EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 4, 2009, (564-573)

ISSN 1307-5543 - www.ejpam.com

On the Transformations Preserving Asymptotic Directions of Hypersurfaces in the Euclidean Space

Yasemin Alagöz* and Ziya Soyuçok

Department of Mathematics, Faculty of Science and Letters, Yildiz Technical University, Istanbul, Turkey

Abstract. We consider the transformations preserving asymptotic directions of hypersurfaces in n-dimensional Euclidean space and we obtain a system of equations which must be satisfied by transformations.

2000 Mathematics Subject Classifications: 53A05.

Key Words and Phrases: Hypersurfaces, asymptotic directions.

1. Introduction

In the Euclidean space, the projective transformation preserves the asymptotic lines of a surface [3]. In [4] the inverse of that problem is considered and it is obtained that the most transformation preserving the asymptotic lines of surfaces in 3-dimensional Euclidean space is the projective one. But that paper has very long

*Corresponding author.

Email addresses: ygulluk@yildiz.edu.tr(Y. Alagöz), zsoyucok@yildiz.edu.tr(Z. Soyuçok)

calculations and it seems very difficult to generalize for the n-dimensional space by using given method. Moreover, since it has some errors that transformation is not the general projective transformation [1].

In this paper, we consider the transformations which preserve the asymptotic directions of hypersurfaces in n-dimensional Euclidean space and we obtain a system of equations. The transformations must satisfy these equations system.

2. The Equation of the Asymptotic Directions of a Hypersurface

In the n-dimensional Euclidean space, a hypersurface can be expressed by the equation

$$\mathbf{r}(u^{1},...,u^{n-1}) = (x^{1}(u^{1},...,u^{n-1}), x^{2}(u^{1},...,u^{n-1}),...,x^{n}(u^{1},...,u^{n-1}))$$
(1)

where the metric of the space is given by

$$ds^{2} = (dx^{1})^{2} + (dx^{2})^{2} + \dots + (dx^{n})^{2}.$$
 (2)

We assume that $\mathbf{r}(u^1, u^2, \dots, u^{n-1})$ is a differentiable function of order 3 and the tangent vectors $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_{n-1}$ of the hypersurface are linearly independent where

$$\mathbf{r}_{,i} \equiv \frac{\partial \mathbf{r}}{\partial u^i}, \qquad (i = 1, 2, \dots, n-1).$$
 (3)

The first and second fundamental forms of the hypersurface are

$$I = g_{ij} du^i du^j, II = L_{ij} du^i du^j, (i, j = 1, 2, ..., n - 1)$$
 (4)

where

$$g_{ij} = \mathbf{r}_{,i}.\mathbf{r}_{,j} \tag{5}$$

$$L_{ij} = \mathbf{r}_{,ij}.\mathbf{N}, \qquad \left(\mathbf{r}_{,ij} \equiv \frac{\partial^2 \mathbf{r}}{\partial u^i \partial u^j}\right).$$
 (6)

566

Here N is the unit normal vector of the hypersurface, that is,

$$\mathbf{r}_{j}.\mathbf{N} = 0 \tag{7}$$

and

$$\mathbf{N}.\mathbf{N} = 1. \tag{8}$$

The differential equation of the asymptotic directions of the hypersurface is given by

$$L_{ij}du^idu^j = 0 (9)$$

[2, p.44] and [5, p.134].

The system (7) can be written as

$$\mathbf{A}\mathbf{N}^T = \mathbf{0} \tag{10}$$

where

$$\mathbf{A} = \begin{bmatrix} x_{,1}^{1} & x_{,1}^{2} & \cdots & x_{,1}^{n} \\ x_{,2}^{1} & x_{,2}^{2} & \cdots & x_{,2}^{n} \\ \vdots & \vdots & \cdots & \vdots \\ x_{,n-1}^{1} & x_{,n-1}^{2} & \cdots & x_{,n-1}^{n} \end{bmatrix}, \qquad \left(x_{,i}^{k} = \frac{\partial x^{k}}{\partial u^{i}} \right)$$
(11)

and

$$\mathbf{N} = (N_1, N_2, \dots, N_n). \tag{12}$$

Since the vectors

$$\mathbf{r}_{,i} = (x_{,i}^1, x_{,i}^2, \dots, x_{,i}^n), \qquad (i = 1, 2, \dots, n-1)$$
 (13)

are linearly independent, we can assume that

$$\Delta_{n} = \det \begin{bmatrix} x_{,1}^{1} & x_{,1}^{2} & \cdots & x_{,1}^{n-1} \\ x_{,2}^{1} & x_{,2}^{2} & \cdots & x_{,2}^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ x_{,n-1}^{1} & x_{,n-1}^{2} & \cdots & x_{,n-1}^{n-1} \end{bmatrix} \neq 0.$$
 (14)

