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Abstract- This paper is concerned with the delay-dependent H∞ 

control problem for systems with two additive time-varying 
delays. We construct a new Lyapunov functional and give a 
tighter upper bound for the derivative of the Lyapunov 
functional, then employ a new method, the polyhedron method, 
to test the negative definiteness of the upper bound. New delay-
dependent stability criteria are thus derived, which are less 
conservative than some existing ones. Based on the stability 
criteria a state feedback controller is constructed to guarantee 
that the closed-loop system is asymptotically stable with a 
prescribed H∞ disturbance attenuation level. Finally examples 
are given to show the advantages of the stability criteria and the 
effectiveness of the proposed control method. 

Keywords- Additive Time-varying Delays; Polyhedron Method; 

Lyapunov Functional; Stability; H Control 

I. INTRODUCTION 

Over the last few decades systems with time delays have 

received considerable attention. The main reason is that they 

are often encountered in various practical systems, such as 

engineering systems, biology, economics, neural networks, 

networked control systems, and other areas 
[1-6]

. Since time-

delay is frequently the main cause of oscillation, divergence, 

or instability, considerable efforts have been devoted to 

stability for systems with time delays. According to whether 

stability criteria include the delay, they can be divided into 

two classes, that is, delay-independent ones and delay-

dependent ones. Since delay-independent criteria tend to be 

more conservative especially for small size delays, more 

efforts have been put into delay-dependent stability.  There 

are a number of delay-dependent stability results in the 

literature; we refer readers to the papers [7-23]. Among those 

papers, papers [17, 20-23] are related to systems with interval 

time-varying delay. It should be pointed out that all the 

stability results above are based on systems with one single 

delay in the state.   

Recently Lam, Gao, and Wang 
[24]

 proposed a new model 

of system with two additive time-varying delay components; 

this model has a strong application background in remote 

control and networked control. Take a state-feedback 

networked control for example. Since the physical plant, 

controller, sensor, and actuator are located at different places, 

signals are transmitted from one device to another. Thus time 

delays will appear. Among these delays are two network-

induced ones, one from sensor to controller and the other 

from controller to actuator. So the two delays will appear in 

the closed-loop system. Because of the network transmission 

conditions, the two delays are generally time-varying with 

different properties. It is not rational to lump the two delays 

into one delay. Therefore it is of significance to consider 

stability for systems with two additive time-varying delay 

components. Now we write this kind of system in the 

following:  

1 1 2( ) ( ) ( ( ) ( )) ( ) ( )x t Ax t A x t d t d t Ew t Bu t              (1) 

1 1 2( ) ( ) ( ( ) ( )) ( ) ( )y t Cx t C x t d t d t Fw t Du t              (2) 

( ) ( ), [ ,0]x t t t h    

where ( )x t is the state; ( )y t is the measurement; ( )u t is the 

control; 2( ) [0, ]w t L   is the disturbance; A , 1A , E , B , 

C , 1C , F , D are known real constant matrices;
1( )d t , 2 ( )d t  

are two time-varying delays satisfying 

1 1 2 20 ( ) , 0 ( )d t h d t h                                 (3) 

and 

1 1 2 2( ) , ( )d t d t                                 (4) 

( )t is a real-valued initial function on [ ,0]h with 

1 2h h h                                  (5) 

 Stability analysis was conducted in [24], and a delay-

dependent stability criterion was obtained. An improved 

stability criterion was derived from [25] by constructing a 

Lyapunov functional to employ the information of the 

marginally delayed state ( )x t h . However, another 

marginally delayed state 1( )x t h was not considered, which 

caused the integral
1

1

( )

1( ) ( )
t d t

T

t h
x Z x d  




   to be discarded in 

the estimating of the derivative of the Lyapunov functional. 

On the other hand, when estimating the derivative of the 

Lyapunov functional, there existed overly bounding for some 

integrals. Take 
1

1
( )

( ) ( )
t

T

t d t
x s Z x s ds


   as an example. By 

introducing  
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1
1

( )
0 2 ( ) ( ) ( ( )) ( )

t
T

t d t
t N x t x t d t x d  



    
     

with ( )t and N  an appropriate vector and a matrix 

respectively, it was estimated as  

1

1 1 12 ( ) [ ( ) ( ( ))] ( ) ( ) ( )T T Tt N x t x t d t t d t NZ N t      

where 1

1 1( ) Td t NZ N  was further enlarged as 1

1 1

Th NZ N  in 

[25]. This may also lead to conservatism. 

