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Abstract- This paper presents a review of the current as well as 
classical techniques used for PID tuning. PID controllers have 
been used for industrial processes for long, and PID tuning has 
been a field of active research for a long time. The techniques 
reviewed are classified into classical techniques developed for 
PID tuning and optimization techniques applied for tuning 
purposes. A comparison between some of the techniques has 
also been provided. The main goal of this paper is to provide a 
comprehensive reference source for people working in PID 
controllers. 
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I. INTRODUCTION 

Proportional Integral and Derivative (PID) controllers 
have been used in industrial control applications for a long 
time. PID controllers date to 1890s governor design [1]-[2]. 
Despite having been around for a long time, majority of 
industrial applications still use PID controllers. According 
to a survey in 1989, 90% of process industries use them [3]. 
This widespread use of PID in industry can be attributed to 
their simplicity and ease of re-tuning on-line [4]. 

The PID controller is so named because its output sum 
of three terms, proportional, integral and derivative term. 
Each of these terms is dependent on the error value e 
between the input and the output, 

 output =    
dt
de

dK
t

0
dte(t)iKe(t)pK ×+∫×+×

               (1) 

where Kp, Ki and Kd are the P, I and D parameters 
respectively. Ki and Kd can also be written as, 

                 
d

pdip T
1KK,TKiK ×=×=                          (2) 

where Ti and Td are reset time and derivative time 
respectively. These terms determine the type of system 
response. The properties of P, I and D are discussed briefly 
here. 

Proportional term: This term speeds up the response as 
the closed loop time constant decreases with the 
proportional term but does not change the order of the 
system as the output is just proportional to the input. The 
proportional term minimizes but does not eliminate the 
steady state error, or offset. 

Integral term: This term eliminates the offset as it 
increases the type and order of the system by 1. This term 
also increases the system response speed but at the cost of 
sustained oscillations. 

Derivative term: This term primarily reduces the 
oscillatory response of the   system. It neither changes the 
type and order of the system nor affects the offset. 

A change in the proportionality constants of these terms 
changes the type of response of the system. That is why PID 
tuning, which is the variation of the PID proportionality 
constants, is of utmost importance. This paper talks about 
the different types of PID tuning techniques implemented 
and the comparison between some of them.  

There have been various types of techniques applied for 
PID tuning, one of the earliest being the Ziegler Nichols 
technique. These techniques can be broadly classified as 
classical and computational or optimization techniques. 

A. Classical Techniques 

Classical techniques make certain assumptions about the 
plant and the desired output and try to obtain analytically, or 
graphically some feature of the process that is then used to 
decide the controller settings. These techniques are 
computationally very fast and simple to implement, and are 
good as a first iteration. But due to the assumptions made, 
the controller settings usually do not give the desired results 
directly and further tuning is required. A few classical 
techniques have been reviewed in this paper. 

B.  Computational or Optimization Techniques 

These are techniques which are usually used for data 
modeling and optimization of a cost function, and have been 
used in PID tuning. Few examples are neural networks 
(computational models to simulate complex systems), 
genetic algorithm and differential evolution. The 
optimization techniques require a cost function they try to 
minimize. There are four types of cost functions used 
commonly, 

• Integral Absolute Error 
IAE=                           (3) 

• Integral Square error 
ISE=                        (4) 

• Integral Time Absolute Error 
ITAE=                        (5) 

• Integral Time square Error 
ITSE=            (6) 

Computational models are used for self tuning or auto 
tuning of PID controllers. Self tuning of PID controllers 
essentially sets the PID parameters and also models the 
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process by using some computational model and compares 
the outputs to see if there are any process variations, in 
which case the PID parameters are reset to give the desired 
response. 

The existent types of adaptive techniques are classified 
based on the fact that if the process dynamics are varying [5], 
then the controller should compensate these variations by 
adapting its parameters. There are two types of process 
dynamics variations, predictable and unpredictable. The 
predictable ones are typically caused by nonlinearities and 
can be handled using a gain schedule, which means that the 
controller parameters are found for different operating 
conditions with an auto-tuning procedure that is employed 
thereafter to build a schedule. Different techniques have 
been used to replace the gain schedule mentioned above. In 
the discussion of various techniques its usage in self tuning 
is also mentioned. 

