŽEL, Petr, MAREŠ, Jan, “Self-tuning PID Control
using Genetic Algorithm and Artificial Neural Networks,”
ASR 2009 Instruments and Control, pp. 33- 39, 2009.

[35] Abdel Badie Sharkawy, “Genetic fuzzy self-tuning PID
controllers for Antilock Braking Systems,” Alexandria
Engineering Journal, vol. 45, no. 6, pp.657-673, 2006.

[36] Fei Gao, Hengqing Tong, “Differential Evolution, An
Efficient Method in Optimal PID Tuning and Online Tuning,”
Proc. of the International Conference on Complex Systems
and Applications, pp. 785-789, 2006.

[37] Y. J. Cao, “Eigenvalue Optimisation Problems via
Evolutionary Programming,” Electronics Letters, vol. 33,
no.7, pp. 642-643, 1997.

[38] Wei-Der Chang and Jun-Juh Yan, “Optimum setting of PID
controllers based on using evolutionary programming
algorithm,” Journal of the Chinese Institute of Engineers, vol.
27, no. 3, pp. 439-442, 2004 .

[39] S. Z. He, S. Tan and F. L. Xu, “Fuzzy Self- Tuning of PID
Controllers,” Fuzzy Sets and Systems, vol. 56, no. 1, pp. 37-
46, 1993.

[40] S. G. Tzafestas and N. P. Papanikolopoulos, “Incremental
Fuzzy Expert PID Control,” IEEE Transactions on Industrial
Electronics, vol. 37, no. 5, pp. 365-371, 1990.

[41] A.Visioli, “Fuzzy Logic Based Set-Point Weighting for PID
Controllers,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A, Systems and Humans, vol. 29, no. 6, pp.
587- 592, 1999.

[42] C. Liu, J. X Xu, and C. C. Hang, “Comparison between a
Fuzzy PID Controller and a Kind of Nonlinear PID
Controller,” Proceedings of 36th IEEE International
Conference on Decision and Control, vol. 3, pp. 2736-2741,
1997.

[43] S. Iplikci, “A comparative study on a novel model-based PID
tuning and control mechanism for nonlinear systems,”
International Journal of Robust and Nonlinear Control, vol. 20,
no. 13, pp. 1483-1501, 2010.

[44] Corneliu Lazar, Sorin Carari, Draguna Vrabie, Marius
Kloetzer, “Neuro-predictive control based self-tuning of PID
controllers,” Proceedings of European Symposium on
Artificial Neural Networks, pp. 391-396, 2004.

[45] Tsai-Juin Ren, Tien-Chi Chen and Chun-Jung Chen, “Motion
control for a two-wheeled vehicle using a self-tuning PID
controller,” Control Engineering Practice, vol. 16, no. 3, pp.
365-375, 2008.

[46] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. H.
Teller and E.Teller, “Equation of State Calculation using Fast
Computing Machines,” Journal of Chemical Physics, vol. 21,
pp. 1087–1092, 1953.

[47] Rodolfo E. Haber, Rodolfo Haber-Haber, Raúl M. del Toro
and José R. Alique, Using Simulated Annealing for Optimal
Tuning of a PID Controller for Time-Delay Systems: An
Application to a High-Performance Drilling Process,
Computational and Ambient Intelligence, Springer, vol.
4507/2007, pp. 1155-116 2, 2007.

[48] X. Tang, R. Tian and D. F. Wong, “Fast evaluation of
sequence pair in block placement by longest common
subsequence computation,” IEEE Transactions on Computer
Aided Design Integrated Circuits Systems, vol. 20, no.12, pp.
1406–1413, 2001.

[49] Shinn-Jang Ho,Li-Sun Shu, and Shinn-Ying Ho, “Optimizing
Fuzzy Neural Networks for Tuning PID Controllers Using an
Orthogonal Simulated Annealing Algorithm OSA,” IEEE
Transaction on Fuzzy Systems, vol. 14 , no. 3, pp. 421-434,
2006.

[50] K. Takao, Y. Toru and H. Takao, “A Design of PID
Controllers with a Switching Structure by a Support Vector
Machine,” International Joint Conference on Neural Networks,
pp. 4684 – 4689, 2006.

