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Abstract- Many real-world network problems are modeled by 

digraphs. In this paper, we study orthogonal factorization for 

bipartite digraph, and show the following result: Let G be a 

bipartite (0, mf－m+1)-digraph. Let f be an integer-valued 

function defined on V(G) such that k  f(x), and let H1,…, Hk be 

an m-subdigraph of G. Then G has a (0, f)-factorization 

orthogonal to each Hi (1 i k). 
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I. INTRODUCTION 

Many networks problems in the real-world can be 
modeled by digraphs (for instance, see [1, 2]). In such a 
network, an important example of is a communication 
network with vertices and arcs modeling cities and 
communication channels, respectively. Other examples are 
the railroad network with vertices and arcs representing 
railroad stations and railways between two stations, 
respectively, or the World Wide Web with vertices 
representing Web pages, and arcs corresponding to 
hyperlinks between Web pages. Orthogonal factorizations in 
digraphs are very important in network design, circuit layout, 
combinatorial design, and other applications, and attract a 
great deal of attentions from researchers. All digraphs 
considered in this paper are finite directed graphs with no 
loops or parallel arcs.  

In recent years, the factorization orthogonal problem has 
gained attention in computer networks. Although there have 
been several recent advances in developing algorithms for 
computer networks problem, the study of base theoretic 
analysis of such algorithms has been largely limited. The 
bipartite setting of the computer networks problem is 
perhaps one of the simplest, and no result has been derived 
for it. For several results on bipartite settings, we refer to [3, 
4, 5]. The contribution of this paper is to infer the necessary 
and sufficient condition for a bipartite digraph to admit a (g, 
f)-factor containing E1 and excluding E2. Then, obtained that 

bipartite (0, mf－m+1)-digraph has a (0, f)-factorization 

orthogonal. 

The organization of this paper is as follows: we show the 
basic notations and give the necessary and sufficient 
condition for a bipartite digraph to admit a (g, f)-factor 
containing E1 and excluding E2 in Section II. Using these 
notions and lemma in Section II, we derive main result in 
Section III. At last, we pose some open problem in Section 
IV. 

II. BASICS 

Let G be a digraph with vertex set V(G) and arc set E(G). 

For any vertex xV(G), the indegree and outdegree of x 

denoted by deg ( )G x
and deg ( )G x

, respectively. We use 

uv to denote the arc with tail u and head v. Let g=(g
-
, g

+
) and 

f=(f 
-
, f 

+
) be pairs of positive integer-valued functions 

defined on V(G) such that g
-
(x) f 

-
(x) and g

+
(x) f 

+
(x) for 

each x  V(G). If g
-
(x)  deg ( )G x  f 

-
(x) and 

g
+
(x) deg ( )H x  f

+
(x) for each xV, then a digraph G is 

called a (g, f)-digraph. A spanning subdigraph F of G is 

called a (g, f)-factor of G if F itself is an (g, f)-digraph. A 

subdigraph H of G is called an m-subdigraph if H has m arcs. 

Denote g f if g
-
(x) f 

-
(x) and g

+
(x) f 

+
(x) for each xV, 

and k  g if k  min{g
-
(x), g

+
(x)}. A (g, f)-factorization 

F={F1, F2, …, Fm} of G is a partition of E into arc-disjoint 

(g, f)-factors F1, F2, …, Fm. Let H be an m-subdigraph of G, 

and let k  1 be a fixed integer. A factorization F={F1, 

F2, … , Fm} of G is called k-orthogonal to H if 

( ) ( )iE H E F = k for i=1, … , m. Especially, 1-

orthogonal is orthogonal. 

In the following text, we always assume that G=(X, Y) is 

a bipartite digraph. For any function f defined on V(G) and S

⊆ V(G), we write f(S) for ( )
x S

f x


  and f( )=0. For two 

subsets S⊆ X and T⊆ Y, we write EG(S，T) for the set {uv : 

uvE, uS, vT }, and let ( , )Ge S T = | EG(S, T)|. Define 

1 ( , ; , )G S T g f =f 
+
(S)－g

-
(T)+ ( , )Ge X S T , 

2 ( , ; , )G S T g f = f 
-
(T)－g

+
(S)+ ( , )Ge S Y T , 

3 ( , ; , )G S T g f =f 
+
(T)－g

-
(S)+ ( , )Ge S Y T , 

4 ( , ; , )G S T g f =f 
-
(S)－g

+
(T)+ ( , )Ge X S T . 

