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Abstract - We consider a two-point nonlinear boundary value 
problem for the second order differential equation. The 
conditions are provided for existence of multiple solutions. First 
we show that a quasi-linear problem has a solution of definite 
type which corresponds to the type of the principal linear part. 
Multiple solutions are obtained by repeatedly reducing the 
original equation to quasi-linear ones and proving the 
appropriate estimates for solutions of modified problems. 
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I. INTRODUCTION  

It is well known that the boundary value problem  

        
2( ) [0 1] ( )

(0) (1)
′′ ′ = , , , ∈ := , , ∈ × , ,

 ′= , =

x f t x x t I f C I
x A x B

R R
(1) 

is solvable if a function f  is bounded. If f  is not bounded, 
the existence of a solution is not guaranteed.  

We consider the second order equation  

( )′′ ′= , , ,x f t x x                   (2) 
 together with the mixed boundary conditions  

(0) 0 (1) 0′= , = ,x x               (3) 
 provided that f  is continuous along with the partial 
derivatives xf  and ′ .xf  Our intent in this paper is to show 
that the problem (2), (3) may have multiple solutions. 

     Our method was elaborated in [1], [2], [3]. We try to 
represent (2) in the quasi-linear form  

   ( )( ) ( ) ( )′ ′+ = , , ,
d p t x q t x F t x x
dt

         (4) 

 where ( ) 0> ,p t  ( ), ∈ ,p q C I  2( )′, , ∈ × ,x xF F F C I R R  and a 
function ( )′, ,F t x x  is bounded. If equation (4) is equivalent 
to (2) in a bounded domain 2Ω ⊂ ×I R  and if the problem 
(4), (3) has a solution ( )x t  with the graph 

( ){ }( ) ( ) [0 1]′, , , ∈ , ⊂ Ωt x t x t t  then ( )x t  solves also the 
original nonlinear problem (2), (3). Besides we can show 
that the problem (4), (3) has a solution ( )x t  such that it has 
the same (locally) oscillatory behavior as the linear part 

( )( ) ( )′ +d
dt p t x q t x  has.  

Next we try to represent (2) in the form (4) with another 
essentially different linear part and repeat the arguments. If 

this is possible we get another solution ( )x t  of the problem 
(2), (3). It differs from ( )x t  since properties of the linear 
parts (and therefore properties of solutions ( )x t  and ( )x t ) in 
both cases are different).  

In the sequel consider the problem (2), (3) and show that 
quasilinearization process can be applied repeatedly thus 
producing multiple solutions of this problem.  

Equation in (1) may be thought as a control system, 
which is required to behave in accordance with certain 
specifications. For example, the requirement may be for an 
equation to have a solution with prescribed local oscillatory 
behavior (described by the respective equation of variations) 
and subject to given boundary conditions.  Suppose the 
equation’s natural behavior does not in itself meet the 
requirements. Then it may be necessary to use some control 
inputs (to change equation) to induce the desired behavior. 
Let us mention some relevant sources [4], [5], [6]. 

The paper is organized as follows. In the second section 
conventions on properties of linear parts in quasi-linear 
equations are made and definition of the type of a solution to 
the quasi-linear problem is given. The third section contains 
main result about existence of a solution of definite type for 
quasi-linear problem. The fourth section contains results on 
nonlinear boundary value problems. In the fifth section we 
apply the quasilinearization method as described to the study 
of the Emden-Fowler type equation. The results of numerical 
analysis are provided and the example is discussed.  

II. QUASI-LINEAR BOUNDARY VALUE PROBLEMS 

Consider the quasi-linear problem (4), (3). Several 
definitions will be used in the sequel.  

Definition1. The linear part 
( )2( )( ) ( ) ( )′:= +d

dtL x t p t x q t x  is called by nonresonant with 
respect to the boundary conditions (3), if the homogeneous 
problem  

              2( )( ) 0 (0) 0 (1) 0′= , = , =L x t x x    (5) 
 has only the trivial solution.  

The result below is well known [7], [8].  

Theorem 1. If the linear part ( )2 ( )L x t  is nonresonant 
with respect to the boundary conditions (3) and a function 

( )′, ,F t x x  is bounded then the problem (4), (3) is solvable.  