[51] Jun Zhao, Ping Li, Xue-song Wang, “Intelligent PID
Controller Design with Adaptive Criterion Adjustment via
Least Squares Support Vector Machine,” Control and
Decision Conference, pp. 7-9, 2009.

[52] J. A. K. Suyken and J. Vandewalle, “Least Squares Support
Vector Machine Classifiers,” Neural Processing Letters, vol. 9,
no. 3, pp. 293-300, 1999.

[53] Mohammed El-Said El-Telbany, “Employing Particle Swarm
Optimizer and Genetic Algorithms for Optimal Tuning of PID
Controllers, A Comparative Study,” ICGST-ACSE Journal,
vol. 7, no. 2, pp. 49-54, 2007.

[54] S. M. G. Kumar, J. Deepak and R. K. Anoop, “PSO based
tuning of a PID controller for a High performance drilling
machine,” International Journal of Computer Applications,
vol. 1, no. 19, pp. 12-18, 2010.

[55] Maolong Xi, Jun Sun

and Wenbo Xu, “Parameter
Optimization of PID Controller Based on Quantum-behaved
Particle Swarm Optimization Algorithm,” Proceedings of the
International Conference on Complex Systems and
Applications, pp. 603-607, 2007.

[56] Chih-Cheng Kao, Chin-Wen Chuang, Rong-Fong Fung, “The
self-tuning PID control in a slider–crank mechanism system
by applying Particle Swarm Optimization Approach,”
Mechatronics, vol. 16, no. 8, pp. 513-522, 2006.

[57] Zulfatman and M. F. Rahmat, “Application of self-tuning
Fuzzy PID controller on industrial hydraulic actuator using
system identification approach,” International Journal on
Smart Sensing and Intelligent Systems, vol. 2, no. 2, pp. 246-
261, 2009.

[58] Bryan Davis, System Modeling using a Mamdani Rule Base,
Project Report, University of Florida.

[59] Leonid Reznik, Fuzzy Controllers, Newnes, Oxford, 1997.
[60] Jan Jantzen, Tuning Of Fuzzy PID Controllers, Technical

Report No. 98-H 871 (fpid), Department of
Automation,Technical University of Denmark, Denmark,
1998.

[61] Ethel Nakano and Arthur Jutan, “Application of Response
Surface Methodology in Controller Fine-Tuning,” ISA
Transactions, vol. 4, pp. 353-366, 1994.

[62] Masood Sahraian and Srinivas Kodiyalam, “Tuning PID
Controllers Using Error-Integral Criteria and Response
Surfaces Based Optimization,” Engineering Optimization, vol.
33, no. 2, pp. 135 – 152, 2000.

http://www.informaworld.com/smpp/title~db=all~content=t713641621
http://www.informaworld.com/smpp/title~db=all~content=t713641621~tab=issueslist~branches=33#v33

Journal of Control Engineering and Technology (JCET)

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing
176

[63] Aiping Jiang and Arthur Jutan, “Response Surface Tuning
Methods in Dynamic Matrix Control of a Pressure Tank
System,” Industrial and Engineering Chemistry Research, vol.
39, no. 10, pp. 3835–3843, 2000,

[64] J. D. Faucher and P. Maussion, “Response Surface
Methodology For The Tuning of Fuzzy Controller Dedicated
to Boost Rectifier with Power Factor Correction,” IEEE, ISIE,
Montreal, Quebec, Canada, pp. 199-204, 2006.

Hari O. Bansal obtained his Bachelor’s degree in Electrical
Engineering from University of Rajasthan in 1998. He received his
Post-graduate from Malviya Regional Engineering College (now
MNIT), Jaipur and completed his PhD in Electrical Engineering
from BITS, Pilani in 2000 & 2005 respectively. Presently, he is an
Assistant Professor in the Electrical and Electronics Engineering
Department, BITS, Pilani. His fields of interest include application
of soft computing techniques in control systems, power systems,
power electronics, and power quality.

Rajamayyoor Sharma has recently completed his bachelor’s
degree in Electrical and Electronics Engineering from BITS, Pilani.
His area of interest includes control systems, power systems and
power quality.

P.R.Shreeraman has recently completed his bachelor’s degree in
Electrical and Electronics Engineering from BITS, Pilani. His area
of interest includes automation, powers systems and power quality.

