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Abstract- Biological eye movements serve vision by 

controlling the orientation of the retinas. They are under 

adaptive control implying a control objective, which we 

frame as minimising a “visual Lagrangian” that does not 

depend on motor control. Using optimal control theory, 

we show that the global optimum can be reached if the 

motor plant is linear and the zero is cancelled (singular 

control). It appears that the zero needs to be cancelled 

before the full Lagrangian can be optimised, implying the 

need for sequential adaptive controllers. We apply this 

theory to infantile nystagmus syndrome to argue that 

oscillatory eye movements are optimal, but the waveform 

depends on whether or not the zero is cancelled. We also 

show that the role of saccades is crucial in determining 

the boundary conditions and hence the local optima 

(fields of extremals). The local optima could be reached 

but saccades need to change eye velocity as well as eye 

position. We conclude that optimal control theory can be 

applied usefully to understanding adaptive biological 

processes without the need for detailed knowledge of the 

adaptive control circuits.  
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Calculus of Variations; Adaptive Control; Nystagmus; 
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I. INTRODUCTION  

Since the 1960‟s, control theory has played a central role 

in our understanding of biological eye movements. The 

seminal characterization of the oculomotor plant as a 4th 

order linear system by David Robinson [1] led to numerous 

physiological experiments that have culminated in a detailed 

description of the primate eye movement system.  

It is now widely accepted that oculomotor control 

evolved around a quasi-linear servo system that minimises 

retinal image motion (retinal slip) caused by perturbation of 

the head during motion, via the vestibulo-ocular reflex (VOR) 

and optokinetic sub-systems (OKR). Robinson‟s plant model 

is typically  approximated by a 2nd order system (an 

additional complex pole pair [1] is assumed negligible for 

most purposes). The two poles and a zero are cancelled by a 

pre-motor compensator, so that the eye closely follows the 

velocity command (Fig.1) [2]. With the evolution of foveal 

vision came the need for precise positional control, and the 

original system was supplemented with the smooth pursuit, 

fixation, and vergence subsystems to allow foveal tracking of 

stationary and moving objects in 3 dimensional space. 

Positional errors are corrected by the saccadic system which 

generates velocity pulses that rapidly shift eye position [3], 

but the long delays in the visual system prevent the direct use 

of negative feedback. Instead, the system generates internal 

models of the plant, probably by learning inverse dynamics [4, 

5]. For many years the consensus has been that the system is 

still velocity driven. However, there is now evidence that at 

least the smooth pursuit system receives position as well as 

velocity commands [6].  

It is now firmly established that most oculomotor control 

is under real-time adaptive control [2,7,8,9]. That is, synaptic 

weights are constantly being updated to maintain precise 

oculomotor control. Anatomically, it has been shown that the 

cerebellum is an important structure that mediates adaptive 

control. In particular, the flocculus/paraflocculus is important 

for maintaining ocular plant compensation [2], and it has been 

proposed that the correct inverse dynamics are learnt from 

the visual response, which has been assumed to be retinal 

slip (Fig.1) [5].  

A key point for us is that adaptive control implies the 

existence of a control objective embedded in the brain. It 

also implies that oculomotor behaviour is under real-time 

optimal control, where the „optimum‟ corresponds to the 

control objective. Such a system requires signals that code 

departures from the optimum and teach/guide the system to 

reach the optimum, and it has long been believed that the 

climbing fibre input to the cerebellum carries such “teaching 

signals” [10, 11].  
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Figure 1: Schematic of the oculomotor final common path.  The plant is 

modeled as a 2nd order linear system with a zero. The motor command u(t), 

drives a compensator which ideally cancels the poles (t1, t2)  and zero (tz). 

The compensator parameters 
1,2,3,4w are under adaptive control usually 

considered to be driven by retinal slip ( )x t  (thick line), which is the 

difference between object velocity ( )o t  and eye velocity ( )e t . 
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A. Pathological Oscillations 

Human eye movement control can be disturbed by 

neurological disorders (acquired or congenital) and 

pathological eye movements have been intensely studied [12]. 