In this paper we first revisit delay-dependent stability for 

systems for Systems (1) and (2). We will construct a new 

Lyapunov functional to employ the information of the 

marginally delayed state 
1( )x t h as well as ( )x t h . Then we 

propose a so-called convex polyhedron method to avoid the 

overly bounding for the time derivative of the Lyapunov 

functional. The resulting stability criteria are less 

conservative. Then we apply the stability criteria to 

investigate H
∞ 

control problem for the system, which is stated 

as: To design a state feedback controller ( ) ( )u t Kx t  for the 

system such that the closed-loop system is asymptotically 

stable with an H
∞
 disturbance attenuation level 0  , 

satisfying
2 2

y w for nonzero 2( ) [0, ]w t L  under zero 

initial condition. A delay-dependent condition will be 

presented for the state feedback controller so that the closed-

loop system is asymptotically stable with a prescribed H
∞
 

disturbance attenuation level. Formulated in LMIs the 

condition is readily verified, and when it is feasible the 

controller can be constructed. 

Notation: Throughout this paper the superscript „ T ‟ 

stands for matrix transposition. I refers to an identity matrix 

with appropriate dimensions. For real symmetric 

matrices X and Y , the notation X Y means that the matrix 

X Y is positive definite，and the X Y follows similarly. 

The symmetric term in a matrix is denoted by . The space of 

square-integrable vector functions over [0, ]  is denoted 

by 2[0, ]L  , and for 2{ ( )} [0, ]w w t L   its norm by
2

w . 

Matrices, if not explicitly stated, are assumed to have 

compatible dimensions. 

II. STABILITY ANALYSIS 

Now we go to the stability analysis problem. Consider 

system (1) with ( ) ( ) 0w t u t  , namely, 

1 1 2( ) ( ) ( ( ) ( ))x t Ax t A x t d t d t                           (6) 

Set  

1 2( ) ( ) ( )d t d t d t                                (7) 

1 2                                       (8) 

Take 1 2( ) ( )d t d t  as one delay ( )d t and then system (6) is 

changed into the following system: 

1( ) ( ) ( ( ))x t Ax t A x t d t                          (9)  

with 0 ( )d t h  , ( )d t  . 

For this system there are many delay-dependent stability 

criteria available, but when used to check the stability for (6), 

they are more conservative 
[24]

. In the following part, we 

present a new stability result for System (6) by considering 

the two delays separately.  

Theorem 1. The System (6) subject to (3) and (4) is 

asymptotically stable for given 
1 2 1, ,h h  and 

2  if there exist 

matrices 0P  , 0, 1,2,3,4iQ i  , 0, 1,2jZ j  ,

1 2 3[ 0 0]T T T TN N N N , 1 2 3[ 0 0]T T T TS S S S , 

1 2 3[ 0 0]T T T TT T T T and 1 2 3[ 0 0]T T T TM M M M  

such that the following LMIs hold 

1 2

1 1 2

2 2

* ( ) 0 0

* *

h N h M

h Z Z

h Z

 
 

  
 
  

                (10) 

1 2

1 1 2

2 2

* ( ) 0 0

* *

h N h S

h Z Z

h Z

 
 

  
 
  

               (11) 

1 1 2

1 2

1 1

2 2

* 0 0
0

* * 0

* * *

h S h T h M

h Z

h Z

h Z

 
 


  
 
 

 

              (12) 

and 

1 1 2

1 2

1 1

2 2

* 0 0
0

* * 0

* * *

h S h T h S

h Z

h Z

h Z

 
 


  
 
 

 

              (13) 

where 

4

11

3

1 1

2

4

0 0 0

(1 ) 0 0 0

(1 ) 0 0

0

* * * *

T

ii
PA A P Q PA

Q

Q

Q

Q






  
 
   
       
    
 

  



 

1 1

1 1 2( )0 0

0 0

0 0

T
T T

T T

A A

A A

h Z hZ

   
   
   
    
   
   
   
   

 

 N S M M N T S T       

 
T

N S M M N T S T              (14) 

with h and   given in (5) and (8), respectively. 

