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Abstract- Numerous theoretical studies on predator-prey 

dynamics have been studied where the habitat is free of 

complexity. But empirical and experimental results suggest that 

habitat complexity plays significant role in the predator-prey 

dynamics. On the other hand, most of the theoretical models in 

ecology are studied under unvarying deterministic environment 

though the characterizing parameters of real environments 

exhibit random fluctuations. In this paper, we study a colour 

noise-induced predator-prey system where the interaction 

between prey and predator occurs in a habitat with structural 

complexity. Spectral density analysis indicates that the system 

is stochastically stable and lies within the tolerance interval at 

the intermediate degree of habitat complexity. The qualitative 

behaviors of the model system have been demonstrated with the 

data of Paramecium aurelia (prey) and Didinium nasutum 

(predator) interaction.   
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I. INTRODUCTION  

Theoretical works generally assume that interaction 

between prey and predator occurs in a habitat where no 

complexity is present 
[1]

. However, no natural habitat 

(aquatic or terrestrial) is truly free of complexity. Aquatic 

habitat, for example, becomes structurally complex in 

presence of submerged vegetation or aquatic weeds. It is 

well established that habitat complexity reduces the 

predation rate 
[2, 3, 4]

 and the hypothesis is that there exists an 

inverse relationship between predation rate and degree of 

habitat complexity 
[5]

. Therefore, it is important to 

incorporate the effect of habitat complexity when predator-

prey interaction is studied by means of theoretical models. 

The most commonly mathematical expression used to 

represent the interaction between a prey and predator 

(known as predator‟s response function) is Holling Type II 
[6]

. It is shown in [7] that the Type II response function, 

given by 
hx

x





1
, can be modified to 

hxc

xc

)1(1

)1(








, 

where x is the prey density, α is the attack coefficient, h is 

the handling time and c (0 < c <1) measures the degree or 

strength of habitat complexity. For example, c = 0.30 implies 

that predator-prey interaction will be reduced by 30% due to 

the complexity of habitat. If c=0 then it will be the Holling 

Type II response function. 

Most of the models proposed and studied in the 

ecological literature work within the framework of an 

unvarying deterministic environment. This means that 

present state of a population is uniquely determined by 

parameters in the model and by sets of previous states of 

these populations. Therefore, deterministic models always 

perform in the same way for a given set of initial conditions. 

However, the parameters characterizing real environment 

exhibit random fluctuations. That means, real environments 

are uncertain or stochastic. Due to these reasons, most 

natural phenomena do not follow strictly deterministic laws, 

rather oscillate randomly about some average so that the 

deterministic equilibrium is not an absolutely fixed state; 

instead it is a „fuzzy‟ value around which the biological 

system fluctuates 
[8]

. In models of biological systems, 

fluctuations or an external random force is typically 

approximated by delta-correlated random process or white 

noise which has a finite radius of correlation 
[9, 10, 11]

. This is 

explained by the comparative mathematical simplicity of 

such processes. However, for most of the biological systems, 

white noise is not an accurate approximation of the actual 

fluctuations or randomness present in the system. In these 

cases, colour noise provides a more accurate description. In 

this paper, we study a colour noise-induced predator-prey 

model with habitat complexity. To take into account the 

effect of fluctuating environment, we consider perturbations 

in the prey's reproductive factor and predator‟s mortality 

factor in the form of colour noises 
[12, 13]

. The study is based 

on the spectral density technique developed by Pugachev 
[14]

. 

The organization of this chapter is as follows. Section II 

deals with the stochastic model formulation. Spectral density 

functions are deduced in Section III. Section IV deals with 

non-equilibrium fluctuations and stability. Solution of the 

noise-induced linearized system is given in Section V. 

Numerical study is performed in Section VI and a brief 

discussion is presented in Section VII. 

II. THE STOCHASTIC MODEL 

Assume that the prey population (x) grows logistically to 

environmental carrying capacity k in absence of predator (y) 

with intrinsic birth rate constant r. Let d be the food-

independent death rate and θ be the conversion efficiency of 

the predator. Assume that the interaction between prey and 

predator occurs in a homogeneously complex habitat 

following modified Type II response function. Under these 
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assumptions, the prey-predator dynamics can be represented 

by the following couple of differential equations:  
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  The coexistence equilibrium of the System (1) is given 

by E
*
(x

*
,y

*
) with equilibrium prey and predator densities 

))(1(

*

hdc

d
x





 & 

)1(

})1(1){( **
*

ck

xchxkr
y









, respectively. This 

equilibrium will be biologically meaningful if  

,> )(

&   < )( 1

k

d
hdii

cci


   

where .
)(

11
hdk

d
c





 

The System (1) is locally asymptotically stable around 

the equilibrium E
*
(x

*
,y

*
) if 

[6]
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and unstable if c < c2. A Hopf bifurcation exists at c = c2 

where 
2 1

( )

hd
c

kh hd


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
 


. Assume that fluctuations in 

the environment will manifest mainly as fluctuations in the 

birth rate of prey and in the mortality rate of predator. Under 

these assumptions, the stochastic counterpart of the 

deterministic model System (1) will take the following form: 
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Here the perturbed terms )(tj  (j=1, 2) are uncorrelated 

colour noises and follow the Ornstein-Uhlenbeck process 
[15] 

which are more realistic noise than Gaussian white noise.  

