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Abstract- The development of control systems for a two degree-
of-freedom vibration suppression system using a 
magnetorheological (MR) fluid damper is the subject of this 
paper. It is assumed that system encounters impulsive 
disturbance forces. The objective is to use the (MR) fluid 
damper for the position control and vibration suppression of 
the payload. The control force is generated by regulating the 
electric current to the damper. Two control systems, based on 
(i) the dynamic inversion (feedback linearization) method and 
(ii) the state-dependent Riccati equation (SDRE) approach, for 
the position control of the payload and vibration suppression 
are derived. The dynamic inversion method yields an 
asymptotically stable linear second-order position error 
dynamics of the payload, and accomplishes vibration 
suppression. The SDRE design approach provides a sub-
optimal control law which accomplishes asymptotic 
stabilization of the origin in the state space. The SDRE method 
considers control constraint in the design process, and uses a 
nonlinear quadratic performance index for minimization. 
Simulation results are obtained in the presence of impulsive 
force on the system. It is shown that in the closed-loop system, 
both the control systems are effective in the position regulation 
and vibration suppression in the system. 

Keywords- Magnetorheological Fluid; Damping; Vibration 
Suppression; Feedback Linearization; Sub-Optimal 

I. INTRODUCTION 

System components under shock and vibration are 
usually undesirable and the isolation or suppression of these 
undesirable phenomena is the main concern for 
enhancement of lifetime of shock and vibration prone 
systems. The existing techniques primarily use passive and 
active devices for shock isolation and vibration suppression. 
Passive devices featuring elastomeric materials, and 
hydraulic and frictional dampers provide design simplicity 
and low cost. However, performance limitations are 
inevitable because stiffness and damping elements are not 
controllable in response to external environments. 
Additional improvement in desired performance can be 
obtained by using active measures by means of external 
actuators. Active devices have the ability of suppressing 
disturbances in wider frequency range. However, systems 
employing active devices have instability problems due to 
unmodeled dynamics and nonlinearities as well as actuator 
and sensor failures because they have the ability to inject 
energy into the target systems. Also, active methods require 
large power sources, many sensors, servo valves and 
sophisticated control logic. A compromise between passive 

and active devices has been developed in the form of semi-
active devices. Semi-active control systems combine the 
best features of both the passive and active control systems, 
offering the reliability of passive devices, yet maintaining 
the versatility and adaptability of fully active devices [1]. 
Recent work by several researchers has indicated that semi-
active control systems, when appropriately implemented, 
achieve significantly better results than passive control 
systems; and may even outperform fully active control 
systems, demonstrating significant potential for controlling 
shock and vibration of mechanical systems to a wide variety 
of dynamic loading conditions [1-6]. 

Magnetorheological materials, including 
magnetorheological fluids, magnetorheological elastomer 
(MRE) and magnetorheological form (MRF) are promising 
smart materials in engineering due to their real time 
controllable mechanical property to the applied magnetic 
field. MRF is liquid and operates in the post-yield regime, 
while MRE is solid and operates in the pre-yield regime. 
Normally, they are composed of ferrous particles at the 
scale of several microns, and carrier with low permeability. 

Magnetorheological (MR) fluids consist of solid 
particles suspended in a carrier liquid.  When a magnetic 
field is applied, the particles are polarized and form chains 
between electrodes. The fluid becomes semi-solid and 
exhibits viscoplastic behavior. The transition from liquid to 
rheological equilibrium is attained in the order of 
milliseconds resulting in construction of MR dampers with 
high bandwidth [7]. This feature provides simple, quiet, rapid 
response interfaces between electronic controls and 
mechanical systems. When compared to electrorheological 
(ER) fluids, MR fluids have superior propoerties, including 
an order of magnitude higher yield stress, typically 50-100 
kPa, lower power requirement and a much wider 
temperature range of operation. 