Of particular interest is the existence of pathological 

oscillatory instabilities of the eyes, called „nystagmus‟. A 

puzzling question is why nystagmus can be permanent, as 

one would expect adaptive control to compensate for any 

instabilities (as indeed can occur in some vestibular 

disorders). One possibility is that the adaptive controller 

receives inaccurate information or is itself damaged by 

disease. This makes sense in some conditions where there is 

brainstem and cerebellar damage. However, in infantile 

nystagmus syndrome (INS), infants develop lifelong eye 

oscillations from birth or soon after. There is no evidence of 

brain damage, but surprisingly most are born with a visual 

(sensory) abnormality [13, 14]. 

There have been many attempts to model INS as a 

control system [15,16,17,18,19]. Most are variants on the normal 

velocity control model (fig.1) but fail to take into account 

that INS is also sensitive to positional error [20]. It appears 

that, as with the smooth pursuit system, we also need to take 

into account positional error. Moreover, none of these 

models explain why adaptive control does not automatically 

nullify the nystagmus.  

 

Figure 2: Schematic of  visual spatiotemporal tuning. (a) Receptive fields 

(RFs) are temporally and spatially tuned, and so become tuned to image 

speed depending on size of RF. (b) Small RFs near the fovea are tuned to 

low but non-zero speeds. Larger RFs are tuned to higher speeds. (c) It is not 

physically realizable to maintain optimum speed and position, and some 

compromise is needed, such as a least-squares (quadratic) cost function  (8). 

Clearly adaptive control requires visual feedback, and 

cannot take place in infants until birth. However, vision 

undergoes considerable post-natal development (especially 

foveal vision), and it is not clear how this interacts with the 

adaptive control of eye movements. Harris & Berry [21,22] 

have proposed that infantile nystagmus persists because, 

paradoxically, it may fulfill the adaptive control objective 

(see below), together with anomalous timing of sensory 

development in infancy [23]. At the heart of this idea is the 

peculiar arrangement of the visual system which is 

intrinsically tuned to position and a non-zero image velocity, 

p (quite unlike a conventional camera) (fig.2). Coupled with 

a mixture of positional and velocity errors, oscillations can 

emerge as optimal with properties very similar to those 

observed in INS.  

This approach is fundamentally different from the 

conventional control theory approach since it asks about the 

adaptive control objective, rather than modeling how 

oscillations may be driven. However, Harris & Berry [21] only 

considered the global optimum as a variational problem, 

without asking whether it could be reached by an admissible 

motor command. Here we re-frame the problem in terms of 

optimal control theory to gain more insight into whether or 

how the plant and its command may constrain adaptive 

control of the combination of optimizing image position as 

well as velocity. 

II. METHODS 

We consider a 1-dimensional problem with horizontal 
eye position denoted by ( )e t , with the origin corresponding 

to the retinal fovea aligned straight ahead (head fixed). We 
use the dot notation to denote time derivatives, so that eye 
velocity is denoted by ( )e t  and acceleration by ( )e t . We 

denote target position relative to the straight ahead by 

( )o t and its velocity by ( )o t . Retinal error is denoted by 

( ) ( ) ( )x t o t e t  , and its time derivative (retinal slip) is 

( ) ( ) ( )x t o t e t  . 

We assume eye position is controlled by a unity gain 
linear plant driven by a motor command ( )u t (see Fig.1 

without a compensator). The plant is assumed to have two 
real poles with time constants, 1t  and 2t , and a zero with 

time-constant zt  (see Fig.1), so that: 

( ) ( ) ( ) ( ) ( )zae t be t e t t u t u t                        (1) 

where  1 2a t t and 1 2b t t  . In terms of retinal error: 

( ) ( ) za x o b x o x o t u u                          (2) 

For a state-space representation, we define the state 

vector by 
1 2[ , ]Tx xx where 1x x , 2x x , etc., which is 

assumed to be directly observable, and 1o o , 2o o , etc.. 

We will use either classical or state representation depending 

on context.  

A state space representation of (2) is ( ) u   x o A x o B  

or explicitly:  

1 1 1 1

2 2 2 2

0 1 /
( )

1 / / /

x o x o c a
u t

x o x oa b a d a

        
       

         
   (3) 

where zc t , 1 /zd bt a  . In the simulations below, we set 

1 0.3t s , 2 0.010t s 0.080zt s   based on parameters given 

by Zee et al. [3]. For a stationary object straight-ahead (i.e. 

imaged on the foveas when the eye is still), the state-space 

equation for retinal error is: 

1 1

2 2

0 1 26.67
( )

333.33 103.33 0.00242

x x
u t

x x

      
       

        
. (4) 

Numerical simulations were carried out with Matlab 

(Mathworks, USA). The duration of the epoch, T, was set to 

unity. The ideal speed, p, was also set to unity. Note that 

fields of extremals are proportional to p. 