II. CLASSICAL TECHNIQUES 

Most classical techniques make assumptions of the plant 
model and try to derive the controller settings for these 
general models. To determine the dynamics of these systems, 
the step response of the systems are obtained. This response 
is characterized by different equations, using which 
different classical methods have been developed. Ziegler 
and Nichols [6] proposes that many industrial processes have 
step response as given in the Fig. 1. Where K being the 
static gain, θ the dead time and τ1 the time constant. The 
parameter a is determined by the intercept of the line 
(tangent to the graph) with the y-axis and θ the x intercept. 

 
Fig. 1 Step response of first order system[6] 

Various methods used for PID tuning are discussed in the 
following sections. 
A. Ziegler Nichols Method 

This is by far the most popular tuning method in use. It 
was proposed by John Ziegler and Nathaniel Nichols [6] in 
1942 and is still a simple, fairly effective PID tuning method. 
There are two methods proposed by Ziegler and Nichols. 
The proposed Ziegler Nichols setting is given in Table I. 
This method was used to tune PID controllers for spindle 
motor systems [8]. 

TABLE I DETERMINATION OF PARAMETERS  

Controller Kp Ti TD 

P 1/a -  -  

PI 0.9/a 3.33 θ - 

PID 1.2/a 2 θ 0.5 θ 

The second method is based on knowledge of the 
response to specific frequencies. The idea is that the 
controller settings can be based on the most critical 
frequency points for stability. This method is based on 
experimentally determining the point of marginal stability. 
This frequency can be found by increasing the proportional 
gain of the controller, until the process becomes marginally 
stable. These two parameters define one point in the Nyquist 
plot. The gain is called ultimate gain Ku and the time period 
Tp. The PID parameter setting is given in [6].  

The Ziegler and Nichols method is the first PID tuning 
techniques made and they are made based on certain 
controller assumptions. Hence, there is always a 
requirement of further tuning; because the controller settings 
derived are rather aggressive and thus result in excessive 
overshoot and oscillatory response. Also for the first method 
the parameters are rather difficult to estimate in noisy 
environment. In the second method, as the system is driven 
towards instability for determining the parameters, 
practically this can be quite detrimental to the system. 

B. Cohen Coon Method 

Cohen and Coon [9] design a method with the PID 
controller parameters decided based on a FOLPD model. 
The main design requirement is the rejection of load 
disturbances. The controller parameter settings are given in 
[9]. 

Despite a better model, the results of the Cohen Coon 
method are not much better than the Ziegler Nichols method. 

III. COMPUTATIONAL AND INTELLIGENT OPTIMIZATION 
TECHNIQUES 

The various intelligent optimization techniques are 
discussed below. 

A. Immune Algorithm 

Artificial Immune Systems (AIS) are computational 
systems inspired by the principles and processes of the 
vertebrate immune system, which learns about the foreign 
substances to defend the body against them. 

The immune system has two types of responses, primary 
and secondary. The former is the response when it first 
encounters the antigen. In this period, the system learns 
about the antigen, creating a memory of it. The later occurs 
when the antigen is encountered for the second time, which 
is a more rapid and larger response. The cells primarily 
involved in this system are B cells. Against the antigen, the 
level to which a B cell is stimulated relates partly to how 
well its antibody binds the antigen.  

In [10] the algorithm is specified in detail. The input 
data or reference level is taken as the antigen invading the 
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system, and then the system responds and learns till the 
required solution is generated. In [10], the author has used 
an immune algorithm to tune a PID controller based on gain 
and phase margins. In [11], Kim and Chu used the algorithm 
for disturbance function based tuning. The immune 
algorithm is also used for auto tuning of PID controllers in 
[12]. 

B. Ant colony Optimization 

Ant Colony Optimization (ACO) [13-14] is a recently 
developed meta-heuristic approach to solving optimization 
problems based on working of an ant colony. More 
precisely, it is based on the ant colony finding the shortest 
path to the food. Each ant tries to find the food through 
some random path leaving behind a trail of pheromones. 
The pheromone trail weakens with reducing no. of ants 
passing through that path and strengthens with increasing no. 
of ants passing through it. So basically it is a search 
algorithm which depends on a number of ants acting 
together moving towards the optimal solution. 