MR elastomer is cured under strong magnetic field. That 
is, the mixture of ferrous particles and liquid-state elastomer 
solidifies gradually under strong magnetic field. Therefore, 
the particle-formed chain-like structures parallel to the 
applied magnetic field during the curing process are 
embedded in the elastomer matrix. If the magnetic field is 
applied parallel to such chain-like structures (this is a 
requirement for the application of MRE), owing to the 
magnetic interaction between the particles, the modulus or 
stiffness of MRE will be changed.   
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MR/ER dampers exhibit highly nonlinear and hysteretic 
force-velocity response which is the main hindrance for the 
design of effective control strategies. So in order to achieve 
desired control performance an accurate damper model 
should be used. Different techniques have been developed in 
literature to model the behavior of the MR/ER dampers. 
Basically, two types of models have been investigated: non-
parametric and parametric models. In [8], a nonparametric 
approach is presented to model a small ER damper that 
operates under shear mode by assuming that the damper 
force could be written in terms of Chebychev polynomials. 
This approach is extended to model the ER damper in [9, 
10]. A neural network model to emulate the dynamic 
behavior of MR dampers is developed by [11]. However, 
the non-parametric damper models are quite complicated. A 
simple Bingham plastic model [12, 13] gives a good 
description of postyield force behavior of ER or MR damper 
and accurately accounts for energy dissipation and force 
versus displacement characteristics. However, the transition 
from preyield to postyield is discontinuous and the 
hysteretic behavior cannot be described. The hysteretic 
Bingham plastic model [14, 15], which can accurately capture 
the postyield and hysteretic preyield force of MR damper, 
was proposed through the modification of Bingham plastic 
model. The hysteresis biviscous model [16-18] is composed of 
several piecewise continuous models, so it is complicated, 
but well describes the hysteresis behavior of MR dampers. 
The nonlinear viscoelastic plastic model [19-21] has several 
parameters associated with preyield and postyield 
mechanisms, and shows good accuracy in predicting the 
damping force of the MR damper. The Bouc-Wen model [1, 7] 
for ER/MR dampers consists of strong nonlinear differential 
equations. However, this model is accurate in predicting the 
damping force in both preyield and postyield regions. The 
polynomial model proposed in [22] captures the field 
dependent hysteretic behavior of MR dampers. The hydro-
mechanical model proposed in [23] utilizes a differential 
equation, but accounts for physical parameters such as 
inertia, damping, yield force and compliances associated 
with MR or ER dampers. 

Although the discovery of ER and MR fluids dates back 
to the 1940s, only recently have they been applied to 
engineering applications. To date, a number of ER fluid 
dampers have been investigated for civil engineering 
structural vibration control applications [10-12, 24, 25]. In [26], 
the semi-active control of a vibrating system is achieved by 
means of an ER damper using Lyapunov stability theory. To 
accommodate state measurement errors the proposed control 
scheme is combined with fuzzy control concept. In [27], two 
control schemes, one based on minimizing the rate of 
change of energy of the body and the other based on 
considerations of Lyapunov stability theory are proposed for 
attenuation of undesirable vibrations. A full car suspension 
system featuring ER dampers was proposed and its feedback 
control performance was presented via hardware in-the-loop 
simulation in [28]. In order to obtain a favorable control 
performance of the ER suspension system subjected to 
parameter uncertainties and external disturbances, a sliding 
mode controller is designed.  

A number of experimental studies have been conducted 
to evaluate the usefulness of MR dampers for vibration 
reduction under wind and earthquakes. In Refs. [1-3, 29-31], 
MR dampers are used to reduce the seismic vibration of 
model building structures. Refs. [4-6] incorporated an MR 
damper with a base isolation system such that the isolation 
system would be effective under both strong and moderate 
earthquakes. A Lyapunov based controller is designed to 
protect large civil structures using MR dampers [32]. 
Skyhook and sliding mode controllers for semi-active MR 
damper shock isolation systems have been proposed in [33]. 
In [34], a sliding mode controller, robust against parameter 
variations and external disturbances, was formulated to 
attenuate the acceleration and displacement of the landing 
gear system. A semi-active controller based on Lyapunov 
design [35] for vibration suppression has the disadvantage of 
excessive chattering of the control input. So far, most of the 
published researches for MR fluid-based systems are largely 
concentrated on the modeling issues of nonlinear hysteric 
phenomenon of the system using experimental data. In this 
research work, the main focus is directed to the semi-active 
feedback control design of the MR damper system. 