Proof. Define a Lyapunov functional for System (6): 

( ) ( ) ( )TV t x t Px t  

1
1 2

( )
( ) ( ) ( ) ( )

t t
T T

t d t t h
x Q x d x Q x d     

 
    
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3
( )

( ) ( )
t

T

t d t
x Q x d  




1
4( ) ( )

t
T

t h
x Q x d  


  

1

0

1 2( ) ( ) ( )
t

T

h t s
x Z Z x d ds  

 
      

1

2( ) ( )
h t

T

h t s
x Z x d ds  



 
                        (15) 

where ( )d t  is given in (7). Then calculate the time derivative 

of the Lyapuonv functional along the trajectory of (6) yields 

1( ) 2 ( ) ( ( ) ( ( )))TV t x t P Ax t A x t d t   4

1
( ) ( )T

ii
x t Q x t


  

1 4 1 2( ) ( ) ( ) ( )T Tx t h Q x t h x t h Q x t h       

3(1 ) ( ( )) ( ( ))Tx t d t Q x t d t     

1 1 1 1(1 ) ( ( )) ( ( ))Tx t d t Q x t d t     

1 1 2[ ( ) ( ( ) ( ))]TAx t A x t d t d t     

1 1 1 2 2 1 1 2[ ( ) ][ ( ) ( ( ) ( ))]h Z h h Z Ax t A x t d t d t       

1
1 2( ) ( ) ( )

t
T

t h
x Z Z x d  


     

1

2( ) ( )
t h

T

t h
x Z x d  




                           (16) 

Note that 

1
1 2( ) ( ) ( )

t
T

t h
x Z Z x d  


   

1

2( ) ( )
t h

T

t h
x Z x d  




    

1

1 1

( )

1 2 1
( )

( ) ( ) ( ) ( ) ( )
t t d t

T T

t d t t h
x Z Z x d x Z x d     



 
         

1 ( ) ( )

2 2
( )

( ) ( ) ( ) ( )
t d t t d t

T T

t d t t h
x Z x d x Z x d     

 

 
          (17) 

By Leibniz-Newton formula, we have that 

1
1

( )
2 ( ) ( ) ( ( )) ( ) 0

t
T

t d t
t N x t x t d t x d  



    
             (18) 

1

1

( )

1 12 ( ) ( ( )) ( ) ( ) 0
t d t

T

t h
t T x t d t x t h x d  





     
         (19) 

1 ( )

1
( )

2 ( ) ( ( )) ( ( )) ( ) 0
t d t

T

t d t
t M x t d t x t d t x d  





     
       (20) 

( )

2 ( ) ( ( )) ( ) ( ) 0
t d t

T

t h
t S x t d t x t h x d  





     
          (21) 

where  

1 2 1 1( ) ( ) ( ( ) ( )) ( ( )) ( ) ( )
T

T T T T Tt x t x t d t d t x t d t x t h x t h        
 

 (22) 

From (16)-(21) it follows that 

( )V t 1 1

1 1 2 1 1 1( ) [ ( ) ( ) ( ( ))T T Tt d t N Z Z N h d t TZ T         

1 1

2 2 2( ) ( ( )) ] ( )T Td t MZ M h d t SZ S t     

1
1 2

( )
[ ( ) ( ) ( )]

t
T T

t d t
t N x Z Z 


     

1

1 2 1 2( ) [ ( ) ( ) ( )]TZ Z N t Z Z x d        

1

1

( )
1

1 1 1[ ( ) ( ) ] [ ( ) ( )]
t d t

T T T

t h
t T x Z Z T t Z x d    





      

1 ( )
1

2 2 2
( )

[ ( ) ( ) ] [ ( ) ( )]
t d t

T T T

t d t
t M x Z Z M t Z x d    





      

( )
1

2 2 2[ ( ) ( ) ] [ ( ) ( )]
t d t

T T T

t h
t S x Z Z S t Z x d    





      

         1 2( ) ( ( ), ( )) ( )Tt d t d t t                      (23) 

where 

1 2( ( ), ( ))d t d t
1 1

1 1 2 1 1 1( ) ( ) ( ( ))T Td t N Z Z N h d t TZ T            

1 1

2 2 2( ) ( ( ))T Td t MZ M h d t SZ S    . 