According to Ibtissem Chiha et. al [15] the ants are driven 
by a probability rule to choose their solution to the problem. 
The probability rule between two nodes i and j, depends on 
two factors,  

 
                        (7) 

 
    
The factor ηij is the inverse of the cost function. This 

factor does not change during algorithm execution; instead 
the factor τij (related to pheromone which has an initial 
value τ0) is updated after each iteration. The parameters α 
and β enable the user to direct the algorithm search in favour 
of the heuristic or the pheromone factor. The change in 
pheromone quantity in each path is given by, 

 

                        (8) 

        
LA is the solution of the ant A and Lmin is the best solution 
found so far. The pheromone for the next iteration is 
decided as, 

 
          (9) 

 
NA being the number of ants, ρ being the evaporation 

rate, designed to allow elimination of bad choices. 

Ant colony optimization was used for PID tuning in [15]. 
It was used to minimize a multi-objective function and its 
results were found to be better than genetic algorithm and 
Ziegler Nichols method. In [16] authors have demonstrated 
the use of bees algorithm to tune a PID controller and 
solving complex systems. The results of ACO, PSO and 
bees algorithm are compared and presented in [17].  

C. Bacteria Forage Technique 

Since the selection behavior of bacteria tends to 
eliminate entities with poor foraging strategies and favor the 
propagation of genes of those that have successful foraging 

strategies, they are applied to find an optimal solution 
through methods for locating, capturing, and ingesting food 
[18]. Foraging theory is discussed in [19]. 

All papers on PID tuning with bacteria foraging 
technique [18], [20], [21] study the foraging behavior of E. Coli, 
a common bacteria [22]-[23]. The behavior of E.Coli is 
described in [18] as, 

• If in a neutral medium, it alternates between tumbles 
and runs and searches the environment. 

• If swimming up a nutrient gradient (or out of 
noxious substances) or swimming longer (up a 
nutrient gradient or down a noxious gradient) it 
seeks an increasingly favorable environment. 

• If swimming down a nutrient gradient (or up a 
noxious substance gradient), it searches to avoid 
unfavorable environments. 

E. coli occasionally engages in a conjugation that affects 
the characteristics of a population of bacteria. There are 
attractants that bacteria like, attraction to oxygen (aerotaxis), 
light (phototaxis), temperature (thermotaxis), and 
magnetotaxis (it is affected by magnetic lines of flux). Some 
bacteria change their shape and number of flagella based on 
the medium to reconfigure and ensure efficient foraging in a 
variety of media. The main goal based on bacterial foraging 
is to find the best position of the bacteria with respect to the 
attractant and repellent profile. A hybrid approach 
consisting of genetic algorithm and bacteria forage for 
tuning of PID controller for AVR system is proposed in [21].  

D. Genetic Algorithm 

Genetic algorithm (GA) is a search algorithm that 
explores the search space in a manner analogous to 
evolution in nature [24]. It uses probabilistic rules to search 
for and change the potential solutions in the search space, 
using a cost function to analyze the fitness of solutions.  GA 
requires the solution to be represented in a way that is 
analogous to genes so that the processes that bring about a 
change in the genes (like mutation) can be used. Usually this 
is done by representing the solutions in a binary format. 

The standard genetic algorithm is given below and 
flowchart of the algorithm is shown in Fig. 2. 

• Initialization, firstly initial solutions are randomly 
selected from the search space. 

• Selection, during each iteration, a proportion of 
solutions is selected, based on the fitness function 
(fitter solutions are more likely to get selected), for 
breeding the next generation of solutions. The 
selection is done in a probabilistic manner. 

• Reproduction, selected solutions are paired up and 
crossover and mutation operation are performed to 
get the next generation of solutions. 

• Termination, the iterations are terminated when the 
termination condition (time or accuracy) is reached.  

 



 
Journal of Control Engineering and Technology (JCET) 

JCET Vol. 2 Iss. 4 October 2012 PP. 168-176 www.ijcet.org ○C World Academic Publishing 
171 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

GA is very popular in PID tuning, and has gained wide 
applications in control systems [25]. Girishraj et. al [25] used 
GA for improving performance of a PID controller used in 
bioreactor and compared the performance with Ziegler 
Nichols, Skogestad modification [26] and IMC rule [27] and 
found that GA outperformed both in terms of overshoot, 
disturbance rejection, gain margin and phase margin. The 
limitations of GA in tuning a multivariable system were 
explored in [28]. GA has been used in position and speed 
control of a DC motor [29]-[30]. GA has been used for PID of 
reverse osmosis and cascade control systems tuning in [31]-

[33].  