The contribution of this paper lies in the design of two 
control systems for a two degree-of-freedom 
magnetorheological (MR) fluid vibration suppression 
system. The control force is generated by regulating the 
electric current to the damper.  It is assumed that the system 
is subjected to impulsive disturbance forces. The objective 
is to use the MR fluid damper for the position control of the 
payload and vibration suppression in the system. Two 
control systems, based on (i) the dynamic inversion 
(feedback linearization) method and (ii) the state-dependent 
Riccati equation (SDRE) approach, for the control of the 
payload, perturbed by the external impulsive disturbance 
forces, are derived. The feedback linearizing control system 
yields an asymptotically stable linear second-order position 
error dynamics of the payload if the control input is 
unconstrained, and accomplishes vibration suppression in 
the system. But later control constraint is introduced for 
simulation. Then based on the state-dependent Riccati 
equation (SDRE) approach, a sub-optimal control system is 
derived. In the SDRE design process, control input 
constraint is introduced to maintain the input current within 
its feasible range. For the design of the controller, a 
judiciously chosen nonlinear quadratic performance index in 
an extended state space is considered. A suboptimal control 
law is obtained by solving the state-dependent Riccati 
equation. In the closed-loop system, the designed controller 
achieves asymptotic stabilization of the origin in the state 
space. Simulation results are obtained for the system 
perturbed by impulsive disturbance force.  It is shown that 
in the closed-loop system, both the control systems are 
effective in the position regulation of the payload and 
vibration suppression with limited input current.  

The organization of this paper is as follows. Section 2 
provides the mathematical model of the two degree-of-
freedom vibration suppression system including the 
magnetorheological (MR) fluid damper. Section 3 presents 
the feedback linearizing control system, and a sub-optimal 
controller based on the SDRE method is designed in Section 
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4. Finally, simulation results are presented in Section 5, and 
conclusions are provided in Section 6. 

II. MATHEMATICAL MODEL 

The mathematical model of the MR damper considered 
in this paper is based on the hysteretic Bingham model [14, 15]. 
Of all the models proposed in literature, the hysteretic 
Bingham model results show a very small force error and 
are simple to formulate. Fig. 1 shows the two degree-of-
freedom shock isolation system including the MR damper. 

z1

z2

m1

m2

u

k1

k2
c2
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Fig. 1 MR damper based shock isolation system 

 The equations of motion of the system are given by  

 (1)  

where z1, z2 denote the positions of the payload mass (m1) 
and mass (m2) from equilibrium position; ki is the spring 
constant (i=1,2); c2 is the damping coefficient, u and are 
treated as disturbance inputs and Fd (z) is the MR damper 
force which is of the form  

 (2) 

where 0α > , 0β > , 1 2z z z∆ = − , 1 2z z z∆ = −   , 

0iλ > , 0poc > , 0k > . In the chosen hysteretic 
Bingham Model (2), it is seen that the MR damper has 
linear viscous damping as well as it is a nonlinear function 
of  and . ( )cI t  is the current which is the control 
input variable. 

 Define the state vector 4
1 1 2 2[ , z , , z ]Tx z z R= ∈  . 

Then a state variable representation of (1) and (2) can be 
compactly written in the form 

      (3) 
where 

 
1 1

1 1 1 1

21 1 2

2 2 2 2

0 1 0 0

0 0 0 1

po po

po po

c ck k k k
m m m m

A

c c ck k k k k
m m m m

 
 −− − + 
 

=  
 
 − −+ − − − 
  

 

 1 2[0, (1/ ),0, (1/ )]TB m m= −  (4) 

  

and the  nonlinear function υ  is 

 
  

(5) 
The constant matrix A is easily obtained from (1) and (2) 

by comparison. For the parameters of the system (to be 
given later), the matrix A is Hurwitz. 