1 ( , ; , )G S T g f , 2 ( , ; , )G S T g f , 3 ( , ; , )G S T g f  and 

4 ( , ; , )G S T g f  are simply denoted as 1 ( , )G S T , 

2 ( , )G S T , 3 ( , )G S T  and 4 ( , )G S T , respectively. 

Let E1 and E2 be two disjoint subsets of E(G), and let S

⊆ X and T⊆ Y be two subsets of V(G). Define, for i=1, 2. 

EiS=EiE(S，Y－T), 
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EiT =EiE(X－S，T)． 

S = 1SE ，
T = 1TE , 

S = 2SE ，
T = 2TE ． 

Gallai 
[6]

 obtained the necessary and sufficient condition 

for the existence of a (g, f)-factor in a digraph. Liu 
[7]

 gave a 

necessary and sufficient condition for a digraph to admit a 

(g, f)-factor containing E1 and excluding E2. Wang 
[8]

 

obtained some results on orthogonal factorization for some 

special digraphs. Folkman and Fulkerson
 [9]

 obtained the 

necessary and sufficient condition for the existence of a (g, 

f)-factor in a bipartite graph. Liu
 [10]

 gave a necessary and 

sufficient condition for a bipartite graph to admit a (g, f)-

factor containing E1 and excluding E2. 

We first obtained the following necessary and sufficient 

condition for the existence of a (g, f)-factor in a bipartite 

digraph which follows by applying the technology used in 

[9]. 

Lemma 1. Let G=(X, Y) be a bipartite digraph, and let g 

= (g− , g+) and f= (f 
−
, f

+
) be pairs of positive integer-valued 

functions defined on V(G) such that g(x)  f(x) for every 

xV(G). Then G has a (g, f)-factor if and only if for all S⊆

X, and T⊆ Y,
1 ( , )G S T  0, 

2 ( , )G S T   0, 
3 ( , )G S T  0, 

and 
4 ( , )G S T  0. 

Let us now give a necessary and sufficient condition for 

a bipartite digraph to admit a (g,f)-factor containing E1 and 

excluding E2, which plays a crucial role in the proofs of our 

theorems. 

Lemma 2. Let G=(X, Y) be a bipartite digraph, and let g 

=(g− , g+) and f=(f 
−
, f

+
) be pairs of positive integer-valued 

functions defined on V(G) such that g(x)  f(x) for every 

xV(G). Let E1 and E2 be two disjoint subsets of E(G). 

Then G has a (g, f)-factor F  such that  E1⊆ E(F)  and     E2

∩E(F)=   if and only if for all  S⊆ X, and  T⊆ Y, 

1 ( , )G S T 
S  + T , 

2 ( , )G S T 
T +

S , 
3 ( , )G S T   

T +
S , 

4 ( , )G S T 
S +

T . 

Proof. First, we show that G has a (g, f)-factor with E2∩

E(F) =  if and only if 

1 ( , )G S T 
T ,

2 ( , )G S T 
S ,  

3 ( , )G S T 
S , 

4 ( , )G S T 
T . 

Let G’=G−E2. Then the such desired (g, f)-factor exists 

if and only if G’ has a (g, f)-factor if and only if, by Lemma 

1, for any S⊆ X, and T⊆ Y, 

1 '( , )G S T =f
+
(－g

-
(T)+ '( ' , )Ge X S T  0, 

2 '( , )G S T = f 
-
(T)g

+
(S)+ '( , ' )Ge S Y T  0, 

3 '( , )G S T =f 
+
(T)g

-
(S)+ ( , ' )Ge S Y T  0, 

4 '( , )G S T =f 
-
(S)g

+
(T)+ ( ' , )Ge X S Y  0. 