567

Then from (10) and (8) we have

$$\mathbf{N} = \frac{1}{k} \left(\Delta_1, -\Delta_2, \dots, (-1)^{1+n} \Delta_n \right)$$
 (15)

where Δ_i is the determinant of the matrix which is obtained by omitting i^{th} column in the coefficients matrix **A** and

$$k = \sqrt{\Delta_1^2 + \Delta_2^2 + \ldots + \Delta_n^2}.$$
 (16)

Accordingly, from (6) we get

$$L_{ij} = \frac{1}{k} [x_{,ij}^1 \Delta_1 - x_{,ij}^2 \Delta_2 + \dots + (-1)^{1+n} x_{,ij}^n \Delta_n]$$
 (17)

and so

$$kL_{ij} = \det \begin{bmatrix} x_{,ij}^{1} & x_{,1}^{1} & x_{,2}^{1} & \cdots & x_{,n-1}^{1} \\ x_{,ij}^{2} & x_{,1}^{2} & x_{,2}^{2} & \cdots & x_{,n-1}^{2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ x_{,ij}^{n} & x_{,1}^{n} & x_{,2}^{n} & \cdots & x_{,n-1}^{n} \end{bmatrix}, \qquad \left(x_{,ij}^{k} = \frac{\partial^{2} x^{k}}{\partial u^{i} \partial u^{j}} \right).$$
(18)

Now for a hypersurface *S* let us choose the parameters as

$$u^{1} = x^{1}, u^{2} = x^{2}, \dots, u^{n-1} = x^{n-1}.$$
 (19)

Then, the equation of *S* becomes

$$\mathbf{r}(x^{1}, x^{2}, ..., x^{n-1}) = (x^{1}, x^{2}, ..., x^{n-1}, x^{n}(x^{1}, ..., x^{n-1}))$$
(20)

and from (18) we get

$$kL_{ij} = (-1)^{n+1} x_{,ij}^{n}. (21)$$

See also [2, p.36].

The differential equation of the asymptotic directions of S, from (9), is obtained as

$$x_{ij}^{n}dx^{i}dx^{j} = 0$$
 $(i, j = 1, 2, ..., n - 1).$ (22)

3. Conditions for a Transformation Preserving the Asymptotic Directions

Here we determine transformations preserving the asymptotic directions of a hypersurface. In the n-dimensional Euclidean space let us consider the coordinate transformation

$$T: y^a = y^a (x^1, x^2, ..., x^n), (a = 1, 2, ..., n).$$
 (23)

We assume that T is differentiable of order 3 and

$$\Delta = \det \begin{bmatrix} \mathbf{T}_{,1} & \mathbf{T}_{,2} & \cdots & \mathbf{T}_{,n} \end{bmatrix} = \begin{vmatrix} \mathbf{T}_{,1} & \mathbf{T}_{,2} & \cdots & \mathbf{T}_{,n} \end{vmatrix} \neq 0$$
 (24)

where

$$\mathbf{T}_{,b} = \begin{bmatrix} y_{,b}^1 \\ y_{,b}^2 \\ \vdots \\ y_{,b}^n \end{bmatrix}, \qquad \left(y_{,b}^a = \frac{\partial y^a}{\partial x^b}; \ b = 1, 2, \dots, n \right). \tag{25}$$

If the transformation T is applied to the hypersurface S which is defined by the equation (20), then we get

$$\mathbf{T}': y^{a} = y^{a} \left(x^{1}, x^{2}, \dots, x^{n-1}, x^{n} \left(x^{1}, x^{2}, \dots, x^{n-1} \right) \right). \tag{26}$$

So the transformation **T** transforms the hypersurface S to a hypersurface S^* which is given by the equation

$$\mathbf{r}^* \left(x^1, x^2, \dots, x^{n-1} \right) = \left(y^1, y^2, \dots, y^n \right)$$
 (27)

where

$$y^a = y^a(x^1, x^2, ..., x^{n-1}, x^n(x^1, x^2, ..., x^{n-1})), \qquad (a = 1, ..., n).$$