Lemma 1. The Green’s function of the problem (5) is given 
by  
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( ) ( ) 0 1
( ) ( )

( )
( ) ( ) 0 1
( ) ( )

 , ≤ < ≤ ,, = 
 , ≤ < ≤ ,


u t v s t s
W s p s

G t s
u s v t s t

W s p s

 (6) 

where ( )u t  and ( )v t  are linearly independent solutions of 

( )2 ( ) 0= ,L x t  which satisfy the conditions (0) 0=x  and 
(1) 0′ =x  respectively, ( ) ( ) ( ) ( ) ( )′ ′= − .W s u s v s v s u s   

Proof. By using [9] (Ch. 3). 

Lemma 2. If the linear part ( )2 ( )L x t  is nonresonant with 
respect to the boundary conditions (3) then a set S  of all 
solutions of the boundary value problem (4), (3)  is non-
empty and compact in 1 2( )× , .C I R R  

Proof. The non-emptyness of S  (the solvability of the 
problem (4), (3)) follows from Theorem 1. Compactness 
follows from the integral representation of a solution of the 
problem (4), (3) via the Green’s function:  

1

0

( ) ( ) ( ( ) ( ))′= , , ,∫x t G t s F s x s x s ds          (7) 

and standard evaluations in order to show that the Arzela-
Ascoli criterium is satisfied.  

Lemma 3. There exists an element ∗ ∈x S  with the 

property that { }(0) max (0) :x x x∗′ ′= ∈ S . Similarly there 
exists an element ∗ ∈x S  with the property that  

{ }(0) min (0) :x x x∗
′ ′= ∈ S . 

Proof. First let us prove that the set { }0 : (0) :x x′= ∈S S  
is compact in R . We have to show that the set above is 
bounded and closed. Boundedness follows from Lemma 2. 
Let show that this set is closed. Suppose that (0) →nx r , 
where ∈nx S . Then, by compactness of the set S, one may 
find a subsequence 

knx  which tends to some ∈x S  as 

→ +∞kn . Obviously (0)′ =x r .  Thus 0∈r S . Since one-
dimensional closed sets have the minimal and the maximal 
elements, the proof follows. 

Lemma 4. All solutions of (4) are extendable to the 
interval [0 1],  and uniquely defined by the initial data.  

Proof. The first assertion follows from boundedness of 
F .  Notice that since the continuous partial derivatives xF  
and ′xF  exist, equation (4) satisfies the Lipschitz condition 
in any compact in 2×I R  domain. Then solutions of (4) are 
uniquely defined by the initial data and continuously depend 
on the initial data.  

Represent a solution ( )x t  of the homogeneous equation 

( )2 ( ) 0=L x t  in polar coordinates as  

( ) ( )sin ( ) ( ) ( ) cos ( )ρ θ ρ θ′= , = .x t t t x t t t    (8) 
The boundary conditions (3) in polar coordinates take the 

form  

        (0) 0 (1) ( )
2
πθ θ π= , = .mod  (9) 

 Equation for the angular function ( )θ t  is  

     2 2

( ) ( )
( )sin ( ) cos ( ) ( ) cos ( ) ( )sin ( )

θ

θ θ θ θ

′ =

′ + + .

p t t
p t t t p t t q t t

 (10) 
If the angular function ( )θ t  is monotone for all ∈t I  

then zeros of ( )x t  and zeros of ( )′x t  alternate in the interval 
[0 1], . In this case it is possible to define different types of 
nonresonance of the linear part ( )2 ( )L x t . 

Suppose that ( )θ t  is monotonically increasing. 

Definition 2. We say that a linear part ( )2 ( )L x t  is i-non-
resonant  with respect to the boundary conditions (3), if the 
angular function ( )θ t  of a solution of the equation 
( )2 ( ) 0=L x t , defined by the initial condition (0) 0θ =  
satisfies the inequalities  

 
(2 1) (2 1)(1) 1 2 3

2 2
π πθ− +

< < , = , , , .
i i i �      (11) 

In a case 0 (1)
2
πθ< <  we say that a linear part ( )2 ( )L x t  

is  0 - nonresonant with respect to the boundary conditions 
(3).  