It is easy to see that 

1 '( , )G S T = 1 ( , )G S T － T ,                     (1)                     

2 '( , )G S T =
2 ( , )G S T －

S ,                    (2)                     

3 '( , )G S T =
3 ( , )G S T －

S ,                    (3)                       

4 '( , )G S T =
4 ( , )G S T －

T .                   (4)                 

Therefore, 
1 '( , )G S T  0,

2 '( , )G S T  0, 

3 '( , )G S T  0 and 
4 '( , )G S T  0 if and only if 

1 ( , )G S T 
T , 

2 ( , )G S T 
S , 

3 ( , )G S T 
S   

and 
4 ( , )G S T 

T . 

   Next, let us prove that there exists a (g, f)-factor in G 

containing all arcs of E1 if and only if 

1 ( , )G S T 
S , 

2 ( , )G S T 
T , 

3 ( , )G S T 
T ,  

4 ( , )G S T 
S . 

For this purpose, let 

g’
-
(x)= deg ( )G x

－f 
-
(x) ,    f’ 

-
(x) = deg ( )G x

－g
-
(x), 

g’
+
(x)= deg ( )G x

－f
+
(x),    f’ 

+
(x)= deg ( )G x

－g
+
(x), 

and let 

                         g’= (g’
-
, g’

+
), f’=(f’ 

-
, f’ 

+
). 

Then such desired (g, f)-factor exists if and only if G has 

a (g’, f’)-factor excluding all arcs of E1. According to the 

first statement, this is equivalent to 

1 ( , ; ', ')G S T g f 
T , 

2 ( , ; ', ')G S T g f 
S ,  

3 ( , ; ', ')G S T g f 
S , 

and 

4 ( , ; ', ')G S T g f 
T . 

Note that 

1 ( , ; ', ')G S T g f  

= f’ 
+
(S)－g’

-
(T)+ ( , )Ge X S T  

= deg ( )G S
－g

+
(S)－deg ( )G T

 

+ f 
-
(T) + ( , )Ge X S T  

                    =f 
-
(T)+g

+
(S)+ ( , )Ge S Y T  

                    =
2 ( , ; , )G S T g f . 

Similarly, we obtain 

                     
2 ( , ; ', ')G S T g f =

1 ( , ; , )G S T g f , 

3 ( , ; ', ')G S T g f =
4 ( , ; , )G S T g f , 

4 ( , ; ', ')G S T g f =
3 ( , ; , )G S T g f . 

Hence, G has a (g, f)-factor containing all arcs of E1 if 

and only if 
1 ( , )G S T 

S , 
2 ( , )G S T 

T , 

3 ( , )G S T 
T , and 

4 ( , )G S T 
S , as desired. 

From the evidence offered above, we confirm that G has 

a (g, f)-factor F such that E1⊆E(F) and E2∩E(F) =  if and 

only if G’, as defined before, has a (g, f)-factor F with 



Journal of Control Engineering and Technology (JCET) 

JCET Vol. 3 Iss. 2 April 2013 PP. 61-68 www.ijcet.org ○C  American V-King Scientific Publishing 

63 

E1⊆E(F). By analyzing the preceding statement, this is 

equivalent to that
1 '( , )G S T 

S ,
2 '( , )G S T 

T , 

3 '( , )G S T 
T  and 

4 '( , )G S T  
S . By (1)-(4), it is 

sure that G has a (g, f)-factor F such that E1⊆ E(F) and E2∩

E(F) =   if and only if for all S⊆ X, and T⊆ Y, 
1 ( , )G S T  


S +

T ,
2 ( , )G S T 

T +
S , 

3 ( , )G S T  
T +

S , 

4 ( , )G S T 
S + 

T .                                                         

In the present paper, we study the orthogonal 

factorizations in digraphs. The main result of this article is 

the following. 

Theorem 1. Let G be a bipartite (0, mf－m+1)-digraph. let 

f be an integer-valued function defined on V(G) such that 

k f(x), and let H1, …, Hk be an m-subdigraph of G. Then G has 

a (0, f)-factorization orthogonal to each Hi(1 I  k). 

III. PROOF OF MAIN RESULT 

Let G be a bipartite (0, mf－m+1)-digraph where m 1 

is an integer.  