III. VISUAL LAGRANGIANS AND GLOBAL OPTIMA 

Our fundamental assumption is that the control objective 

of any adaptive control is essentially visual. That is, the 
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cost/benefit of eye movements is determined by their visual 

consequences, and reflects the notion that eye movements 

have no other purpose than to control the orientation of the 

retinas. We assume that consequences can be written as some 

scalar which we call „cost‟ (i.e. negative benefit). 

We therefore introduce the idea of a “visual Lagrangian” 

which defines how the cost to the visual system depends on 

the state vector of the image on the retina (and possibly its 

history) in a particular visual task. We define the cost of an 

eye movement behaviour over some epoch of time 

(0 )t T  by a Lagrangian ( , )L tx with the expressed 

assumption that it is independent of control ( )u t (and 

assuming control bounds are not reached). The cost, J, of an 

eye movement is then given by: 

0

( , )

T

J L t dt  x                                     (5) 

Provided smoothness constraints are met, the optimal 

trajectory of the retinal image is a solution to the Euler-

Lagrange equation (ELE): 

1 2

0
L d L

x dt x

  
  

  
                             (6) 

The solution to (6) with the minimum cost over the space 

of admissible functions and subject to boundary conditions 

(if any) is the optimum denoted by ( )t
x . There is no 

guarantee that the neuro-muscular system can reach this 

optimum.  

It has usually been assumed (implicitly) that the control 

objective is to minimise retinal slip, that is, to reduce image 

speed to zero. This makes sense from an engineering 

perspective where cameras are the sensory input and their 

responses are degraded by image motion blur. However, this 

is a serious oversimplification for biological visual systems. 

The fundamental (and only) signals emanating from the 

vertebrate retina are the responses of the retinal ganglion 

cells (RGCs), whose axons constitute the optic nerve. RGCs 

are driven by photoreceptors, bipolar, horizontal, and 

amacrine cells, which filter photon capture over a small 

optical region in space, called a receptive field (RF). Each 

RF (and hence RGC) is tuned to be maximally responsive to 

spatial frequency (similar to a bandpass spatial modulation 

transfer function), but also tuned to be maximally responsive 

for particular temporal frequency (similar to a bandpass 

temporal filter) [23]. This means that each RGC RF is tuned to 

its own non-zero image speed (see Fig. 2). Thus, each „pixel‟ 

of the biological image is tuned to a position due to its spatial 

location in the retina, but also to a non-zero image velocity 

due its RF tuning properties.  

In most vertebrates, the diameters of RFs are also not 

constant across the retina. In humans and other primates, the 

retina has a “fovea”‟ with very small and dense RFs, that 

increase in diameter and decrease in density with radial 

distance from the fovea (although the overlap of RFs remains 

roughly constant). Thus the optimal velocity, p, increases 

with eccentricity from the fovea depending on spatial 

frequency (Fig.2b) [24]. 

A. Pure Motion Lagrangian 

One consequence of this organisation is that retinal 

stabilization of an image actually reduces contrast (with 

greater reduction in the peripheral retina). Thus, eliminating 

retinal slip would be counterproductive. However, Michael 

Land [25] recognised that the degree of stabilization in 

animals is frequently better than needed for RFs, and 

proposed that good stabilization locks the visual background 

onto the retina to better support detection of an object 

moving against its visual background (even if the visual 

contrast of the background is reduced). The control objective 

of this visual task would be to stabilize the visual 

background, or large area of the visual scene. Assuming the 

optimum to be locally quadratic, the simplest Lagrangian 

would be  

2

2L x                                          (7) 

which is obviously minimised with zero retinal slip. Since 

coherent motion of large areas of the visual scene are usually 

caused by self-motion, the VOR and OKR seem likely to be 

the supporting sub-systems. 