Denote by ( )γ;x t  a solution of the Cauchy problem (4), 

(0) 0 (0) γ′= , = .x x                      (12) 

Consider the difference ( ) ( ) ( )γ γ ξ; = ; −u t x t t , where 
( )ξ t  is a certain solution of the quasi-linear problem (4), (3); 

introduce local polar coordinates as    
),;(cos);(),('),;(sin);(),( γφγργγφγργ tttutttu ==  (13) 

Lemma 5. The angular function ( )φ γ;t  defined by (13) 
tends to ( )θ t  uniformly in [0 1]∈ ,t , as γ → +∞ .  

Proof. Both functions ( )γ;x t  and ( )ξ t  are solutions of 
(4), therefore function ( )γ;u t  satisfies such  the initial value 
problem:   

( ( ) ) ( ) ( ( ) ( )) ( ( ) ( ))

(0 ) 0 (0 ) (0)

γ γ ξ ξ

γ γ γ ξ

′ ′ ′+ = , ; , ; − , , ,

′ ′; = , ; = − .

d p t u q t u F t x t x t F t t t
dt

u u
 (14) 

 Denote 
(0)γ ξ

:=
′−

uv . Then ( )γ;v t  satisfies the 

equation:  

        

( )( ) ( )

( ( ) ( )) ( ( ) ( )) ( )
(0)

γ γ ξ ξ ε γ
γ ξ

′ + =

′ ′, ; , ; − , ,
=: , ,

′−

d p t v q t v
dt
F t x t x t F t t t t

(15) 

with  
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(0 ) 0 (0 ) 1γ γ′; = , ; = .v v         (16) 
It follows from boundedness of F  that ( )ε γ,t  tends to 

zero as γ → +∞ , uniformly in [0 1]∈ ,t .  

The local polar coordinates for ( )γ;v t  are defined by  

),;(cos);(),('),;(sin);(),( γφγργνγφγργν tttttt ==
Where 

)0('
);(* );( ξγ

γργρ −= tt . 

     Therefore the angular function ( )φ γ;t  that satisfies  

            

φφφφ

γρ
φγε

φ

22

*

sin)(cos)(cossin)('

),(
sin),(')(

tqtptp

t
ttp

++

+−=

 (17) 
 tends to the angular function ( )θ t  uniformly in [0 1]∈ ,t  as 
γ → +∞ .  

Definition 3. We say that ( )δ;x t  is a neighboring 
solution of a solution ( )ξ t , if ( )δ;x t  solves the same quasi-
linear equation (4), satisfies the first boundary condition 

(0 ) 0δ; =x  and there exists 0ε >  such that (0 ]δ ε∀ ∈ ,  
(0 ) (0)δ ξ δ′ ′; = +x .  

In order to classify solutions of the quasi-linear problem 
(4), (3) we consider the difference between neighboring 
solution ( )δ;x t  and the investigated solution ( )ξ t , and 
make use of the local polar coordinates );( δρ t , ( )φ δ;t , 
defined by (13). So    

                   
),;0(cos);0()0(');0('

),;0(sin);0()0();0(0
δφδρξδδ

δφδρξδ
=−=

=−=
x
x

 

therefore (0 ) 0φ δ; =  and δδρ =);(t . 

Definition 4. We say that ( )ξ t  is an i -type solution of 
the problem (4), (3) if there exists 0ε >  such that 

(0 ]δ ε∀ ∈ ,  the angular function ( )φ δ;t , defined by 
formulas (13) for the difference between neighboring 
solutions and ( )ξ t , satisfies the inequalities   

  
( ) ( )

0 (1 ) if 0;
2

2 1 2 1
(1 ) , if 1, 2,3,...

2 2

πφ δ

π π
φ δ

< ; < , =

− +
< ; < =

i

i i
i

    (18) 

Main result for quasi-linear problem 

Theorem 2. If the linear part ( )2 ( )L x t  in the quasi-linear 
equation (4) is i -nonresonant with respect to the boundary 
conditions (3), then the problem (4), (3) has an i -type 
solution.  