Define 

g
+
(x)=max{0, degG


(x)－(m－1)f 

+
(x)＋(m－1)－1}, 

g
-
(x)=max{0, degG


(x)－(m－1)f 

-
(x)＋(m－1)－1}. 

1( )x =
1

( )Gd x
m


－g

+
(x), 

2( )x =f
+
(x)－

1
( )Gd x

m


, 

3( )x =
1

( )Gd x
m


－g

-
(x), 

4( )x =f 
-
(x)－

1
( )Gd x

m


. 

By the above definitions, we have follow lemmas: 

Lemma 3. For every xV(G), we have  

1) If m 2, then 0 g(x)<f(x); 

2) If g
+
(x)= degG


(x)－ (m－1)f 

+
(x)＋ (m－1)－1, 

then 1( )x 
1

m
; 

g
-
(x)= degG


(x)－ (m－ 1)f 

-
(x)＋ (m－ 1)－ 1, then 

3( )x 
1

m
; 

3) 2( )x 
1m

m


 and 4( )x 

1m

m


. 

Proof. (1) Since G is a bipartite (0, mf－m+1)-digraph, 

and m  2 is an integer. Thus, 0  mf－m+1. So, by the 

integer of function f , we have f 1. 

If g
-
(x)=0, then 0 g

-
(x)<f 

-
(x) is obviously.  

If g
-
(x)= degG


(x)－(m－1)f 

-
(x)＋(m－1)－1, then 

 f 
-
(x)－g

-
(x) 

=f(x)－( degG


(x)－(m－1)f 

-
(x)＋(m－1)－1) 

=m f 
-
(x)－m+2－deg ( )G x

 

m f 
-
(x)－m+2－(m f 

-
(x)－m+1) 

=1. 

Therefore, we get 0 g
-
(x)<f 

-
(x).  

Similarity, we can get 0  g
+
(x)<f 

+
(x). 

(2) In the terms of g
+
(x)= degG


(x)－(m－1)f 

+
(x)＋(m

－1)－1, we obtain 

1( )x  

=
1

( )Gd x
m


－g

+
(x) 

 =
1

( )Gd x
m


－( degG


(x)－(m－1)f 

+
(x)＋(m－1)－1)  

=
1

( )G

m
d x

m


+(m－1)f 

+
(x)－(m－1)+1 


1

( ( ) 1)
m

mf x m
m


  + (m－1)f 

+
(x)－ (m－

1)+1 

=(1－m)f 
+
(x)+(m－1)－

1m

m


+(m－1)f 

+
(x)－(m－

1)+1 

=
1

m
. 

Similarity, we can show that 
3( )x 

1

m
 if g

-

(x)= degG


(x)－(m－1)f 

-
(x)＋(m－1)－1. 

(3) In fact, 

2( )x =f
+
(x)－

1
( )Gd x

m


, 

                        f
+
(x)－

1
( ( ) 1)mf x m

m

    

                      = f
+
(x)－f

+
(x)+

1m

m


 

                      =
1m

m


. 

Similarity, we can show that 4( )x 
1m

m


.                        

Lemma 4. 

 For every xV(G), we have that 
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1 ( , ; , )G S T g f =
1( )T +

2 ( )S +
1

( , )G

m
e X S T

m


  

+
1

( , )Ge S Y T
m

 , 

2 ( , ; , )G S T g f =
1( )S +

2 ( )T +
1

( , )G

m
e S Y T

m


  

+
1

( , )Ge X S T
m

 , 

3 ( , ; , )G S T g f =
3( )T +

4 ( )S +
1

( , )G

m
e S Y T

m


  

+
1

( , )Ge X S T
m

 , 

and 

4 ( , ; , )G S T g f =
3( )S +

4 ( )T +
1

( , )G

m
e X S T

m


    

                                     +
1

( , )Ge S Y T
m

 . 