Lot of work has been done in using GA along with other 
computational techniques. In [21], Kim et al. use bacteria 
forage along with GA for PID controller tuning of AVR 
systems. GA was used with NN in [34] and with fuzzy logic 
in [35] for developing self tuning methods.  
E. Differential Evolution 

Differential Evolution (DE) is a method for doing 
numerical optimization without explicit knowledge of the 
gradient of the problem to be optimized. The DE method is 
originally due to Storn and Price and works on 
multidimensional real-valued functions which are not 
necessarily continuous or differentiable. DE optimizes a 
problem by maintaining a population of candidate solutions 
and creating new candidate solutions by combining existing 
ones according to its simple formulae of vector-crossover 
and -mutation, and then keeping whichever candidate 
solution has the best score or fitness on the optimization 
problem at hand. In this way the optimization problem is 
treated as a black box that merely provides a measure of 
quality given a candidate solution and the gradient is 
therefore not needed. Differential evolution is used for 
online PID tuning in [36]. 

F. Evolutionary Programming 

 Generally, the EP algorithm for global optimization 
contains four parts, initialization, mutation, competition, and 
reproduction. Mutation is based on the current values and a 
Gaussian random variable. Furthermore, a quasi-random 
sequence (QRS) is used to generate an initial population for 
EP [37] to avoid causing clustering around an arbitrary local 

optimum [37]. Evolutionary programming was used in [38] 
for PID tuning using IAE and compared with results of [39], 
[40], [41], and [42] which were fuzzy logic based and the 
results were superior for evolutionary programming and the 
same as results with a genetic algorithm. 

G. Artificial Neural Networks 

An Artificial Neural Network (ANN), usually called 
‘Neural Network’ (NN), is a mathematical model or 
computational model that tries to simulate the structure 
and/or functional aspects of biological neural networks. It 
consists of an interconnected group of artificial neurons and 
processes information using a connectionist approach to 
computation. In most cases an ANN is an adaptive system 
that changes its structure based on external or internal 
information that flows through the network during the 
learning phase. 

    Though ANN can model even highly non linear 
systems, it is not used in control due to limited applicability 
in PID controllers [34], partially because the neural network 
control design has some drawbacks because of some 
intrinsic shortcomings of ANN theory, e.g., the number of 
layers and the numbers of neurons per layer are often hard 
to be determined. According to [43] SVM based self tuning 
controller is simpler to implement. 

Almost all work done using neural networks is for self 
tuning PID controllers. The flow chart used in [34] for self-
tuning PID Control using GA and ANN is shown in Fig. 3.  

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3 Flowchart of neural network based controller 
 

Similarly, [44] uses neural networks for self-tuning 
discrete PID controller, and compares to a relay method 
proposed by Astrom and Hagglund [4] and obtains much 
better results. In [43], Iplikci compared the results of self 
tuning PID controller using neural networks and SVM, and 
found that neural network based controller gave better 
results in noiseless environments and SVM performed better 
in noisy conditions. A NN-like self-tuning PID control 
scheme applied in the motion control of a Two Wheeled 
Vehicle (TWV) is presented in [45]. 

H. Simulated Annealing 

Simulated Annealing (SA) simulates the process of 
heating a metal above its recrystallisation temperature, and 
cooling it to change the metal’s properties. The optimization 
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Fig. 2 Flowchart of genetic algorithm based tuning 
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technique involves perturbation of the design variables and 
then observing the change in the objective function. If the 
solution is better than the current solution, the design 
variables are updated and the new solution is accepted 
according to the Metropolis algorithm [46] based on 
Boltzmann probability. The perturbations keep reducing 
according to some reduction constant. The algorithm ends 
when the desired solution to the objective function is 
reached or the perturbations are too small for significant 
change in the objective function. A flow chart of the 
algorithm is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated annealing has been used in PID tuning in [47] 
for controllers for time-delay Systems for a high-
performance drilling process. The standard algorithm for SA 
is computationally very intensive due to an extremely large 
and nonlinear, multimodal search space [48]. So a modified 
version of SA named Orthogonal Simulated Annealing 
(OSA) is used in [49] for simultaneous optimization of 
multiple fuzzy neural networks using in PID tuning of 
various controllers. 