Substituting (5) in (1), one obtains a state variable 
representation of the system given by 

  (6) 
where  

 ( ) tanh( )f x Ax B Cxα= −  

( ) tanh( )g x B Cxβ= −  

It is assumed that the current ( )cI t  satisfies the 
inequality 

 0 ( )c cmI t I≤ ≤  (7) 

where cmI  is the maximum value of the current. 

We are interested in the design of control systems for the 
position control and vibration suppression of the payload, 
caused by impulsive disturbing forces. 

III. FEEDBACK LINEARIZING CONTROL 

In this section, based on the dynamic inversion 
(feedback linearization) approach, a control system for the 
position control of the payload and stabilization of the 
system is derived [36-37].  First, the derivation of the control 
law is summarized for a class of single-input single-output 
systems and then it is extended to the MR damper vibration 
control system. For the design, it is assumed that the control 
input (electric current) satisfies (7) for all time.  

A. Dynamic Inversion of SISO System 

Consider the single-output single-input (SISO) system 

  (8) 
 ( )y h x  

where nx R∈  (with nR  a smooth manifold), u R∈  is 
the control input,  w R∈  is the controlled output variable, 
f  and g  are smooth vector fields, and h  is a smooth 

nonlinear scalar function. In this case, smooth will mean 
rC  with r  sufficiently large. Differentiating y with 

respect to time, we get 

 

 ( ) ( )f gL h x L h x u+  (9) 

where ( ) : n
fL h x R R→  and ( ) : n

gL h x R R→  are the 

Lie derivatives of h  with respect to f  and g , 
respectively. If ( )gL h x  is bounded away from zero for all
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x , the closed-loop system including the state feedback law 
given by 

 
1 ( )f a
g

u L h u
L h

= − +  (10) 

becomes a linear system from au  to y  given by 

  (11) 

where au  is a new input. 

 If the function ( )gL h x  is zero for all x , we 
differentiate  (9) again to obtain  

  (12) 

In (12), one has 2 ( ) ( )( )f f fL h x L L h x=  and

( ) ( ) ( )g f g fL L h x L L h x= . Now, if ( )g fL L h x  is 
bounded away from zero for all x , then the control law 
given by 

 21 ( )
( ) f a

g f

u L h u
L L h x

= − +  (13) 

yields the input-output system 

  (14) 
More generally, if γ  is the smallest integer for which 

( ) 0i
g fL L h x =  for all x and 0, , 2i γ= … −  and 

1 ( )g fL L h xγ −
 is bounded away from zero, then the control 

law is given by 

 
1

1 ( )
( ) f a

g f

u L h u
L L h x

γ
γ −= − +  (15) 

yields 

 
( )

ay uγ =  (16) 
The parameter γ  is the relative degree of the output 

y . Note that the Control Law (15) linearizes the input 

(u)-output (y) map, and au  may be chosen to stabilize the 
System (16). 

B.  Inverse Control of MR damper System 

In this subsection, the control of the MR damper system 
is considered. (Preliminary inverse control results based on 
this subsection was presented at 18th International 
Conference on Systems Engineering, 2005.) In this 
derivation it is considered that the system experiences an 
impulsive force at t=0. As such, the initial condition of the 
system is instantaneously perturbed; therefore, for t ≥ 0 it 
behaves as a system given by (6) with d(t)=0.  

It is of interest to control the position 1z of the payload. 

For 0t > , (6) reduces to 

  (17) 
For the design, a controlled output variable y  is 

selected as 

 [1,0,0,0] ( )y x h x= =  (18) 
For the derivation of the control law, one differentiates 

y (t) along the solution of (17) till the control input appears. 
Differentiating y  successively gives 

  

  (19) 

where  

  

 1 1tanh( ) /g fL L x Cx mβ= −  (20) 

Note that 1g fL L x  is zero if tanh( )Cx  is zero; that 

is, if x  lies in the region eΩ , 

where 

 
4{ : 0}e x R CxΩ = ∈ =  (21) 

As such for ex ∈Ω , the  control force tanh( )nF Cx  

vanishes, and the system  (3) simplifies to 

  (22) 
for 0t > . 