Proof. Let ( )ξ t  be a solution ( )∗x t  with the maximum 
property, described in Lemma 3. Consider the difference 

( ) ( )δ ξ; −x t t  for small enough positive δ , where ( )δ;x t  is 
a neighboring solution for ( )ξ t .  

Suppose that ( )ξ t  is not an i -type solution. According 
to Definition 4 this means that there exists 0δ ∗ > , which 
satisfies the inequalities    

                   (2 1)(1 ) if 0 1 2
2

πφ δ ∗ +
; ≥ , = , , , ,

i i �  

Or 

                   (2 1)(1 ) if 1 2 3
2

πφ δ ∗ −
; ≤ , = , , ,

i i �  

Case 1. There exists a small positive 0δ  such that either 
( )

0

2 1
(1 )

2
π

φ δ
+

; =
i

 (for 0 1 2i �= , , , ) or ( )
0

2 1
(1 )

2
π

φ δ
−

; =
i

 

(for 1 2 3= , , ,i � ). In accordance with (13) we obtain    

                      
),;1(cos);0()1(');0('

),;1(sin);1()1();1(

000

000

δφδρξδ
δφδρξδ

=−
=−

x
x

  

then 

                        );1(cos);1();1(' 000 δφδρδ =x  
and therefore the neighboring solution 

( )0;δx t  solves the quasi-linear problem under 

consideration. This contradicts the choice of ( ) ( )ξ ∗=t x t .   

Case 2. There exists a small positive 1δ  such that 
( )

1

2 1
(1 )

2
π

φ δ
+

; >
i

 (for 0 1 2= , , ,i �) or ( )
1

2 1
(1 )

2
π

φ δ
−

; <
i

 

(for 1 2 3= , , ,i � ). Since the linear part ( )2 ( )L x t  is i -
nonresonant with respect to the boundary conditions (3), 
then by Lemma 5 there exists such 2 0δ >  that 2δ δ∀ ≥  the 
angular function ( )φ δ;t  of difference ( ) ( )δ ξ; −x t t  satisfies 
(18).  

Denote ( ) (1 )δ φ δ:= ;v , if 1 2[ ]δ δ δ∈ , . Function ( )δ;x t  
is a solution of quasi-linear equation (4) and is extendable 
(by Lemma 4) to the interval I  and continuously depends 
on δ , therefore function ( )δv  is continuous in the interval 

1 2[ ]δ δ, . Then there exists at least one value 3 1 2( )δ δ δ∈ ,  

such that 3(1 ) (mod )
2
πφ δ π; = . Similarly as in the Case 1 we 

obtain that 3( )δ;x t  is a solution of (4), (3) and ( )ξ t  is not a 
solution with the maximum property. 

Thus assumption is incorrect and therefore ( )ξ t  is an i -
type solution. 

III. SOLVABILITY OF NONLINEAR BOUNDARY VALUE PROBLEM 

Consider nonlinear problem (2), (3). 

Definition 5. Let the nonlinear equation (2) and quasi-
linear one (4) be equivalent in a domain  
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( ){ }1, , : 0 1, ,t x x t x N x N′ ′Ω = ≤ ≤ ≤ ≤      (19) 

for some constants N  and 1N  and a linear part ( )2 ( )L x t  is 
nonresonant with respect to the boundary conditions (3). If 
any solution ( )x t  of the quasi-linear problem (4), (3)  
satisfies the estimates  

                1( ) ( )′| |≤ , | |≤ ∀ ∈x t N x t N t I  

then we will say that the problem (2), (3)  allows for 
quasilinearization with respect to the linear part ( )2 ( )L x t  
and domain Ω .  

Lemma 6. If the problem (2), (3) allows for 
quasilinearization with respect to some linear part ( )2 ( )L x t  
and some domain Ω  given by (1) then the problem (2), (3) 
has a solution, which satisfies the estimate above.  

Proof. The proof is evident.  

Corollary. If the problem (2), (3) allows for 
quasilinearization with respect to some i - nonresonant 
linear part ( )2 ( )L x t  and some domain Ω  then there exists 
an i - type solution of the problem (2), (3). 