I. Support Vector Machine 

Support Vector Machine (SVM) is a set of related 
supervised learning methods used for classification and 
regression. In simple words, given a set of training examples, 
each marked as belonging to one of two categories, an SVM 

training algorithm builds a model that predicts whether a 
new example falls into one category or the other.  More 
formally, a SVM constructs a hyperplane or set of 
hyperplanes in a high or infinite dimensional space, which 
can be used for classification, regression or other tasks. 

As put in [50], for the training sample xi ∈ R belonging 
to the class yi ∈ {−1, 1}, each class can be linearly separated 
and the discrimination function is described as follows, 

                                 (10) 
where w is an adjustable weight vector and b is the bias. The 
separating hyperplane is the plane with f(x) = 0, and needs 
to satisfy the following constraints such that the hyperplane 
may be uniquely determined for all training data. 

                       (11) 
The distance between the hyperplane and the nearest 

training points (called margin) has to be maximized to 
obtain the best separation. 

SVM was used for PID tuning in [50] by dividing the 
range of uncertainty of the parameters and then using 
multiple SVM (decision tree structure with SVMs). Iplikci 
[43] uses SVM in obtaining the nonlinear autoregressive with 
exogenous inputs (NARX) model of the plant for both PID 
parameter tuning and also correction of the PID output 
during control, which was compared with Neural Networks 
used for the same. In [51] Least Squares SVM (LS-SVM) is 
used to design a self tuning PID. It is an extension of the 
standard SVM, which involves equality instead of inequality 
constraints in SVM and works with a least squares cost 
function [52]. Zhao et al. [51] also states that this design does 
not have the drawbacks which are present in the neural 
network design, present due to some intrinsic shortcomings 
of ANN theory, e. g., the number of layers and the numbers 
of neurons per layer often being hard to determine. 

J. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a popular 
optimization technique developed by Eberhart and Kennedy 
in 1995. In the technique, there is a population of particles 
which move through the solution space to find the optima. 
In PSO technique the system keeps a track of the best 
solution obtained till now and each individual particle keeps 
a track of its own individual best solution. Based on these 
two, each particle moves to a new position decided by a 
velocity and its current position. The velocity is dependent 
on the global and particle’s best solution. As put in [53],  

If the i-th particle of the swarm is represented by the D–
dimensional vector Xi = (xi1, xi2,..., xiD ) and the best 
particle in the swarm, i.e. the particle with the smallest 
function value, is denoted by the index g. The best previous 
position (the position giving the best function value) of the 
i-th particle is recorded and represented as Pi =(pi1, pi2,..., 
piD), and the position change (velocity) of the i-th particle is 
Vi =(vi1, vi2 ,..., viD). The particles are manipulated 
according to the equations, 

            (12) 
                     (13) 

Fig. 4 Flowchart of standard simulated annealing 
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where d = 1, 2, . , D; i = 1, 2,., N and N is the size of 
population; w is the inertia weight; c1 and c2 are two 
positive constants and r1 and r2 are random values in the 
range [0, 1]. 

This is one of the ways in which the PSO algorithm can 
be developed. PSO has been used in PID tuning in [53] for a 
ball and hoop system with ISE as the cost function, where 
its performance was compared to Genetic algorithm and 
Ziegler & Nichols and it was found to outperform both of 
them in terms of settling time, overshoot, and equaled 
genetic algorithm based tuning in rise time. In [17], PSO 
was compared with ant colony optimization and bee’s 
algorithm for all four cost functions, and PSO obtained the 
best fitness value (better rise time and settling time) for all 
cost functions, though the best overshoot was in case of ant 
colony optimization in all cases. PSO also was the fastest 
among the three. Giriraj Kumar et al. [54] also uses PSO 
based tuning for high performance drilling systems. 