Noting that A  is a Hurwitz matrix, the trajectory ( )x t  

decays exponentially as long as ( )x t  remains in eΩ .  

The output 1y x=   has its relative degree 2. In view of 
(19) a feedback linearizing control input is chosen as 

  (23) 

 ( )xµ  

where 2 0p >  and 1 0p >  are feedback gains. 

 Note that the control input is well defined for x  

outside eΩ . Substituting (23) in (19) gives 

  (24) 

For the positive values of ip , it follows that 

1 0y x= →  as t → ∞ .One can shape the transient 

response of 1x  by the proper selection of the feedback 
gains. 

 It is seen from (21) that as the trajectory x  tends to

eΩ , the function 1g fL L x  tends to zero; and therefore, 

cI (t) in (23) tends to infinity. For practical reasons, it is 

assumed that the current ( )cI t  satisfies the inequality 
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given in (7) ( ( )c cmI t I≤ ).Therefore, the control law (23) 
is modified as follows: 

 

0, ( ) 0
( ) ( ), 0 ( )

, (
 

)
c cm

cm cm

x
I t x x I

I I x

µ
µ µ

µ

<
= ≤ ≤
 <

 (25) 

It will be seen later that despite the use of saturating 
control input (25), 1x  is regulated to zero and vibration in 
the system is completely suppressed. (Preliminary inverse 
control results based on Subsection 3.2 was presented at 
18th International Conference on Systems Engineering [38]) 

IV. SUB-OPTIMAL CONTROL LAW 

This section presents the derivation of the sub-optimal 
control law using the state-dependent Riccati equation 
(SDRE) method [39-40]. In this derivation also, it is 
considered that the system experiences an impulsive force at 
t=0. 

For the derivation of the control law, the system is 
expressed as a linear-like system for which the system 
matrices are functions of the state vector x. It will be 
convenient to express the input current as 

 
( )
( )

/ 2

/ 2
c cm c

c cm cm

I I u

u I u

= +

≤ 
      (26) 

where uc is now treated as a control input. Then for t>0, (6) 
gives 

 (27) 

which can be expressed as 

{ } 10.5  tanh(Cx) (Cx) tanh( ) u

  ( ) ( )
cm c

s s c

x A B I C B Cx

A x x B x u

α β β−= − + −  
+





      (28) 
where the matrices As and Bs are defined in (28). Note that 
system (28) appears as a linear-like system, and it is well 
defined for all x, because limit of tanh(Cx) (Cx)-1 exists as x 
tends to zero.  

The SDRE method is suitable for the design of a 
stabilizer even when there is a hard constraint on the input 
uc. Following [39-40], the bounded control problem is 
transformed to an equivalent nonlinear regulator problem by 
introducing a slack variable xs which satisfies 

      (29) 
where un is a new control input and uc takes the form of a 
saturation sin function given by 

  ( )sin ,c cm su sat u x=   (30) 
where one defines 

( )
, / 2

sin , sin( ), / 2 / 2
, / 2

cm s

cm s cm s s

cm s

u x
sat u x u x x

u x

π
π π

π

>
= − ≤ ≤
 − < −

 (31) 

Defining an augmented state vector as 
( ) 5,

TT
a sx x x R= ∈ ,  the Systems (28)-(31) can be written in 

a compact form as 

          (32) 
where the nonlinear matrix ( )a aA x and the constant matrix 

aB  are 

( )
1 4

1 4

sin ,
0

,
1

0 0

cm s
s s

a as

sat u x
A B

A Bx ×

×

 
  = =       

(33) 

Note that the System (32) is still a linear-like system and 
is well defined. 