Proof. We only proof the first inequality. The other can 

be veri1ed similarly. According to the definition of 

1 ( , ; , )G S T g f , we have 

1 ( , ; , )G S T g f  

= ( , )Ge X S T －g
-
(T)+f

+
(S) 

= ( )Gd T
－ ( , )Ge S T －g

-
(T)+f

+
(S) 

=
1

( ) ( )Gd T g T
m

  +
1

( ( ) ( ))Gf S d S
m

   

               +
1

( , )G

m
e X S T

m


 +

1
( , )Ge X S T

m
  

=
1( )T +

2 ( )S +
1

( , )G

m
e X S T

m


  

+
1

( , )Ge S Y T
m

 .                                                                      

  Let S⊆X and T⊆Y be two subsets of V(G). Let S0={x| 

xS, f(x)=1}, S1=S－S0; S0={x| xS, f(x)=1}, S1=S－S0. 

Then, we have 

      S= S0S1, S0S1= , 

      T= T0T1, T0T1= . 

     S =
0S +

1S ,  T =
0T +

1T , 

   
S =

0S +
1S ,   T =

0T +
1T . 

Lemma 5. Let E1 and E2 be two disjoint subsets of E. 

(1)If 1 1 1( , ; , )G S T g f = 1 1( , )Ge G S T － 1( )g T
 

+ 1( )f S 
1S +

1T , then 1 ( , ; , )G S T g f  = 

( , )Ge G S T － ( )g T + ( )f S 
S + T . 

(2)If 2 1 1( , ; , )G S T g f = 1 1( , )Ge S G T － 1( )g S
+ 

1( )f T 
1T +

1S , then 
2 ( , ; , )G S T g f  = 

( , )Ge S G T  － ( )g S + ( )f T 
T +

S . 

(3)If 
3 1 1( , ; , )G S T g f =

1 1( , )Ge S G T － 1( )g S
+ 

1( )f T
 

1T +
1S , then

3 ( , ; , )G S T g f = 

( , )Ge S G T － ( )g S + ( )f T 
T +

S . 

(4)If 
4 1 1( , ; , )G S T g f =

1 1( , )Ge G S T － 1( )g T
+ 

1( )f S 
1S +

1T , then
4 ( , ; , )G S T g f  

= ( , )Ge G S T － ( )g T + ( )f S 
S +

T . 

Proof. We only proof the first inequality. The other can 

be veri1ed similarly. Since 
0( , )Ge G S T – 0( )g T

= 

0( , )Ge G S T  
0T ,  0 ( )Gd x  mf+(x)－m+1, and the 

vertex in S0 have indegree 0 or 1 in G. We get 

          0S  0( )Gd S
 


0( , )Ge S T +

0( , )Ge S G T  


0S + 

0 1( , )Ge S T . 

Thus, when 
1 1 1( , ; , )G S T g f 

1S +
1T , we obtain 

1 ( , ; , )G S T g f  

= ( , )Ge G S T － ( )g T
+ ( )f S

 

              = 1( )f S
+ 0S +

1( , )Ge G S T + 

                  
0( , )Ge G S T －g

-
(T1) 

              1( )f S
+

0S + 0 1( , )Ge S T + 

1( , )Ge G S T +
0T －g

-
(T1)  

= 1( )f S
+

0S + 1 1( , )Ge G S T +
0T －g

-
(T1) 

              =
1 1 1( , ; , )G S T g f +

0S +
0T  


1S +

1T +
0S +

0T  

=
S + T .                                                                                                                  

Lemma 6 
[11]

. Let G be an (0, mf－m+1)-digraph, f(x) be 

a non-negative integer function defined on V(G), H be an m-
subdigraph of G, then G have a (0, f)-factorization 
orthogonal to each H. 

Let G be a bipartite digraph, f(x) be a non-negative 

integer function defined on V(G) such that f(x) k for every 

xV(G). Let H1,…, Hk be an m-subdigraph of G, g(x) as 

defined above. For i=1,…,k, denote  

1i
A ={xyE(Hi)| g (x) 1 and g (y) 1}, 

2iA ={xyE(Hi)| g (x) 1 or g (y) 1}, 

i
A =

1 1

2 1 2

,

, and

( ), otherwise

i i

i i i

i

A A

A A A

E H

  


 


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Choose uivi iA , i=1, …, k. Let E1={ uivi, i=1, …, k} 

and E2= (

1

( )
k

i

i

E H


 )- E1. Then 1E =k and 2E =(m－1)k. 