Remark 1. An i - type solution of the nonlinear boundary 
problem (2), (3) can be defined by analogy with Definition 4. 

Theorem 3. Suppose that the problem (2), (3) allows for 
quasilinearization with respect to Ω  and i - nonresonant 
linear part ( )2 ( )L x t , and, at the same time, it allows for 
quasilinearization with respect to a domain D   

( ){ }1, , : 0 1, ,D t x x t x M x M′ ′= ≤ ≤ ≤ ≤  

and j - nonresonant linear part 2( )( ) x t , where ≠i j . Then 
nonlinear problem (2), (3) has at least two different solutions.  

Proof. Suppose that nonlinear equation (2) is equivalent 
to quasi-linear one            

            ( ) Ω∈∀Φ= )',,()',,()(2 xxtxxttxL         (20) 
 and also is equivalent to another quasi-linear equation  

( ) .)',,()',,()(2 Dxxtxxttx ∈∀Ψ=        (21) 
Let ( )ξ t  be a maximal (in the sense of Lemma 3) 

solution of the quasi-linear problem (20), (3). Solution ( )ξ t  
satisfies  

1( ) ( )ξ ξ ′| |< , | |< ∀ ∈ .t N t N t I  

Let ( )η t  be a maximal solution of the quasi-linear 
problem (21), (3).  Solution ( )η t  satisfies  

1( ) ( )η η′| |< , | |< ∀ ∈ .t M t M t I  

 Both functions ( )ξ t  and ( )η t  solve nonlinear problem 
(2), (3). Suppose that ( ) ( )ξ η≡t t . 

Consider solutions ( )δ;x t  of  (2), whish satisfy the 
conditions  

  (0 ) 0 (0 ) (0) or (0 ) (0)δ δ ξ δ δ η δ′ ′ ′ ′; = , ; = + ; = + .x x x  

For small enough positive values of δ  these solutions 
satisfy the inequalities  

1( ) ( )δ δ′| ; |< , | ; |< , ∀ ∈ ,x t K x t K t I  

where { }min ,K N M= and { }1 1 1min ,K N M= ,  and thus 
they solve both quasi-linear equations (20) and (21). 
Therefore the angular function ( )φ δ;t  of difference 

( ) ( )δ ξ; −x t t  (or ( ) ( )δ η; −x t t ) satisfies the inequalities:  

(2 1) (2 1)(1 ) 1 2
2 2

π πφ δ− +
< ; < , = , , ,

i i i �  

 and at the same time,  

(2 1) (2 1)(1 ) 1 2
2 2

π ππ φ δ− +
< ; < , = , , ,

j j j �  

and ≠i j . The obtained contradiction shows that the 
solutions ( )ξ t  and ( )η t  are different. 

Remark. Theorem 3 is proved for a case 0≠i , 0≠j . 
Other cases can be treated similarly.  

IV. QUASILINEARIZATION WITH RESPECT TO THE LINEAR PART  

( ) ( )( ) : 2 2 2
2 ′= + mt mtdx t e x e k x

dt
 

In this section we show that the quasilinearization 
scheme works for certain classes of equations.  

Consider the second order Emden-Fowler type equation  

2 ( ) sgnpx m x g t x x′′ ′= − − ⋅ | | ,          (22) 

where  ( )0 (0 ) 0 1m g C I p p≠ , ∈ ; ,+ ∞ , > , ≠ ,  and 

                               
1 0

sgn 0 0
1 0

x
x x

x

, > ,
= , = ,
− , < ,

 

together with the boundary conditions under consideration 
(3). The given nonlinear equation (22) is equivalent to the 
equation 

2 22 ( ) sgnpx m x k x k x g t x x′′ ′+ + = − ⋅ | |  

or  

( ) ( )2 2 2 2 2 ( ) sgnm t m t m t pd e x e k x e k x g t x x
dt

′ + = − ⋅ | | .  (23) 

Suppose that 2 2k m> , then the following propositions 
are valid.  