For the hypersurface S^* ,

$$k^*L_{ij}^* = \left| \begin{array}{cccc} \mathbf{T}_{,1}^{'} & \mathbf{T}_{,2}^{'} & \cdots & \mathbf{T}_{,n-1}^{'} & \mathbf{T}_{,ij}^{'} \end{array} \right|$$
 (28)

is obtained from (18), where

$$\mathbf{T}_{,i}^{'} = \mathbf{T}_{,i} + \mathbf{T}_{,n} x_{,i}^{n}, \quad \mathbf{T}_{,ij}^{'} = \mathbf{T}_{,ij} + \mathbf{T}_{,in} x_{,j}^{n} + \mathbf{T}_{,nj} x_{,i}^{n} + \mathbf{T}_{,nn} x_{,i}^{n} x_{,j}^{n} + \mathbf{T}_{,n} x_{,ij}^{n}, \tag{29}$$

and

$$\mathbf{T}_{,ij} = \begin{bmatrix} y_{,ij}^1 \\ y_{,ij}^2 \\ \vdots \\ y_{,ij}^n \end{bmatrix}, \qquad \left(y_{,ij}^a = \frac{\partial^2 y^a}{\partial x^i \partial x^j}; i, j = 1, 2, \dots, n-1 \right). \tag{30}$$

Using (29) and (30), from (28) we can write

and

$$k^*L_{ij}^* = \left| \begin{array}{ccc} \mathbf{T}_{,1}\mathbf{T}_{,2} \dots \mathbf{T}_{,n-1}\mathbf{T}_{,ij} \end{array} \right| + \left| \begin{array}{ccc} \mathbf{T}_{,n}\mathbf{T}_{,2} \dots \mathbf{T}_{,n-1}\mathbf{T}_{,ij} \end{array} \right| x_{,1}^n \\ + \left| \begin{array}{ccc} \mathbf{T}_{,1}\mathbf{T}_{,n} \dots \mathbf{T}_{,n-1}\mathbf{T}_{,ij} \end{array} \right| x_{,2}^n + \dots + \left| \begin{array}{ccc} \mathbf{T}_{,1}\mathbf{T}_{,2} \dots \mathbf{T}_{,n}\mathbf{T}_{,n-1}\mathbf{T}_{,ij} \end{array} \right| x_{,n-2}^n \\ + \left| \begin{array}{ccc} \mathbf{T}_{,1}\mathbf{T}_{,2} \dots \mathbf{T}_{,n-2}\mathbf{T}_{,n}\mathbf{T}_{,ij} \end{array} \right| x_{,n-1}^n + \left| \begin{array}{ccc} \mathbf{T}_{,1}\mathbf{T}_{,2} \dots \mathbf{T}_{,n-1}\mathbf{T}_{,nj} \end{array} \right| x_{,i}^n \\ + \left| \begin{array}{ccc} \mathbf{T}_{,n}\mathbf{T}_{,2} \dots \mathbf{T}_{,n-1}\mathbf{T}_{,nj} \end{array} \right| x_{,i}^n x_{,1}^n + \left| \begin{array}{ccc} \mathbf{T}_{,1}\mathbf{T}_{,n} \dots \mathbf{T}_{,n-1}\mathbf{T}_{,nj} \end{array} \right| x_{,i}^n x_{,2}^n \end{array}$$

$$+...+ \begin{vmatrix} \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n}\mathbf{T}_{,n-1}\mathbf{T}_{,nj} & x_{,i}^{n}x_{,n-2}^{n} \\ + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-2}\mathbf{T}_{,n}\mathbf{T}_{,nj} & x_{,i}^{n}x_{,n-1}^{n} + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-1}\mathbf{T}_{,in} & x_{,j}^{n}x_{,2}^{n} \\ + & \mathbf{T}_{,n}\mathbf{T}_{,2}...\mathbf{T}_{,n-1}\mathbf{T}_{,in} & x_{,j}^{n}x_{,1}^{n} + & \mathbf{T}_{,1}\mathbf{T}_{,n}...\mathbf{T}_{,n-1}\mathbf{T}_{,in} & x_{,j}^{n}x_{,2}^{n} \\ + ... + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-1}\mathbf{T}_{,in} & x_{,j}^{n}x_{,n-2}^{n} \\ + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-2}\mathbf{T}_{,n}\mathbf{T}_{,in} & x_{,j}^{n}x_{,n-1}^{n} + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-1}\mathbf{T}_{,nn} & x_{,i}^{n}x_{,j}^{n} \\ + & \mathbf{T}_{,n}\mathbf{T}_{,2}...\mathbf{T}_{,n-1}\mathbf{T}_{,nn} & x_{,i}^{n}x_{,j}^{n}x_{,1}^{n} + & \mathbf{T}_{,1}\mathbf{T}_{,n}...\mathbf{T}_{,n-1}\mathbf{T}_{,nn} & x_{,i}^{n}x_{,j}^{n}x_{,2}^{n} \\ + ... + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-2}\mathbf{T}_{,n}\mathbf{T}_{,nn} & x_{,i}^{n}x_{,j}^{n}x_{,n-2}^{n} \\ + & \mathbf{T}_{,1}\mathbf{T}_{,2}...\mathbf{T}_{,n-2}\mathbf{T}_{,n}\mathbf{T}_{,nn} & x_{,i}^{n}x_{,j}^{n}x_{,n-1}^{n} + \Delta.x_{,ij}^{n}. \end{cases}$$