For S⊆X and T⊆Y, EiS=EiE(S, Y－T)，E1T , E2T , E1S , 

E2S , S ,
T ,

S ,
T as we defined above, then we have  

1S min{k, 1S },  
1T min{k, 1T }, 

  
1S min{(m－1)k,(m－1) 1S },   

 
1T min{(m－1)k,(m－1) 1T }. 

In order to prove Theorem 1, Lemma 7 will be used later. 

Lemma 7. Let G=(X, Y) be a bipartite digraph and let f 

be a positive integer function defined on V with f(x) k for 

each xV, where m 2 and k 2 are two integers. If G is 

an (0, mf－m+1)-digraph, then G has a (g, f) -factor F such 

that E1 E(F) and E2E(F) = . 

Proof. By Lemma 2, we only to show that for all S⊆ X, 

and T⊆ Y, 

1 ( , )G S T 
S +

T ,
2 ( , )G S T 

T +
S ,  

3 ( , )G S T 
T +

S ,
4 ( , )G S T 

S +
T . 

Let S1 and T1 as defined above. By lemma 5, it is only 

need to show  

              
1 1 1( , ; , )G S T g f  

=
1 1( , )Ge G S T － 1( )g T

+ 1( )f S
 


1S +

1T , 

2 1 1( , ; , )G S T g f  

=
1 1( , )Ge S G T － 1( )g S

+ 1( )f T
 


1T +

1S ,  

3 1 1( , ; , )G S T g f  

= 1 1( , )Ge S G T － 1( )g S
+ 1( )f T

 


1T +

1S , 

      
4 1 1( , ; , )G S T g f  

=
1 1( , )Ge G S T  － 1( )g T

+ 1( )f S
 


1S +

1T . 

We only to show the first inequality holds, the other 

inequality can be deal with in the similarity way. That is, we 

only to show 

1 1 1( , ; , )G S T g f  

= 1 1( , )Ge G S T － 1( )g T
+ 1( )f S

 


1S +

1T . 

By Lemma 3 and Lemma 4, we obtain 

1 1 1( , ; , )G S T g f  

=
1 1( )T +

2 1( )S + 1 1

1
( , )G

m
e X S T

m


  

+ 1 1

1
( , )Ge S Y T

m
  


1T

m
+

1( 1)m S

m


+ 1 1

1
( , )G

m
e X S T

m


  

+ 1 1

1
( , )Ge S Y T

m
  

If T1= , then 
1T =0. We have 

1 1 1( , ; , )G S T g f  


1 1( , )Ge G S T － 1( )g T

+ 1( )f S
 

= 1( )f S  k 1S  1S  

  
1S =

1S +
1T . 

Next, we assume T1= . Then there exist x1T1, such 

that 

                       1( )Gd x
=min{ ( )Gd x

: xT1}. 

By the definition of T1, we have that for every xT1, 

g
-
(x)= ( )Gd x

－((m－1)f 
-
(x)－(m－1)+1) 1. 

Thus,  

g
-
(x1)= 1( )Gd x

－((m－1)f 
-
(x1)－(m－1)+1) 1. 

So, we get 

 1( )Gd x  (m－1)f 
-
(x1)－(m－1)+2 

 (m－1)k－(m－1)+2 

=(m－1)(k－1)+2. 

Now, we consider following situations: 

Case 1. 0 1S  (m－1)(k－2)+1． 

 In this case, we have 

1 1( , )Ge G S T  

 ( 1( )Gd x
－ 1S ) 1T  

 [(m－1)(k－1)+2－(m－1)(k－2)－1] 1T  

=m 1T . 

Thus, 

1 1 1( , ; , )G S T g f  

 1T

m
+

1( 1)m S

m


 + 1 1

1
( , )G

m
e X S T

m


   

+  1 1

1
( , )Ge S Y T

m
  


1T

m
+

1( 1)m S

m


+ 1

1m
m T

m


+ 1 1

1
( , )Ge S Y T

m
  
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
1

m
+

1

( 1)
S

m

m


 +

1T +
1

1
S

m
  

=
1S +

1T . 

Case 2.  1S =(m－1)(k－2)+2. 