B. Visual Contrast Lagrangian 

Prolonged viewing of small or distant stationary objects 

requires positional control, but perfect stabilization reduces 

visual contrast. The fundamental problem is that a RGC RF 

is tuned to non-zero velocity and to a spatial location (by 

virtue of its position in the retinotopic map) and will have an 

optimal phase point (see Fig. 2c). The requirement to match 

ideal motion and position simultaneously cannot be 

physically realised, as optimal image motion will take the 

image away from the RF and an optimal image position 

control would have zero motion.   

The image of a visual object will usually stimulate many 

RFs, where each RF will have its own optimal phase point. 

This is a complex problem in its own right, but overall we 

expect there to be some image trajectory that maximises total 

response of RGCs. Again, assuming quadratic local optimum 

in position and velocity, the simplest Lagrangian is: 

2 2( ) ( ( ) )L x t x t p                                (8) 

where p is the ideal image speed, which is assumed to be 

constant for small movements. Here, α and β are constants 

that weight position and velocity error. From (6), the optimal 

state trajectory is then: 

*( ) exp( / ) exp( / ),      /x t A t B t         (9) 

where A and B are undetermined constants. Without any 

boundary conditions, the global optimum (identified by 

double asterisk) is given by [21]: 

**** **

**

**

( ) exp( / ) exp( / )

exp( / )

1 exp( / )

1 exp( / )

x t A t B t

p T
A

T

p
B

T

 

 







  







            (10) 
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The global optimum is illustrated in fig.3a (no zero) and 

fig.3c for τ=0.45. Thus, an ideal adaptive controller with the 

capacity to find the global optimum should always generate 

image motion depending on p. This is a direct result of the 

velocity tuning of RGCs. Even for normal adults, foveal 

RGCs prefer a small but non-zero image motion, and so-

called “steady fixation” are observed to consist of slow 

alternating drifts and microsaccades [26]. We argue that in 

some infants with delayed visual development, the 

oscillations become extreme, which we call “nystagmus” [23].  

 

Figure 3: a) Global optima for uncompensated zero („zero‟) and 

compensated zero („no zero‟). b) Ideal position waveform with zero and 

instantaneous reset; c) same as (b) but for no zero. T=1; p=1; τ=0.45 

IV. ADAPTIVE CONTROL & LOCAL MINIMA 

We now consider an adaptive process that attempts to 

minimise the visual Lagrangian.  However this process is 

implemented (e.g. filter, transform, feedback), it must 

operate on the control signal, u(t), in such a way as to 

optimise the output objective. Such a process must be 

constrained by the dynamics of the plant, and so we apply 

standard optimal control theory (OCT) [27].  

We construct a Hamiltonian from the Lagrangian and 

plant dynamics (without any compensator): 

( , , ) ( , ) ( ) [ ]TH u t L t t A Bu  x x Γ x                 (11) 

where 1( ) ( ), , ( )nt t t    Γ is the co-state vector. Because 

( , , )H u tx is a linear function of control, the optimal strategy 

must be singular or bounded (bang-bang) control.  We 

assume that the motor command is not bounded over the 

range of eye movements considered here. For a 2nd order 

system with a zero, the expanded Hamiltonian is: 

1 2 2 1 2( , , ) ( , ) ( / ) ( / / / )H u t L t x cu a x a bx a du a       x x , 

and from OCT,  the optimum must satisfy: 

1 2

1 1

2 1 2

2 2

1 2

/

/

0 / / .

H L
a

x x

H L
b a

x x

H
c a d a

u

 

  

 

 
   

 

 
    

 


  



                    (12) 

Eliminating 1  
and 2 : 

2

1 2

1 2

1
,       1

c L L cb c
q

q d x x ad ad


   
     

  
             (13) 

which yields the differential equation 

2

2

1 2 1 2

1
1 0

c d L d L c L c L

qd dt x q dt x aqd x adq x

        
         

       
 (14) 

In general, a function that satisfies this equation does not 

satisfy the global optimum ELE (6), except for degenerate 

cases. However, when there is no zero (c=0) (14) is 

equivalent to (6) and the global optimum can be reached. In 

other words, provided the plant is linear and there is no zero, 

the global optimum can be reached by a suitable control 

signal u(t). If the zero is uncompensated (or the plant is not 

linear), the global optimum cannot be reached generally 

(excepting degenerate cases). 