 Write
1 1( ) /d t h  ,

2 2( ) /d t h  , and then 

1 2( ( ), ( ))d t d t  

1

1 1 2( ) ( ) Td t N Z Z N     

1 1

1 1 1 2( ( ))( )T Th d t TZ T SZ S     

1 1

2 2 2 2 2( ) ( ( ))T Td t MZ M h d t SZ S     

1

1 1 2[ ( ) ]Th N Z Z N     

1 1

1 1 2(1 )[ ( )]T Th TZ T SZ S      

1 1

2 2 2 2 2( ) ( ( ))T Td t MZ M h d t SZ S     

1

1 1 2[ ( ) Th N Z Z N     

1 1

2 2 2 2 2( ) ( ( )) ]T Td t MZ M h d t SZ S     

1 1

1 1 2(1 )[ ( )T Th TZ T SZ S        

1 1

2 2 2 2 2( ) ( ( )) ]T Td t MZ M h d t SZ S     

1 1

1 1 2 2 2[ ( ( ) )T Th N Z Z N h MZ M        

1 1

1 1 2 2 2(1 )( ( ) )]T Th N Z Z N h SZ S         

1 1 1

1 1 2 2 2(1 )[ ( ( ) )T T Th TZ T SZ S h MZ M           

1 1 1

1 1 2 2 2(1 )( ( ) )]T T Th TZ T SZ S h SZ S         . (24) 

 By Schur complement, (10)-(13) imply 

that 1 2( ( ), ( )) 0d t d t  . 

Therefore System (6) is asymptotically stable. This ends 

the proof. 

Remark 1. Theorem 1 provides a new delay-dependent 

stability criterion for System (6) with two additive time-

varying delay components. In a form of LMIs the criterion 

can be checked easily.  

Remark 2. For the Lyapunov functional ( )V t  in (15), the 

upper bound of ( )V t , which is given in (23), is tighter, due to 

that 1 2( ( ), ( ))d t d t is not so enlarged as in [24, 25]. Noting 

1 2( ( ), ( ))d t d t dependent on the two time-varying delays 

rather than the upper bounds of the two time-varying delays, 

we have to adopt a new technique to test the negative 

definiteness for it. The basic idea is that a function matrix is 

negative definite over a convex polyhedron only if the matrix 

is negative definite at the vertexes. Note that 

1 1

1 2 1 1 2 2 2( , ) ( ) T Th h h N Z Z N h MZ M       

1 1

1 1 1 2 2 2( ,0) ( ) T Th h N Z Z N h SZ S       

1 1 1

2 1 1 1 2 2 2(0, ) T T Th h TZ T h SZ S h MZ M        
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1 1 1

1 1 1 2 2 2(0,0) T T Th TZ T h SZ S h SZ S        . 

From this we see that the negative definiteness of 

1 2( ( ), ( ))d t d t over the rectangle
1 10 ( )d t h  2 20 ( )d t h  is 

determined by that of 
1 2( ( ), ( ))d t d t  at the vertexes. We call 

this approach to negative definiteness a convex polyhedron 

method. Apparently the convex polyhedron method can be 

extended to more than two time-varying delays. 

Remark 3. Gao et al. 
[25] 

took the advantage of ( )x t h to 

derive a stability criterion, which improved over that in [24], 

but another marginally delayed state 
1( )x t h was not used. In 

this paper, however, it is employed to define the Lyapunov 

functional ( )V t  in (15), thus making 

1

1

( )

1( ) ( )
t d t

T

t h
x Z x d  




   retained in the estimate of ( )V t . 

Moreover, as ( )V t is estimated like (23), 

1

1 1 2( ) ( ) Td t N Z Z N , 1

1 1 1( ( )) Th d t TZ T , 1

2 2( ) Td t MZ M and 

1

2( ( )) Th d t SZ S are not so enlarged as in [25], but kept as 

they are. The resulting stability criterion Theorem 1 is 

expected to be less conservative than those in [25], as seen 

from the example in the following. 