Subcase 2.1.  1 1T  k－1． 

1 1 1( , ; , )G S T g f  


1T

m
+

1( 1)m S

m


+ 1 1

1
( , )G

m
e X S T

m


  

+ 1 1

1
( , )Ge S Y T

m
  

=
1T

m
+

( 1)
(( 2)( 1) 2)

m
k m

m


   + 

1 1

1
( , )G

m
e X S T

m


 + 1 1

1
( , )Ge S Y T

m
  


1

1

( 1)
T

m m



+

1m
k

m


+

1
( 2)( 2)

m
k m

m


    

+
1

1
T

m

m


 +

1

1
S

m
  


1

1
S

m

m


 +

1

1
S

m
 +

1

1

( 1)
T

m m



 

+
1

( 2)( 2)
m

k m
m


  +

1

1
T

m

m


  

=
1S +

1

1

( 1)
T

m m



+

1

1
T

m

m


  

+
2

( 1)( 1)
( 1)

m
k m

m m


 


+

1
( 2)( 2)

m
k m

m


   

－
2

( 1)( 1)
( 1)

m
k m

m m


 


 


1S +

1

1

( 1)
T

m m



+

1

1
T

m

m


 + 1

2
( 1)

( 1)

m
m T

m m





 

 +
2

[( 2)( 2) 1]
m

k m
m


    


1S +

1

1

( 1)
T

m m



+

1

1
T

m

m


 +

1̀

2

( 1)
T

m

m m





 

－
2m

m


 

>
1S +

1T －1. 

By 1 1 1( , ; , )G S T g f  is an integer, we have 

1 1 1( , ; , )G S T g f 
1S +

1T . 

Subcase 2.2. 1T =k. 

In this case, we have 

1 1 1( , ; , )G S T g f  

=
1 1( , )Ge G S T － 1( )g T

+ 1( )f S
 

= 1( )Gd T
－ 1S 1T －[ 1( )Gd T

－ 

((m－1)f
-
(T1)－(m－1) 1T + 1T )]+ 1( )f S

 

=(m－1) f
-
(T1)－(m－1) 1T + 1T － 1S 1T + 1( )f S

 

 (m－1)k 1T －(m－1) 1T + 1T －k 1T +k 1S  

=(m－1)(k－1)k+k 

 k+(m－1)k 


1S +

1T . 

Subcase 2.3. 1T  k+1. 

In this case, we have 

                
1 1( , )Ge G S T  

 ( 1( )Gd S
－ 1S ) 1T  

 [ ((k－1)(m－1)+2)–((k－2)(m－1)+2))] 1T  

=(m－1) 1T . 

Thus, 

    
1 1 1( , ; , )G S T g f  

 1T

m
+

1( 1)m S

m


+ 1 1

1
( , )G

m
e X S T

m


  

+ 1 1

1
( , )Ge S Y T

m
  


1T

m
+

( 1)
(( 2)( 1) 2)

m
k m

m


    

+ 1

1
( 1)

m
m T

m


 + 1 1

1
( , )Ge S Y T

m
  


1

1
S

m

m


 +

1

1
S

m
 +

1

1

( 1)
T

m m




1
( 1)

m
m k

m


  

+
1

( 1)
m

m
m


 +

1
( 2)( 2)

m
k m

m


   


1S +

1

1

( 1)
T

m m



+

1

1
T

m

m


 +

2
( 1)

( 1)

m
k m

m m





 

 +
1

( 2)( 2)
m

k m
m


  +

1
( 1)

m
m

m


  

－
2

( 1)( 1)
( 1)

m
k m

m m


 


 


1S +

1T +
2

[( 1)( 1) ]
m

k m k
m


   +

1m

m


 


1S +

1T . 

Case 3. 1S  (m－1)(k－2)+3. 