As an example, let us return to Harris & Berry‟s visual 

Lagrangian with an uncompensated zero. For 

 
22

1 2L x x p    we have:  

2 2 2 2 2

2 2
1

d x c c dx c pc
x

q dt qd adq dt aqd adq

     
       
   

       (15) 

which has the general solution: 

1 2( ) exp( ) exp( )x t A rt B r t D                     (16) 

where r1, r2 are the two roots, A, B are undetermined 

constants, and 
2

2 2 1

pcd
D

c aqd





. The global optimum for a 

zero (
zt = 0.08; see sect II) is shown in Fig. 3a and b (‟zero‟). 

As can be seen, the optimal trajectory becomes much more 

curvilinear with a non-compensated zero. 

A. Bidirectional Cost  

So far, we have assumed unidirectional sensitivity to the 

optimal speed, p. However, it seems reasonable to assume 

that contrast is independent of the sign of p, and that the RF 

responds equally to leftward and rightward motion. To solve 

this problem, we consider the function ( ),P t such that  

( )P t p but can flip sign n times during the epoch, denoted 

by ,    1,it i n  where n is finite. The quadratic Lagrangian  

becomes  
22( ) ( ) ( )L x t x t P t    . Now, during each of the 

periods between flipping: 

        1 1 2 10 ,  , ,n n nt t t t t t t t t t T        , ( )P t  is 

a constant, and / 0dP dt  . At it t , the Lagrangian is 

indeterminate but finite. In the infinitesimal limit, it must 

follow that the area under the Lagrangian at it  approaches 

zero, so that 
1

( ( ), ) 0
n

i i

i

L x t t


 . The cost is therefore given by 

0

( , ),     .

T

iJ L x t t t                            (17) 

We now have  

2 2 2 2 2

2 2 2 2

( )
1

1

d x c c dx c P t cd
x

q dt qd adq dt aqd c aqd

     
       

   
 (18) 

which is 2nd order as before, but now p is replaced by ( )P t : 

2

1 2 2 2

( )
( ) exp( ) exp( )

1

P t cd
x t A rt B r t

c aqd


  


    (19) 
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Defining ( )x x t  when ( )P t p  , and ( )x x t   when 

( )P t p  , then the constants A and B are chosen together 

with any boundary conditions, so that   

0

min ( ( ), ), ( ( ), )

T

J L x t t L x t t dt                      (20) 

which can be solved by a simple search algorithm. 

V. BOUNDARY CONDITIONS 

The global optima, with or without a plant zero, result in 

a net change in position. Thus, for a finite T, it is necessary 

to reset position to repeat a cycle. Intuitively, a step reset 

would seem the optimal way to reset, but this cannot be 

achieved without infinite control. The fastest reset available 

to the oculomotor system is the saccade. Saccades take finite 

time and have end-point positional error, which increases 

with amplitude. The triggering of saccades is also extremely 

variable with highly skewed latency distributions, even 

during a repetitive behaviour such as optokinetic nystagmus 
[28]. Thus, saccades come with cost that increases with the 

size of the reset. As pointed out by Harris & Berry [21], the 

initial uncertainty of a cycle will affect the extremal, which 

in turn will affect the next reset, possibly leading to 1st order 

Markov sequences. Given that saccade amplitude is also 

under adaptive control, the problem is difficult to unravel.  

Here we consider various reset procedures, which are 

equivalent to placing costs on boundary conditions [29, 30], 

including the absence of a reset, which we call type “0”, pure 

position change: type “1”, and position and velocity change: 

type “2”. Initially, we consider a compensated zero. 

Type 0 

One possibility is that the cost of making a saccade is so 

high that it pays not make the reset at all, so that  

1 1(0) ( )x x T . Since 1(0)x A B D   and 

1 1 2( ) exp( ) exp( )x T A rT B r T D   , this requires 

   1 21 exp( ) / 1 exp( )B A rT r T    , and leaves one degree of 

freedom. We computed the field of extremals (FOE) by 

finding the local optimal trajectory for different initial 

positions, where    1 1 2[ (0) ] / [1 1 exp( ) / 1 exp( ) ]A x D rt r t      

based on bidirectional cost function (otherwise no movement 

would be optimal). As seen in fig.4a, the optimum requires a 

symmetrical curvilinear positional trajectory. This trajectory 

also requires an abrupt change in velocity at the end of the 

cycle (fig.4b). This is strictly not achievable for a 2nd order 

plant as it would require infinite acceleration. A finite 

acceleration pulse would „round-off‟ the velocity change at 

the end of the cycle, but whether the saccadic mechanism 

can accomplish this is not known (and not previously asked). 