When 
1 and 

2 are unknown, setting 
1 3 0Q Q  we can 

obtain a delay-rate-independent stability criterion from 

Theorem 1 as follows. 

Corollary 1. The system (6) subject to (3) is 

asymptotically stable for given 1h  and 2h if there exist 

matrices 0P  , 2 0Q   , 4 0Q  0, 1,2jZ j   ,  

1 2 3[ 0 0]T T T TN N N N , 1 2 3[ 0 0]T T T TS S S S , 

1 2 3[ 0 0]T T T TT T T T and 1 2 3[ 0 0]T T T TM M M M  

such that the following LMIs hold 

1 1 2

1 1 2

2 2

* ( ) 0 0

* *

h N h M

h Z Z

h Z

 
 

  
 
  

 

1 1 2

1 1 2

2 2

* ( ) 0 0

* *

h N h S

h Z Z

h Z

 
 

  
 
  

 

1 1 1 2

1 2

1 1

2 2

* 0 0
0

* * 0

* * *

h S h T h M

h Z

h Z

h Z

 
 


  
 
 

 

 

and 

1 1 1 2

1 2

1 1

2 2

* 0 0
0

* * 0

* * *

h S h T h S

h Z

h Z

h Z

 
 


  
 
 

 

 

Where 

2 4 1

1

2

4

0 0 0

0 0 0 0

0 0 0

0

* * * *

T
PA A P Q Q PA

Q

Q

  



   

   



 
 
 
 
 
 
 
 

 

1 1

1 1 2( )0 0

0 0

0 0

T
T T

T T

A A

A A

h Z hZ

   
   
   
    
   
   
   
   

 

 N S M M N T S T      

 
T

N S M M N T S T     . 

When
1 1( )d t h , that is,

1( )d t is a constant delay, Theorem 

1 reduces to the following corollary, which is useful for 

networked control. 

Corollary 2. The system (6) with 
1 1( )d t h and 

2 ( )d t satisfying 2 20 ( )d t h  and 
2( )d t   is asymptotically 

stable for given 2 0h  , 1 0h  and
2  if there exist 

0P  , 0iQ  , 1, 2,3i  , 0jZ  , 1,2j  , 

1 2[ 0 0]T T TN N N , 1 2[ 0 0]T T TM M M and

1 2[ 0 0]T T TS S S such that the following LMIs hold 

2 1 2

1 1

2 2

* 0 0

* *

h N h M

h Z

h Z

 
 

 
 
  

, 

2 1 2

1 1

2 2

* 0 0

* *

h N h S

h Z

h Z

 
 

 
 
  

 

where 

3

11

2 3
2

1

2

0 0

(1 ) 0 0

0

T

ii
PA A P Q PA

Q

Q

Q




  
 
   

   
   

     


 

1 1

1 1 2 2( )
0 0

0 0

T
T T

T T

A A

A A
h Z h Z

   
   
    
   
   
      

 

 N S M M N S      
T

N S M M N S    . 

Proof. Define the Lyapunov functional  

( ) ( ) ( )TV t x t Px t
3

( )
( ) ( )

t
T

t d t
x Q x d  


  

1
1 2( ) ( ) ( ) ( )

t t
T T

t h t h
x Q x d x Q x d     

 
    
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1

0

1( ) ( )
t

T

h t s
x Z x d ds  

 
   

1

2( ) ( )
h t

T

h t s
x Z x d ds  



 
    . 

Along a similar line as in the derivation of Theorem 1 the 

asymptotic stability can be established, and the proof is thus 

omitted. 

Remark 4. Note that when 
1( )d t is a constant delay

1h , 

system (6) can be regarded as system (9) with interval time-

varying delay: 
1 ( )h d t h  ,

20 ( )d t   . The system can 

serve as a model for networked control systems with both 

network-induced delay and data dropout phenomenon [17, 

25]. In the form of LMIs Corollary 2 can provide a delay-

dependent stability criterion for this delayed system. Thanks 

to the convex polyhedron method Corollary 2 is less 

conservative than those recently reported in [20]; Refer to 

[26]. 