Proposition 1. In a case 2 2k m>  the linear part 

( ) ( )2 2 2
2 ( ) mt mtdx t e x e k x

dt
′:= +  is nonresonant with respect 

to the boundary conditions (3) if  

2 2 2 2tanm k m k m− ≠ − .           (24) 
 Remark 2.  Assumption 2 2k m>  ensures an existence of 

oscillatory solutions to the equation ( )2 ( ) 0x t = .  

Denote 2 2r k m:= − .  

Proposition 2. If (24) holds then the Green’s function 
( )m kG t s, ,  for the problem ( )2 ( ) 0x t = , (3) exists in the 

form  
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( )

( )

( ) ( ) 0 1
( )

( ) ( ) 0 1

m t s

m k m t s

e v s u t t s
WG t s

e u s v t s t
W

− +

, − +

 ⋅ ⋅
, ≤ < ≤ ,, = 

⋅ ⋅ , ≤ < ≤ ,

    (25) 

 where  

( sin cos )W r m r r r= ⋅ − ,  
( ) sin( )u t rt= ,  

( )2 2( ) sin ( 1)v t m r r t ϕ= + − + ,  
where  

2 2
arcsin r

m r
ϕ = .

+
 

Notice that functions ( )u t  and ( )v t  can be estimated by 

2 2( ) 1 ( )u t v t m r k| |≤ , | |≤ + =| | .      (26) 
 Proposition 3. If k  and m  are such that r iπ= , 
1 2 3i �= , , , , then the linear part 

( ) ( )2 2 2
2 ( ) mt mtdx t e x e k x

dt
′:= +  is i -nonresonant with 

respect to the boundary conditions (3). 

We wish to make the right side in (23) bounded. Denote 
2( ) ( ) sgnp

kf t x k x g t x x, := − ⋅ | | . The function ( )kf t x,  is 
odd in x  for fixed t . Let us consider it for nonnegative 
values of x . There exists a positive local extremal point 0x  
(it is point of maximum for 1p >  and point of minimum for 
0 1p< < ),  

1
2 1

0 ( )

pkx
p g t

− 
= . ⋅ 

 

We can calculate the value of the function at the point 0x . 

 Set 

12 1
1

0( ) ( ) 1 ( )

p
p

p
k k

km t f t x p g t
p

−
− 

= , = ⋅ | − | ⋅ 
 

          (27) 

 and choose ( )kn t  so that  

( ) ( ) ( )k k kx n t f t x m t t I| |≤ ⇒ , ≤ , ∀ ∈ .  

 
Figure 1.  Existence of a number kn . 

Fig. 1 illustrates the case of 0 1p< <  for a fixed t t∗= . 

The value of ( )kn t  can be computed solving the equation  

0( ) ( )k kf t x f t x, = − , ,  
 or, equivalently,  

( )
12 1

2 1( ) 1 ( )

p
p

p pkk x g t x p g t
p

−
− 

− = ⋅ − ⋅ 
 

 

 with respect to x  for any fixed t . Computation gives that 
( )kn t  can be represented as  

1
2 1

( )
( )

p

k
kn t

g t
β

− 
= ⋅ , 

 
              (28) 

where a constant β  satisfies the equation  

1( 1)
p

p pp pβ β −= + − ⋅ .              (29) 
Equation (29) has a root 1β >  for any positive p  

( 1p ≠ ). 

Set  

[ ]{ }min ( ) : 0, 1 ,k kN n t t= ∈  

[ ]{ }max ( ) : 0, 1 .k kM m t t= ∈  

 One can consider the quasi-linear problem  

( )2 2 2 2 ( )mt m t mt
k

d e x e k x e F x
dt

′ + = ,         (30) 

 (3), where  

( )( ) ( )k k k kF x f N x Nδ:= − , ,  

and  

   { }max : .k kF x M∈ =R             (31) 

The problem (23), (3) is equivalent to the quasi-linear 
problem (30), (3) in the domain kΩ   

( ){ }, : 0 1, .k kt x t x NΩ = ≤ ≤ ≤  

The quasi-linear problem (30), (3)  can be rewritten in 
integral form, that is,   

( )
1

2

0

( ) ( ) ( )m s
m k kx t G t s e F s x s ds,= , ,∫ . 