Type 1 

In most eye movement studies, saccades are required to 

change eye position but not eye velocity. That is, the velocity 

pulse begins and ends at the same value. This requires 

2 2(0) ( )x x T so that    1 1 2 21 exp( ) / 1 exp( )B A r rT r r T     and 

therefore    1 1 1 2 2[ (0) ] / [1 1 exp( ) / 1 exp( ) ]A x D r rt r r t     The 

FOE for this scenario shows curvilinear trajectories and 

includes the global optimum (for no zero) (fig.4c). This 

requires discontinuity in acceleration at the end of the cycle 

(fig.4d), but this is feasible with a 2nd order plant. 

 

Figure 4: Fields of extremals for type 0 and type 1 boundary conditions 

with bi-directional cost. Thick lines are local optima. T=1; p=1; τ=0.45 

Type 2 

The final possibility is that saccades can change both 

velocity and position simultaneously (that is, they are true 

state changers).  For a specified 1(0)x , we have 1(0)B x A   

(note D=0 for no zero). This FOE (unidirectional cost) 

includes the global optimum (fig.5a), but for other extremals, 

a change in velocity at the end of the cycle is needed. 

These FOE‟s also depend on the zero. If the zero is not 

compensated, the type 0 and 1 FOE‟s remain qualitatively 

similar (not shown). However, for type 2, an uncompensated 

zero leads to a quite different field with extremals starting 

very slowly before accelerating later (figs.5c,d). Presumably 

this occurs because of the reduced constraints in type 2. 

 

Figure 5: Fields of extremals for type 2 boundary conditions with 

unidirectional cost and with zero compensated (left) and uncompensated 

(right). T=1; p=1; τ=0.45 

VI. DISCUSSION 

We propose that OCT can provide explanatory insight 

into the study of eye movements by placing bounds on how 
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biological control could evolve and operate. We have made 

three fundamental assumptions about eye movement 

behaviour.  

First, control is adaptive in real-time. There is ample 
evidence for this, but it implies that there is some „goal‟ or 
control objective that is being constantly pursued by the 
adaptive controller. How this is encoded in the brain is 
unknown, but it is tempting to argue that RGC firing patterns 
across the retina code a „raw‟ field (including motion vectors) 
of visual benefit and cost. This raw field is refined by 
subcortical and cortical processing to provide teaching 
signals to the climbing fibre input to the cerebellum, which 
then finds the optimal motor control (adaptive control).  

Second, we have assumed an ideal adaptive controller, so 
that observed behaviour meets the objective. Of course, as in 
man-made systems, adaptive controllers are noisy and can 
fail if they are damaged or receive incorrect information. 
However, in normal healthy brains, this assumption makes 
sense because we would expect evolution (natural selection) 
to come as close as possible to an ideal controller.  

Third, we argue that the control objective is purely visual 
(sensory), and not motor. This may seem unusual in design 
engineering, where costs are often attached to the motor 
control (fuel, energy). However, eye movements only serve 
the function of controlling the orientation of the retinas in 

time. This leads to the idea of visual Lagrangians, ( , )L tx , 

which are functions of the state vector and time, but not 
control. So far, we have only considered simple visual 
Lagrangians. In reality, we expect more complex functionals 
of state, as eye movements have higher dimensions 
(horizontal, vertical and torsional for each eye). The visual 
impulse response function should impose an explicit 
dependence on absolute time relative to the last saccade (or 
stimulus onset). The visual characteristics (size, shape, 
contrast) of the object‟s image, and its eccentricity relative to 
the fovea need to be taken into account. Nevertheless, the 

optimal state vector represents the global optimum ( )t
x , 

and can be found either analytically (variational calculus) or 
numerically. 

Of course, the brain can only ever find the optimum by 
manipulating the motor control input ( )u t , which affects the 

state vector via the motor plant. The goal of the adaptive 
controller is to operate on ( )u t  (via some controller/ 

compensator) so that the objective can be reached. We 
believe the fundamental problem confronting biological 
motor systems is that the dynamics of the plant can prevent 
the global optimum from being reached. The power of OCT 
is that it tells us what the best outcome could be. The 
Hamiltonian is the key to this problem since the optimal 

control is given by minimising ( , , )H u tx with respect to ( )u t . 