Consider an optimal control problem in which for the 
Nonlinear System (32), a nonlinear quadratic performance 
index of the form 

 ( )2

0

1
2

T
a a a a nJ x Q x u dtε

∞
= +∫   (34) 

 4 1

1 4

0
0a

q

Q
Q

Rq
×

×

 
=  

 
     (35) 

where 

( ) 2

2

2

2

sin ,
/ 2

/ 2
( / 2)

cm s
s

s
q

cm
s

sat u x
x

xq
u x

π

π
π

   ≤
= 


>


 (36) 

is to be minimized, where  Q is a semi-positive definite 
symmetric matrix and R>0. The weighting matrix Qa(xa)  
and the scalar parameter 0ε > are chosen properly for 
obtaining desirable responses in the closed-loop system. 
Now instead of deriving an optimal control law by solving 
the Hamilton-Jacobi equation, for simplicity, a suboptimal 
control law is designed using the SDRE method. 

Consider a region of interest 5
d RΩ ∈  of the state space 

surrounding the origin 0ax = . For the existence of a 
solution using the SDRE method, the following assumption 
is made. 

Assumption1: The pair ( )( ),a a aA x B  is point-wise 
stabilizable at each a dx ∈Ω . Now for obtaining a 
suboptimal solution using the SDRE method, one solves the 
state-dependent Riccati equation given by 

 
( ) ( ) ( ) ( )
( ) ( ) ( )1 0

T
a a a a a a

T
a a a a a a

A x P x P x A x

P x B B P x Q xε −

+

− + =
 (37) 

to obtain a symmetric positive definite solution for ( )aP x . 
Then the nonlinear feedback control law is given by 

 ( ) ( )1 T
n a a a au x B P x xε −= −   (38) 

Readers may refer to [39-40] for the properties and 
capabilities of the SDRE method. It is interesting to note 
that the suboptimal law satisfies 
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 ( ),
0,a

n

dH x
du

λ
=     (39) 

where the Hamiltonian of the nonlinear optimal control 
problem is 

( ) ( )

( )

1 21,
2

                                  

T
a a a a a n

T
a a a a n

H x x Q x x u

A x x B u

λ ε

λ

− = + 

+ +  

 (40)
 

and 5Rλ ∈  is the co-state or the Lagrange multiplier. 

Substituting the Control Law (38) in (32) gives the 
closed-loop system 

1( ) ( ) ( )T
a a a a a a a c a ax A x B B P x x A x xε − = −    (41) 

The closed-loop matrix ( )c aA x  is guaranteed to be 
Hurwitz at every ax ∈Ω from the Riccati equation theory. 
Since the elements of ( )a aA x  are smooth functions, 
expanding ( )c aA x  about xa=0, and using mean value 
theorem, one can show that the equilibrium point xa=0 of 
(41) is asymptotically stable. The performance of the 
closed-loop system depends on the weighting matrix 

( )a aQ x  and the parameter ε . 

V. SIMULATION RESULTS 

In this section, the simulation results are presented. 
Parameters of the hysteretic Bingham model of [23] are: 
α=132, β=171, cp0=5000 (Nsec/m), k=4000(N/m), 
λ1=0.7, and λ2=5000. The mechanical parameters are 
m1=745 (kg), m2=65(kg), k1=52,000(N/m), k2=156,000 
(N/m), and c2=530 (Nsec/m). For the impact force applied to 
m2, a velocity shock of 10 (m/s) is treated as an initial 
velocity for m2. 

A. Inverse Control 

First responses of the closed-loop System (1) including 
the saturating inverse Control Law (25) are presented. Figs. 
2 and 3 show the responses for the choice of the feedback 
gains p1=16 and p2=5.65. The saturation value Icm of Ic is 
selected to be 2 A (amperes). In Fig. 2, responses for fixed 
values of current Ic=0 and Ic=2 A are also plotted for 
comparison. It is observed that after initial transient, the 
state vector converges to the origin in about two seconds. 
The control input Ic(t) saturates as well vanishes over certain 
intervals of time. It is seen that the responses with the 
inverse control law has overshoot of smaller values 
compared to those of the system with Ic=0; and the settling 
time is larger if Ic=2 A. The damper forces remains within 
500 N for the chosen saturation level of the current. It is 
observed that the acceleration of the payload mass (m1) 
(denoted in the figure as a1) is smaller compared to the   
acceleration (denoted as a2) of m2.  