The mathematical expectation and correlation functions 

of the process )(tj  (j=1, 2) are given by :  

1 2 1 2
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where 1, 0j j    are, respectively, the intensity and the 

correlation time of the noise ηj(t) and ‹.› represents the 

average over the ensemble of the stochastic process. ηj(t) are 

the solutions of the stochastic differential equation  
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Gaussian white noises characterized by : 
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where δ(t) denotes the Dirac delta function
 [16]

.  

III. DEDUCTION OF SPECTRAL DENSITY FUNCTION 

Substituting X = logx and Y = logy in Equation (3) and 
using the transformation u = X - X

*
 and v = Y - Y

*
 , where 

(X
*
,Y

*
) = (logx

*
, logy

*
) and (x

*
,y

*
) is the coexistence 

equilibrium of the System (1), we obtain the linearized 
system as  
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It is to be noted that γ1, β1 and β2 are all positive 
following the deterministic stability Conditions (2). 

By eliminating v from the first equation of (7) and u from 
the second equation of (7), we get  
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Here it is assumed that  

                               .2< 211                                      (11) 

Since η1 and η2 are independent, the correlation function 

1
FK  of the driving force F1(t) is given by   
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Combining (13) and (14), we get  
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From Equations (4), (6), (12) and (16), we have  
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Similarly, the correlation function 
2

FK  of the driving 

force F2(t) is given by 
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The spectral density function of F1(t)  is given by (after 

some simplification) :  
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Similarly, the spectral density function of F2(t)  is given 
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IV.  NON-EQUILIBRIUM FLUCTUATION AND STABILITY  

The mean square deviation of u and v at any arbitrary 

instant t satisfying the stochastic differential Equation (9) are 

given by  
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After some simplification 
[23]

, it is obtained  
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Now as t → ∞, Du(t) → Du(∞) and Dv(t) → Dv(∞), ( 

γ1 > 0), where  

 
 

 

2

1 1

2

1 1 1 1 1 2

1 2 2 2 1

2

2 1 2 1 2 1 2

( ) =

2
         

uD
 

     

    

      


 




 

     (31)        

and  

  
 

 
 

.
2

         

=)(

2111

2

111

11112

2121

2

2121

22112

2

122
















vD

               (32) 

The convergence is rapid except when γ1 is very large. 

As the correlation times of the coloured noises 
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Therefore, for high amplitude random forces, Du(∞) and 

Dv(∞)  are large and the system exhibits large fluctuations. 

The interior equilibrium, which is stable in the absence of 

these fluctuating environmental conditions, become unstable.   

In the deterministic environment, the stability 

determining quantity is γ1 and β1 (given by (8)). If γ1 > 0 and 

β1 > 0, then the deterministic stability Criteria (2) for the 

coexisting equilibria are satisfied. In a rapidly fluctuating 

environment, however, it is no longer enough for stability. 

Here, in addition with γ1 and β1, the intensity εj of the noise 

ηj(t) becomes a regulatory factor. We observe that if εj»γ1 , 

populations exhibit abnormally large fluctuations which 

rapidly lead to population extinction. In the intermediate 

region, where εj and γ1 are commensurate, the populations 

are likely to undergo moderate fluctuations. If  εj«γ1, then 

population fluctuations are relatively small and the 

environment is effectively deterministic.  
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V. SOLUTION OF THE NOISE INDUCED LINEARIZED SYSTEM 

The solutions of the noise induced linearized System (8), 

using the approach of Hoel et al. 
[16]

, are 
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 Solution without noise takes the following form  
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In this case, the ensemble average of the populations are 

given by 
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For t → ∞, 0.)( ,)( 21  tt   Hence, we get ‹u(t)› = 

0 and ‹v(t)› = 0. Using the inverse transformations, we 

obtain ‹x(t)› = x
*
 and ‹y(t)› = y

*
 ; and also the variance of 

both populations become zero, i.e.,  ζ x
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= 0 and ζ y
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when t → ∞ . 
     

To determine the tolerance interval, we use the central 

limit theorem. Thus, we have a pre-assigned small value ε0 > 
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Equation (33) becomes (by using inverse transformations)  
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From the above results we conclude that if the deviations 

from means of both populations (ζ x
2  

and ζ y
2
) become 

greater than the pre-assigned value (ε0) for different choices 

of parameters then both the populations will lie outside the 

tolerance interval and hence the system becomes unstable 

around the positive equilibrium. It is well known that the 

populations will remain stable if the variances from the 

equilibrium levels are minimum 
[17]

, ..ei  the probability of 

the populations to lie inside the tolerance interval which is 

described previously are maximum. 
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Therefore, the system is always unstable in this case.  