Then it follows from  (25), (26), (31), that  

( )
m

kk e M
x t

W
⋅ ⋅

≤ , 

or  

                            ( )
sin cos

m
kk e M

x t
r m r r r

⋅ ⋅
≤

−
.                (32) 

If the inequality  

sin cos

m
k

k

k e M
N

r m r r r
⋅ ⋅

<
−
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holds then a solution of the quasi-linear problem is a solution 
of the original problem too. 

To simplify calculations, let 0k >  and cos 1r = ,  (that is, 
r nπ= ,  1 2n �= , , ). Then the latter inequality reduces to  

                                 2

m
k

k
k e M

N
r

| |⋅ ⋅
< .               (33) 

Theorem 4. Suppose that 1 20 ( )g g t g t I< ≤ ≤ ∀ ∈ . 
If the inequality  

  

3 1
2 2 12 1

1
2

2

( )
1

p
m p pge r m p

p gr
β

| | − − ⋅ +
< ⋅  | − |  

        (34) 

holds for some r iπ= , 1 2i �= , ,  where 1β >  is a root of 

the  equation 1( 1)
p

p pp pβ β −= + − ⋅  , then there exists an i -
type solution of the problem (22), (3).  

Proof. If r iπ= , 1 2 3i �= , ,  then accordingly to 
Proposition 3 and Theorem 2 the linear part 

( ) ( )2 2 2
2 ( ) mt mtdx t e x e k x

dt
′:= +  is i -nonresonant and 

quasi-linear problem (30), (3) has an i -type solution.  

If the inequality (33) holds for some value r iπ= , 
1 2i �= , ,  then a solution ( )x t  of the quasi-linear problem 

(30), (3) satisfies the estimate  

( ) [0 1]kx t N t| |< , ∀ ∈ ,  

and the original problem (22), (3) (or (23), (3)) allows for 
quasilinearization with respect to a domain kΩ  and a linear 
part ( )2 ( )x t  and therefore original problem has an i -type 
solution.  

Consider the inequality (33) supposing that ( )g t  satisfies 

1 20 ( )g g t g< ≤ ≤ .  

If 1p >  then  

12 1
1
1[0 1]

1
2 1

[0 1]
2

max ( ) 1

min ( )

p
p

p
kt

p

kt

km t p g
p

kn t
g

β

−
−

∈ ,

−

∈ ,

 
= ⋅ | − | ⋅ , 

 

 
= ⋅ ; 

 

        (35) 

 but in the case 0 1p< <   

12 1
1
2[0 1]

1
2 1

[0 1]
1

max ( ) 1

min ( )

p
p

p
kt

p

kt

km t p g
p

kn t
g

β

−
−

∈ ,

−

∈ ,

 
= ⋅ | − | ⋅ , 

 

 
= ⋅ . 

 

        (36) 

Hence the inequality (33) reduces to (34).  

Corollary. If a function ( )g t  is constant and r iπ= , for 
some 1 2i �= , , , then nonlinear problem (22), (3) is solvable 
if the inequality  

3
2 2 12

2

( )
1

p
m pe r m p

pr
β

| | −⋅ +
< ⋅

| − |
            (37) 

holds.  

In the Table I and Table II below the results of 
calculations are provided. For certain values of p  and m  
the values of r  in the form nπ , 1 2 3n �= , , ,  are given 
which satisfy the inequality (37). 

TABLE I.  NUMERICAL RESULTS FOR 0 1p< <  

 
3
2

m =
 

1m =  
1
2

m =  

1
3

m =  

3
4

p =  ------ π  , 2π π  , 2π π  

4
5

p =  ------ π  , 2 , 3π π π  , 2 , 3π π π  

5
6

p =  π  , 2π π  , 2 , 3π π π  , 2 ,
3 , 4
π π
π π  

6
7

p =  π  , 2π π  , 2 ,
3 , 4
π π
π π  

, 2 , 3 ,
4 ,5

π π π
π π  

7
8

p =  π  , 2 , 3π π π  
, 2 , 3 ,
4 ,5

π π π
π π  

, 2 , 3 ,
4 ,5 ,6
π π π

π π π  

… … … … … 

     