In order to examine the effect of a different choice of the 
feedback gains, simulation is done using larger values as 
p1= 100 and   p2=14.14. Responses are shown in Figs. 4 and 
5. Although, the state vector tends to zero with saturating 
Control Law (25), the transient responses give larger 
overshoots over a longer period. This indicates that higher 
gains are not preferable. 

(a) (b) 

(c) 
 

(d) 

Fig. 2 Inverse control: (a) x1, (b) v1, (c) acceleration a1, and (d) control 
input Ic 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Inverse control: (a) x2, (b) v2, (c) acceleration a2, and (d) control 
input Fd 

 

Fig. 4 Inverse control, effect of the choice of p1 and p2: (a) x1, (b) v1, (c) 
acceleration a1, and (d) control input Ic 
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(a) 

 
(b) 

 
(c)  

(d) 
Fig. 5 Inverse control, effect of the choice of p1 and p2: (a) x2, (b) v2, (c) 

acceleration a2, and (d) control input Fd 

C. Sub-Optimal Control 

 Now responses using the sub-optimal Control Law (38) 
are obtained. For the simulation, the value of Icm is taken as 
2A. The weighting matrix Q is chosen as a 4×4  null matrix 
with its two  nonzero diagonal elements  qii set to 106,  i=1, 
3 , where  qii is the diagonal element in the ith row. The 
weighting parameter R is 2 and ε is chosen to be 0.01. The 
nonlinear function qq used in the performance index is given 
in (36).  The responses are shown in Figs. 6 and 7.  The 
responses for fixed values of the current (Ic=0 and Ic=2A) 
are also shown in Fig. 6. It is seen that the state vector x 
tends to zero and the control input remains within 2 A as 
expected. It is again observed that the overshoot in the 
displacement using the SDRE control law is smaller 
compared to those obtained with Ic=0, and the response for 
fixed Ic =2 A takes longer time for convergence. Again the 
acceleration a2 of m2 is larger than the transmitted 
acceleration a1 of m1.  

 
Fig. 6 Sub-optimal Control: (a) x1, (b) v1, (c) acceleration a1, and (d) control 

input Ic 

To examine the effect of the choice of the performance 
index on responses, simulation is done using a different 
weighting matrix Q. Now the chosen values are q11=q33=10. 
These are smaller than the values used in the previous case.  
The remaining parameters used for Figs. 6 and 7 are 
retained for simulation. The responses are shown in Figs. 8 
and 9. It is observed that the responses are somewhat similar 
to those obtained in Figs. 6 and 7. Again it is seen that the 
transient response of the payload position is better compared 
to the responses obtained using fixed values Ic=0 and Ic=2.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7 Sub-optimal Control: (a) x2, (b) v2, (c) acceleration a2, and (d) control 
input Fd 

 

Fig. 8 Sub-optimal Control, Effect of Q: (a) x1, (b) v1, (c) acceleration a1, 
and (d) control input Ic 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9 Sub-optimal Control, Effect of Q: (a) x2, (b) v2, (c) acceleration a2, 
and (d) control input Fd 

VI. CONCLUSIONS 

In this paper, the control of a two degree-of-freedom 
magnetorheological damper system was considered. 
Hysteretic Bingham model was used for the representation 
of MR damper. It was assumed that the system encounters 
impulsive forces. The objective was to control the position 
of the payload and suppression of vibration using the current 
as control input variable. Two control systems, namely (i) 
an inverse control law and (ii) a suboptimal control law 
based on the SDRE technique, were designed. The input 
current was clamped to meet the magnitude limits for 
simulation with the inverse control law. But the constraint 
on the current was imposed in the design process of the 
SDRE method. Extensive simulation was done. These 
results showed that the derived control systems are effective 
in position control and vibration suppression of the payload. 
Furthermore, it was observed that the designed controllers 
give better transient performance compared to the one 
obtained with fixed values of the current input. Moreover, 
there exists enough flexibility in the choice of feedback 
parameters to shape the transient responses. 
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