In the following part, we consider the example in [25] to 

show the reduced conservatism of our stability criteria. 

Example 1. Consider the System (6) with 

2 0

0 0.9
A

 
  

 
, 1

1 0

1 1
A

 
  

  
,

1 2( ) 0.1, ( ) 0.8d t d t    

For given upper bound 1h  of 1( )d t , we intend to find the 

admissible upper bound 2h of 2 ( )d t , which guarantee the 

asymptotic stability of (6).  

TABLE I ADMISSIBLE UPPER BOUND H2 FOR VARIOUS H1 

Method h1 1 1.2 1.5 

[24] h2 0.415 0.376 0.248 

[25] h2 0.512 0.406 0.283 

Theorem 1 h2 0.8731 0.6766 0.4529 

When 2h is given the admissible 1h can be seen from Table 2.  

TABLE II ADMISSIBLE UPPER BOUND H1 FOR VARIOUS H2 

Method h2 0.1 0.2 0.3 

[24] h1 2.263 1.696 1.324 

[25] h1 2.300 1.779 1.453 

Theorem 1 h1 2.5583 2.1003 1.8083 

From the comparison between Table 1 and Table 2, it can 

be seen that Theorem 1 is less conservative than those in [24, 

25]. 

When 1( )d t is a constant delay 1h , the system can be 

looked upon as those with interval time-varying delay. As 

indicated in Remark 4, the stability criterion Corollary 2 as 

well as that in [20] can be turned to for computing the 

admissible upper bound h of ( )d t , which are shown in Table 

3. 

TABLE III ADMISSIBLE UPPER BOUND H FOR VARIOUS H1 

Method h1 1 2 3 4 

[20] h 1.7423 2.4328 3.2234 4.0644 

Corollary 2 h 2.0665 2.6181 3.3173 4.0905 

Even as a delay-dependent criterion for systems with 

interval time-varying delay, Corollary 2 has advantages over 

some existing ones in the sense that the computed admissible 

upper bound of the time-varying delay is larger. 

III. H 
CONTROL 

Theorem 1 can be expected to be a useful tool for the H
∞ 

control problem formulated above. We first write the closed-

loop system formulated by Systems (1)-(2) and the 

controller ( ) ( )u t Kx t . 

1 1 2( ) ( ) ( ) ( ( ) ( )) ( )x t A BK x t A x t d t d t Ew t             (25) 

1 1 2( ) ( ) ( ) ( ( ) ( )) ( )y t C DK x t C x t d t d t Fw t          (26) 

Now we present an H
∞ 

performance analysis result in the 

following. 

Theorem 2.  The Systems (25)-(26) subject to (3) and (4) 

is asymptotically stable with an H
∞
 disturbance attenuation 

level  for given 1h , 2h , 1 and 
2 , if there 

exist 0P  , 0iQ   , 1, 2,3, 4i  ， 0jZ  , 1,2j  ，

1 2 3[ 0 0 0]T T T TN N N N , 

1 2 3[ 0 0 0]T T T TS S S S , 

1 2 3[ 0 0 0]T T T TT T T T  

and 

1 2 3[ 0 0 0]T T T TM M M M  

so that the following LMIs hold 

 

1 2

1 1 2

2 2

* ( ) 0 0

* *

c h N h M

h Z Z

h Z

 
 

  
 
  

                     (27)                                        

1 2

1 1 2

2 2

* ( ) 0 0

* *

c h N h S

h Z Z

h Z

 
 

  
 
  

                     (28)  

       

1 1 2

1 2

1 1

2 2

* 0 0
0

* * 0

* * *

c h S h T h M

h Z

h Z

h Z

 
 


  
 
 

 

                    (29) 

and 

       

1 1 2

1 2

1 1

2 2

* 0 0
0

* * 0

* * *

c h S h T h S

h Z

h Z

h Z

 
 


  
 
 

 

                    (30) 
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where  

1

3

1 1

2

4

2

0 0 0

(1 ) 0 0 0 0

(1 ) 0 0 0

0 0

* * * * 0

* * * * *

c

c

PA PE

Q

Q

Q

Q

I









 
 
  

 
    

   
    

 
 

  

 

1 1

1 1 2

( ) ( )

0 0
[ ]

0 0

0 0

T
T T

T T

T T

A BK A BK

A A

h Z hZ

E E

    
   
   
   

    
   
   
   
      

 

1 1

( ) ( )

0 0

0 0

0 0

T
T T

T T

T T

C DK C DK

C C

F F

    
   
   
   

    
   
   
   
      

 

 0N S M M N T S T       

 0
T

N S M M N T S T       

with 
4

1
( ) ( )T

c ii
P A BK A BK P Q


     and h  given in 

Theorem1. 