TABLE II.  NUMERICAL RESULTS FOR 1p >  

 
3
2

m =
 

1m =  
1
2

m =  

1
3

m =  

8
7

p =  π  , 2 , 3π π π  
, 2 , 3 ,
4 ,5

π π π
π π  

, 2 , 3 ,
4 ,5 ,6
π π π

π π π  

7
6

p =  π  , 2π π  , 2 ,
3 , 4
π π
π π  

, 2 , 3 ,
4 ,5

π π π
π π  

6
5

p =  π  , 2π π  , 2 , 3π π π  , 2 ,
3 , 4
π π
π π  

5
4

p =  ------ π  , 2 , 3π π π  , 2 , 3π π π  

4
3

p =  ------ π  , 2π π  , 2π π  

A. Example 

Consider the second order nonlinear boundary value 
problem  

1.225 sgn
(0) (1) 0

x x x x
x x

′′ ′= − − ⋅ ,

′= = .
            (38) 

It is a special case of the problem (22), (3), when 1.2p = , 
0.5m =  and ( ) const 25g t ≡ = . In accordance with 

calculations (see Table II) there exist at least three solutions 
of different types to the given problem (38). We have 
computed them.  

The problem (38) has the trivial solution 1( ) 0tξ ≡ , 
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which is an 1-type solution, because (0 3]δ∀ ∈ ,  an angular 
function ( )tφ δ;  of difference between neighboring solution 

( )x t δ;  and trivial one 1( )tξ  satisfies the inequality 
3(1 )

2 2
π πφ δ< ; < . This means that in the interval [0 1]t ∈ ,  a 

curve, which corresponds to a phase portrait of difference 
1( ) ( )x t tδ ξ; − , starting on a vertical axis crosses a horizontal 

axis exactly once (see Fig. 2 b).  

      
       a) b) 

Figure 2.  a) 1-type solution 1( ) 0tξ ≡  of (38);  b)  phase portrait of the  

difference 1( ) ( )x t tδ ξ; −  for [0 1]t ∈ ,  if 0 01δ = . .     

     
a) b) 

Figure 3.  a) 2 -type solution 2 ( )tξ  of (38);  b)  phase portrait of the  

difference 2( ) ( )x t tδ ξ; −  for [0 1]t ∈ ,  if 0 1δ = . . 

Fig. 3 illustrates another solution 2 ( )tξ  of the problem 
(38) with initial data 2 (0) 0ξ = , 2(0) 3 31615ξ ′ = . . This 
solution, actually, is a 2 -type solution, because 

(0 900]δ∀ ∈ ,  an angular function ( )tφ δ;  of difference 
between neighboring solution ( )x t δ;  and this one 2 ( )tξ  

satisfies the inequality 3 5(1 )
2 2
π πφ δ< ; <  (a curve of 

difference above crosses a horizontal axis exactly two times).  

Fig. 4 shows a 3 -type solution 3 ( )tξ  of the problem (38) 
with initial data 3 (0) 0ξ = , 3(0) 1027 5336ξ ′ = . . A curve of 
difference )();( 3 ttx ξδ − crosses a horizontal axis exactly 
three times. 

 

    
a) b) 

Figure 4.  a) 3 -type solution 3( )tξ  of (38);  b) phase portrait of the   

difference 3( ) ( )x t tδ ξ; −  for [0 1]t ∈ ,  if 0 1δ = . . 

V. CONCLUSIONS  

The nonresonant quasi-linear problem (4) has a specific 
solution which reflects the properties of the linear part on the 
left. The norms of a solution and its derivative can be 
evaluated using the respective Green’s function. The original 
problem (1) may be converted to a nonresonant quasi-linear 
problem of the form (4) so that both equations in (1) and (4) 
are equivalent in a compact region kΩ . If the graph of a 
solution of modified problem (4) is located in kΩ  then this 
solution solves also the original problem. If this quasi-
linearization technique can be successfully applied with 
different nonresonant linear parts then the original problem 
has multiple solutions. Additional information about the 
oscillatory types of solutions and their locations is obtained 
also. This is important for calculation purposes.  
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