Maolong [55] consider social behavior too complex to be 
described by PSO. Quantum-behaved particle swarm 
optimization (QPSO) is a stochastic optimization algorithm 
that was originally motivated by the thinking model of an 
individual of the social organism [55]. QPSO gave even 
better results than PSO, GA and Ziegler Nichols on 
accounts of rise time, overshoot and settling time [55]. PSO 
has also been used for self tuning PID in [56] and when 
compared with real coded genetic algorithm (RGA), it 
produced better results.   

K. Fuzzy Logic 

Fuzzy logic control is one of the interfaces between 
control engineering and artificial intelligence. The Fuzzy 
logic controller (FLC) adds to the conventional PID 
controller to adjust the parameters of the PID controller on-
line according to the change of the signals error and change 
of the error. The design specifications of the FLC vary with 
the plant being used and the PID controller parameter ranges 
in combination with which it is to be used. The basic 
building block of the controller remains similar. Fig. 5 
shows the commonly used FLC and its role in the PID 
tuning as described in [57]. 

 
 

 
 
 
 
 
 
 

As shown in Fig. 6, the error and derivative of the error 
are inputs to the fuzzy interface. The model most commonly 
employed in the fuzzy interface is the Mamdani model, as 
defined in [58]. The operation of the Mamdani rule base can 
be broken down into four parts,  

1)  Mapping each of the crisp inputs into a fuzzy 
variable (fuzzification);  

2)  Determining the output of each rule given its fuzzy 
antecedents;  

3) Determining the aggregate output(s) of all  fuzzy 
rules;  

4) Mapping the fuzzy output(s) to crisp output(s) 
(defuzzification). 

 
 
 
 
 
 
 
 

Fig. 6 Flow chart of a FLC based controller 

The fuzzy rules depend on the plant to be controlled and 
the type of the controller and from practical experience [59]. 
Jantzen [60] states that integral rule bases might be difficult 
to design. Hence, PD fuzzy based system along with integral 
error control is an ideal design. There exist also designs 
where a PI-like fuzzy controller and PD –like fuzzy 
controllers are used in cohesion to achieve a PID-like 
controller. 
L.  Response Surface Method 

The response surface methodology (RSM) is a collection 
of mathematical and statistical techniques that are useful for 
modeling and analysis in applications, where a response 
interest is influenced by several variables and the objective 
is to optimize this response. RSM has been developed by 
Box and Wilson (1951) to explore the potential of statistical 
design in industrial experiments. This methodology has 
gained extensive application in a wide variety of industrial 
processes. RSM constructs polynomial approximations to 
build functional relationships between design variables and 
performances. The input variables are sometimes called 
independent variables or factors, and the performance 
measures or quality characteristics are called as responses. 
For the most response surface, the relationship between the 
response variable of interest (y) and the factors (x1, 
x2, . . . ,xk) may be described in the following second-order 
equation. 

εββββ ++++== ∑∑∑
>===
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(14) 

where ε represents the noise or error observed in the 
response y, β is polynomial coefficient, and n is the number 
of factors. Eq. (14) can also be expressed in a matrix form 
as 

                               ε+= XBY                               (15) 

The method of least squares is used to estimate the 
polynomial coefficients in approximating polynomials such 
that the sum of squares of the errors is minimized. Then 
matrix B of polynomial coefficients can be obtained from 
the formula 

                            ( ) YXXXB TT 1−
=                          (16) 

Reference 
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Kp, Ki, Kd Fuzzy 
Inference  
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d/dt 

Fig. 5 Basic block diagram for fuzzy control 
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The response surface analysis is done in terms of the 
fitted surface. Once a response surface model is obtained, 
statistical analysis technique such as analysis of variance 
(ANOVA) can be used to check the fitness of the model. 
The tuning of a PID controller using RSM is explained in 
[61-64]. 

IV. CONCLUSIONS 

A large number of techniques used for PID tuning were 
reviewed in this paper. A brief description of the technique 
was followed by discussion of the work done in tuning and 
self tuning of PID controller using the technique. If some 
comparative analysis was carried out, it was mentioned and 
the results of the comparison were also elucidated. A 
comprehensive comparative study of all the techniques, 
tested simultaneously under different conditions, still needs 
to be conducted to gauge the comparative performance of 
different techniques on a common platform. 
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