The Hamiltonian always depends on ( )u t , even though the 

visual Lagrangian does not. Clearly, from (5), for the optimal 
control to reach the global optimum, the plant needs to be 
linear (over the range of control needed to find the optimum), 
and not bounded. Thus, singular control is optimal. However, 
less obvious is that, even for a linear plant, a zero in the plant 
prevents the global optimum from being reached (apart from 
degenerate cases). 

Eye movements are typically a sequence of slow eye 

movements separated by saccades. Saccades are, therefore, 

effectively transitions between singular arcs. Saccade 

amplitude and the transfer of state from a saccade to the 

subsequent slow eye movement are known to be under 

adaptive control [2,9]. Although finding the optimal transition 

between singular arcs is a well-studied non-trivial problem 
[27], how this can be achieved with saccades remains an 

important and fundamental theoretical issue. Saccades 

cannot be under singular control because of the presence of 

signal-dependent motor noise [31,32]. Due to this noise and 

also targeting error, saccade accuracy decreases with 

amplitude and will lead to uncertainty in the starting point of 

the next singular arc and forces a variable boundary 

condition. The ideal adaptive controller would take the start 

position into account and follow the appropriate optimal 

trajectory (i.e. encode FOEs). However, to what extent the 

saccade trajectory can be manipulated is poorly understood. 

Conventionally, saccades are thought to change position but 

not velocity, which would constrain FOEs (Fig.4c). If 

velocity can also be changed, then different boundary 

conditions can be exploited.  

INS is a unique developmental disorder of eye 

movements. We have proposed that the oscillations are 

consistent with an adaptive controller with an objective to 

minimise the quadratic visual Lagrangian (8) [21]. Here we 

argue that this is essentially the same as the eye drifts and 

microsaccades seen in normal individuals, but for a larger 

optimal image speed, p. Slow drifts and nystagmus slow 

phases may be driven by different mechanisms, but they 

seem to share the same control objective. Interestingly, the 

ability to reach the global optimum requires the zero to be 

compensated, and it is tempting to speculate that there is a 

sequence of adaptive controls. Initially, the zero is 

compensated via a simple Lagrangian such as minimising 

image velocity (retinal slip), as has been proposed for the 

vestibular system [5]. Once achieved, a second adaptive 

system minimises the Lagrangian with positional error, 

possibly via the smooth pursuit system. This sequence is 

consistent with known development, and may provide an 

example of steering control around local minima, as recently 

proposed by Harris [23].   

Multiple adaptive controllers lead to considerable 

complexity, which would be extremely difficult to model 

conventionally. However, OCT allows us to explore their 

effects, even without knowing their details. We have only 

examined a rather simple system, but the possibility that we 

may be able to elucidate sequences of adaptive phases is 

exciting, as it may provide a handle on understanding the 

underlying principles of biological development and learning. 

VII. CONCLUSIONS 

From the 1960‟s, the principles of control systems theory 

have provided insights into how Nature might control eye 

movements, which have been confirmed time and time again 

by empirical physiological and behavioural experiments. 

One is led to the conclusion that Nature must be an 

„excellent‟ engineer. Perhaps we should not be surprised. 

 



Journal of Control Engineering and Technology (JCET) 

 

JCET Vol. 3 Iss. 4 October 2013 PP. 181-188 www.ijcet.org ©  American V-King Scientific Publish 

187 

Good engineering designs are based on well-tried, robust and 

optimal performance – exactly the qualities we expect from 

systems that have evolved under natural selection. Our view 

is that the principles of optimal control theory provide 

insights into why oculomotor systems have evolved the way 

they are, and in particular, provide a framework for 

understanding development and adaptive control. 

Optimising vision (via visual Lagrangians) generally 
requires singular optimal control, which may be unique in 
biological motor control. This requires a linearized plant 
with compensation for zeroes, which is consistent with 
empirical observation. How this is learnt has not been 
previously asked, but may be highly relevant to normal and 
pathological development. As saccadic eye movements are 
under non-singular control, it is particularly important both 
empirically and theoretically to understand how transitions 
between singular and non-singular arcs are accomplished. 
We are currently investigating this non-trivial question. 
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