VII. QUANTITATIVE RESULTS 

   For quantitative study of the system, we consider the 

parameter values of much studied predator-prey system  

Paramecium aurelia (prey) and  Didinium nasutum (predator) 
[18]

.   

TABLE I DETERMINISTIC PARAMETER VALUES 

Parameter 
Default 

values 

r 2.65 

K 898 

α 0.045 

c ……. 

h 0.0437 

θ 0.215 

d 1.06 

A single  didinium  may consume  12  to 48
 [19, 20] 

paramecium per day. Thus, the handling time (h) for each 

prey captured varies from 0.0208 to 0.0833. We set 0.0437 

as the default value for the parameter h ( see Table 1). Butzel 

and Bolten 
[21] 

estimated that 3 to 10 paramecium are 

required for a binary fission of didinium. This indicates that 

the conversion factor θ may vary from 0.1 to 0.33. We set 

the average value 0.215 as the default value of θ. Harrison 
[22] 

and Jost and Ellener 
[23] 

estimated the values of r (specific 

growth rate of paramecium) as 3.3 and 2 per day, 

respectively. We consider the average value 2.65 as the 

default value of r. The attack coefficient (α) and the per 

capita death rate of didinium (d) were taken as 0.045 and 

1.06 per day, respectively 
[23]

. To explore the effects of 

habitat complexity on the system dynamics, we consider c as 

a variable parameter. For the parameter values as in the 

Table 1, we observe that when c = 0.45 then both the 

populations lie within the tolerance interval indicating the 

stable coexistence of both prey and predator populations (see 

Fig. 1). If the strength of the habitat complexity decreases 

from c = 0.45 to c = 0.13, it is observed that both 

populations deviate from the tolerance interval, which 

indicates the unstable situation of the system (see Fig. 2). 

These observations also resemble with the results obtained 
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by spectral density analysis where the deviations of both the 

populations decrease with increasing c (see Fig. 3). 

Stability determining quantity for the coexistence 

equilibrium in deterministic environment is γ1. If γ1 > 0 then 

the deterministic stability criteria is satisfied. However, it is 

no longer enough for a fluctuating environment. In addition 

to γ1, the intensity εj of the noise ηj is a very important factor 

to be considered in the later case. If εj»γ1 then populations 

exhibit abnormally large fluctuations which lead population 

to extinction (see Fig. 4(a-b)). In the intermediate region, 

where εj and γ1 are commensurate, the populations are likely 

to undergo moderate fluctuations (see Fig. 4(c-d)). Finally, if 

εj«γ1 then populations fluctuations are relatively small and 

the environment is effectively deterministic (see Fig. 4(e-f)). 

 
Fig. 1 Numerical solutions of equation (36) show that the maximum number  

of populations lie within the tolerance interval when c = 0.45, depicting the 

stable coexistence of system populations. Other parameters are as in the 
Table 1 

 
Fig. 2 Numerical solutions of the equation (36)  show that the maximum 

number  of populations lie outside the tolerance interval for c = 0.13, 
depicting instability of the coexistence equilibrium. Other parameters are as 

in the Table 1 

 

Fig. 3 Cumulative root mean square fluctuations for the prey and predator 
populations are evaluated by using equations (26) and (27) for different 

degree of habitat complexity. Figs. (a)-(b) are the cumulative root mean 

square fluctuations when c=0.13 and Figs. (c)-(d) are the same for c=0.45. 
Other parameters are as in the Table 1         

VIII. DISCUSSION 

 

Fig. 4 Fluctuations of prey and predator populations. Figs. (a) – (b) show 

abnormally large fluctuations when  εj>> γ1, Figs. (c) – (d) show moderate 
fluctuations when εj  and γ1  are commensurate. Figs. (e) – (f) show very 

small fluctuations when εj <<γ1. Rest of the parameters are as in the Table 1 

In this paper, we have studied a stochastic version of a 

deterministic predator-prey system that incorporates the 

effect of habitat complexity. To take into account the effect 

of fluctuating environment, we have considered random 

perturbations in the form of colour noise in the growth rate 

of prey and in the death rate of predator population. It is 

observed that the deterministic criteria of stability is no 

longer enough to guarantee the stability of the coexisting 

equilibrium point E
*
(x

*
,y

*
). Spectral density analysis 
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indicates that the system shows stochastically stable or 

unstable dynamics depending on the strength or degree of 

habitat complexity. If it is intermediate then the system is 

stochastically stable and lies within the tolerance interval. If 

the degree of habitat complexity is very low then the system 

is stochastically unstable and most of the solutions lie 

outside of the tolerance interval. This study also implies that 

the fluctuations of the system populations depend on the 

relative value of εj , the intensity of the noise ηj with respect 

to γ1, the stability determining quantity in the deterministic 

environment. If εj is very  high  in  comparison to γ1 then 

system  of  populations  fluctuate abnormally. If εj is 

commensurate to γ1 then fluctuations are moderate. On the 

other hand, if εj is very low in comparison to γ1  then 

fluctuation is minimum. 
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