Proof: Suppose that (27)-(30) hold. By comparing 

c with  in (14), we can find that (27)-(30) imply (10)-(13). 

According to Theorem 1, the system is asymptotically stable.  

Now using the same Lyapunov functional ( )V t in (15) 

and calculating ( )V t  similar to the derivation of Theorem 1 

along the solution of Systems (25)-(26), we have 

2( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )T T Ty t y t w t w t V t t M t            (31) 

where  

( , )M   1 1

1 1 2 2 2[ ( ( ) )T T

c h N Z Z N h MZ M         

1 1

1 1 2 2 2(1 )( ( ) )]T T

c h N Z Z N h SZ S         

1 1 1

1 1 2 2 2(1 )[ ( ( ) )T T T

c h TZ T SZ S h MZ M         

  
1 1 1

1 1 2 2 2(1 )( ( ) )]T T T

c h TZ T SZ S h SZ S          

where ,   are defined in the proof of Theorem 1, and 

( ) ( ) ( )
T

T Tt t w t      

with ( )t in (22). On the one hand, using the convex 

polyhedron method we can establish ( , ) 0M     by (27)-

(30). On the other hand, under the zero condition we 

have (0) 0V  and ( ) 0V   . So integrating both sides of (31) 

results in 
2 2

y w for all nonzero
2( ) [0, ]w t L  . This 

ends the proof. 

Now we are in a position to deal with the H
∞ 

control 

problem aforementioned. 

Theorem 3. Consider Systems (1) and (2) with delays 

subject to (3) and (4). Given  , 
1 2 1, ,h h  and

2 , there exists a 

state-feedback controller ( ) ( )u t Kx t ensuring that the 

closed-loop system is asymptotically stable with an H
∞
 

disturbance attenuation level  , if there exist 

matrices K , 0P  , 0iQ  , 1, 2,3, 4i  , 0jZ   , 1,2j  , 

1 2 3[ 0 0 0]T T T TN N N N , 

1 2 3[ 0 0 0]T T T TS S S S , 

1 2 3[ 0 0 0]T T T TT T T T  

and 

1 2 3[ 0 0 0]T T T TM M M M  

so that the following LMIs hold 

0, 1, 2,3, 4
ii

T

i

i
 

  
  


                     (32) 

where 

1

1

1 1

2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

T T T T T T T T T

T T T

T T T

PA K B PA K B PC K D

PA PA PC

E E F

   
 
 
 
 
 


 


 


 
 

 






 

1

3

1 1

4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

T T T T T T T T T

T T T

T T T

PA K B PA K B PC K D

PA PA PC

E E F

   
 
 
 
 
 
 
 
 
 
 
 




 







 (33) 

1 1

1 1 2{ ( 2 ), ( 2 ), }diag h Z P h Z P I                (34) 

  

1 2

1 1 1 2

2 2

* ( ) 0

* *

h N h M

h Z Z

h Z

 
 

    
  

                (35) 
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1 2

2 1 1 2

2 2

* ( ) 0

* *

h N h S

h Z Z

h Z

 
 

    
  

              (36) 

1 1 2

1 2

3

1 1

2 2

* 0 0

* * 0

* * *

h S h T h M

h Z

h Z

h Z

 
 

  
 
 

  

                 (37) 

and 

1 1 2

1 2

4

1 1

2 2

* 0 0

* * 0

* * *

h S h T h S

h Z

h Z

h Z

 
 

  
 
 

  

                 (38) 

with 

1

3

1 1

2

4

2

0 0 0

(1 ) 0 0 0 0

(1 ) 0 0 0

0 0

* * * * 0

* * * * *

A P

Q

Q

Q

Q

I

E







 
 
   
    

   
    
 
 

  

 

0N S M M N T S T         

0
T

N S M M N T S T         

with 
4

1

T

ii
AP PA Q


   and h  given in Theorem1. 