In this case, we get 
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1 1 1( , ; , )G S T g f  


1T

m
+

1( 1)m S

m


+ 1 1

1
( , )G

m
e X S T

m


   

+ 1 1

1
( , )Ge S Y T

m
  


1

1

( 1)
T

m m



+

1
[( 2)( 1) 3]

m
k m

m


    

+
1

1
T

m

m


 +

1

1
S

m
  


1

1
S

m
 +

1m
k

m


+

1

1

( 1)
T

m m



+

1

1
T

m

m


  

+
2

( 1)
( 1)

m
k m

m m





+

1
[( 2)( 1) 3]

m
k m

m


    

－
1m

k
m


－

2
( 1)

( 1)

m
k m

m m





 


1

1
S

m
 +

1

1
S

m

m


 +

1

1

( 1)
T

m m



+

1

1
T

m

m


  

+
1̀

2

( 1)
T

m

m m





+

2
[( 2)( 2) 2]

m
k m

m


    

+
1m

m


 


1S +

1T +
1m

m


－

2( 2)m

m


 

=
1S +

1T －
3m

m


 

>
1S +

1T －1. 

By 
1 1 1( , ; , )G S T g f  is an integer, we have 

1 1 1( , ; , )G S T g f   

  
1S +

1T .                                                                                     

   Now, we begin to prove Theorem 1. 

Proof. When k=1, we are down according to Lemma 6. 

Next, we assume k 2. The result holds obviously for m=1. 

We assume that the result holds for m－1, where m 2. By 

Lemma 7, we are sure that G has a (g, f) -factor F1 such that 

E1 E(F1) and E2E(F1)= . By the definition of g(x), F1 

is a (0, f)-factor of G such that E1  E(F1) and 

E2E(F1)= . 

Let G’=G－E(F1), then by the definition of g(x), we 

have  

 0 '( )Gd x
 

= ( )Gd x
－

1
( )Fd x

 

 ( )Gd x
－g(x) 

 ( )Gd x
－[ ( )Gd x

－((m－1)f
+
(x)－(m－1)+1)] 

             =(m－1) f
+
(x)－(m－1)+1. 

Similarity, 0 '( )Gd x  (m－1) f 
-
(x)－(m－1)+1 holds. 

Thus, G is a bipartite (0, (m－1) f(x)－(m－1)+1)-digraph. 

Let 
'

iH =Hi－E1, where 1  i k. By the induction, G’ has a 

(0,f)-factorization F’={F2, … , Fm} orthogonal to 
'

iH  

(1 i k). Thus, G has a (0, f)-factorization orthogonal to 

eachHi(1 i k).                                                                  

IV. FURTHER WORK 

It has showed by other author that the problems on (g, f)-
factorizations, k-orthogonal or randomly k-orthogonal 
factorizations in undirected graph are in NP. From this point 
of view, the problems on (g, f)-factorizations, k-orthogonal 
or randomly k-orthogonal factorizations in digraph are also 
NP. Given a graph G (undirected graph or digraph), two 
integer functions g=(g

-
, g

+
) and f=(f 

-
, f 

+
) defined as the 

above and a positive integer k, is there a (g,f)-factorization 

F={F1,F2,… ,Fm} of G such that m  k? In views of the 

simple version of this problem can be regard as the edge-
coloring problem, we can verify that the general version of 
this problem is NP-complete as well. In the terms of the 
above argument, clearly, the problem which asks whether a 
bipartite digraph has a (g, f)-factorization k-orthogonal (or 
factorizations randomly k-orthogonal) to a given km-
subdigraph is also NP-complete since factorizations are the 
special case of orthogonal (or randomly orthogonal) 
factorizations. Note that, for undirected graph, there are 
polynomial algorithms for deciding whether a undirected 
graph G has a (g, f)-factor. When G is a bipartite undirected 
graph or g(x) f(x) for each xV(G) holds, Heinrich et al. 
[12]

 gave a relatively simple existence criterion for a (g, f)-
factor which leads to an (g, f)-factor algorithm with time 
complexity O(g(V(G))|E(G)|); Hell and Kirkpatrick

 [13]
 gave 

O( ( ( )) ( )g V G E G ) algorithms for this issue. Anstee 
[9] 

obtained a polynomial algorithm which either finds a (g, f)-
factor or shows that one does not exist in O(|V(G)|

3
) 

operations for general (g, f)-factor problems.  

 The design of effective algorithm for giving a (g, f)-
factorizations in bipartite digraph or checking whether there 
exists a factorization is a challenge work for us. However, 
these kinds of algorithms are much useful in computer 
network, such as transmission.  
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