Moreover, if the foregoing condition is held, a desired 

controller gain matrix is given by 

1K KP                                      (39) 

Proof: By Theorem 2 the closed-loop system is 

asymptotically stable with an H
∞
 disturbance attenuation 

level  , if there exist 0P  , 

0, 1,2,3,4iQ i   , 0, 1,2jZ j   

1 2 3[ 0 0 0]T T T TN N N N , 

1 2 3[ 0 0 0]T T T TS S S S , 

 1 2 3[ 0 0 0]T T T TT T T T  

and 

1 2 3[ 0 0 0]T T T TM M M M  

so that the LMIs (27)-(30) hold. 

Write 

1 1 1 1 1 1 1

1 { , , , , , , , }J diag P P P P P P PI       ,

1 1 1 1 1 1 1 1

2 { , , , , , , , , }J diag P P P P P I P P P        , 

1P P , 
1 1

i iZ P Z P  , 1, 2i  , 1 1

j jQ P Q P  , 

1,2,3,4j  , 

 1 1M N S T P M N S T P     . 

With these notations and (38) in mind, performing a 
congruence transformation to (27)-(28) and (29)-(30) by 

1J and 
2J respectively, by Schur complements we obtain 

0, 1, 2,3, 4
ii

T

i

i
 

  
  



                    (40) 

where 
i is given in (33) , ( 1,2,3,4)i i  are defined in (35)-

(38), and  

1 1 1 1

1 1 2{ , , }diag h Z h Z I        . 

 Noting 1( ) ( ) 0i i iP Z Z P Z   we 

have 1 2i iPZ P Z P    . Therefore, 1 2i iZ Z P    . It 

follows immediately that , which means that (40) holds 
if (32) do. The proof is thus completed. 

Remark 5. Different from (40), conditions in (32) are 

linear in P , iQ  ,
jZ  , K , N , S , T and M . As a result, for 

given 1 2 1, ,h h  and 
2 Theorem 3 provides an LMI approach 

to the H
∞ 

control problem for systems with two additive time-
varying delays. The feasibility of LMIs (32) guarantees the 
existence of H

∞
 state feedback controllers. Moreover, when 

LMIs (32) are feasible, the controller can be constructed with 
(39). However, the Condition (32) is slightly conservative 
compared with (40). Based on (40), one can obtain a less 
conservative controller at the cost of more complexity by 
Employing CCL method 

[27]
. 

To illustrate the effectiveness of this control method we 
provide an example.  

Example 2. Consider Systems (1) and (2) with parameters 
given as follows: 

1

0.11 0 2 0 0.56 0.2
, , ,

0 0.9 1 1.1 0.61 2.5
A A E B

       
          

         
,

   10.1 1.8 , 0.7 1 , 0.1, 0.4C C F D     . 

For 1 0.1h  , 2 0.4h  , 1 0.1  , 2 0.2  and 1  we can 

find LMIs in (32) are feasible with 

 
1.2730 0.4456

, 0.0798 0.0583
0.4456 0.3246

P K
 

   
 

. 

By Theorem 3, there exists a state feedback controller 

 1( ) ( ) 0.2417 0.5114 ( )u t KP x t x t    

so that the closed-loop system is asymptotically stable for 

10 ( ) 0.1d t  20 ( ) 0.4d t   with an H
∞ 

disturbance 

attenuation level 1  . 

IV. CONCLUSIONS 

In this paper, delay-dependent H
∞
 control problem has 

been investigated for systems with two additive time-varying 
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delay components. For one thing a new delay-dependent 
stability criterion was developed, which improves over 
existing ones in that it has less conservatism. A delay-rate-
independent criterion was obtained as a by-product. When 
one of the delays is constant, a new stability criterion was 
given for systems with interval time-varying delay. Then 
examples were provided to illustrate the reduced 
conservatism of the criteria. Finally the H

∞ 
control problem 

was solved via an LMI approach, which was demonstrated to 
be effective using another example. 
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