$$(32)$$

The differential equation of the asymptotic directions of S^* , according to (9), is

$$L_{ij}^* dx^i dx^j = 0. (33)$$

In order that the transformation **T** transforms the asymptotic directions of the hypersurface S to the asymptotic directions of the hypersurface S^* it must transform the equation (22) to the equation (33). Accordingly, our conditions are

$$L_{ij}^* = t x_{.ij}^n \tag{34}$$

where *t* is an arbitrary function of the variables $x^1, x^2, ..., x^{n-1}$.

The equations (31) and (32) can be written as follows:

$$k^*L_{ii}^* = \Delta_0(ii) + \Delta_1(ii)x_{,1}^n + \Delta_2(ii)x_{,2}^n + \dots + \Delta_{n-1}(ii)x_{,n-1}^n$$

$$+2[\Delta_0(in) + \Delta_1(in)x_{,1}^n + \Delta_2(in)x_{,2}^n + \dots + \Delta_{n-1}(in)x_{,n-1}^n]x_{,i}^n$$

$$+[\Delta_0(nn) + \Delta_1(nn)x_{,1}^n + \Delta_2(nn)x_{,2}^n + \dots + \Delta_{n-1}(nn)x_{,n-1}^n](x_{,i}^n)^2$$

$$+\Delta.x_{,ii}^n$$
(35)

and

$$k^*L_{ii}^* = \Delta_0(ij) + \Delta_1(ij)x_{.1}^n + \Delta_2(ij)x_{.2}^n + ... + \Delta_{n-1}(ij)x_{.n-1}^n$$

$$+[\Delta_{0}(in) + \Delta_{1}(in)x_{,1}^{n} + \Delta_{2}(in)x_{,2}^{n} + ... + \Delta_{n-1}(in)x_{,n-1}^{n}]x_{,j}^{n}$$

$$+[\Delta_{0}(jn) + \Delta_{1}(jn)x_{,1}^{n} + \Delta_{2}(jn)x_{,2}^{n} + ... + \Delta_{n-1}(jn)x_{,n-1}^{n}]x_{,i}^{n}$$

$$+[\Delta_{0}(nn) + \Delta_{1}(nn)x_{,1}^{n} + \Delta_{2}(nn)x_{,2}^{n} + ... + \Delta_{n-1}(nn)x_{,n-1}^{n}]x_{,i}^{n}x_{,j}^{n}$$

$$+\Delta.x_{,ij}^{n}$$
(36)

where $\Delta_0(ab)$ denotes the determinant which is obtained by replacing the n^{th} column with $\mathbf{T}_{,ab}$ in the determinant Δ which is defined by (24), and $\Delta_k(ab)$ denotes the determinant which is obtained by replacing the n^{th} column with $\mathbf{T}_{,ab}$ and k^{th} column with $\mathbf{T}_{,n}$ in the determinant Δ . For example,

$$\Delta_2(44) = \left| \mathbf{T}_1 \mathbf{T}_n \mathbf{T}_3 \dots \mathbf{T}_{n-1} \mathbf{T}_{44} \right|.$$

The equations (34) must be satisfied by any hypersurface. So, using the quantities given by (35) in (34) we have the following conditions:

$$\Delta_1(nn) = 0, \Delta_2(nn) = 0, \dots, \Delta_{n-1}(nn) = 0,$$
 (37)

$$\Delta_0(ii) = 0, \Delta_1(ii) = 0, \dots, \Delta_{i-1}(ii) = 0, \Delta_{i+1}(ii) = 0, \dots, \Delta_{n-1}(ii) = 0,$$
(38)

$$\Delta_1(in) = 0, \Delta_2(in) = 0, \dots, \Delta_{i-1}(in) = 0, \Delta_{i+1}(in) = 0, \dots, \Delta_{n-1}(in) = 0,$$
 (39)

$$\Delta_i(ii) + 2\Delta_0(in) = 0, \quad \Delta_0(nn) + 2\Delta_i(in) = 0.$$
 (40)

From (37) and (38) we respectively get

$$\mathbf{T}_{,nn} = 2A_n \mathbf{T}_{,n} \tag{41}$$

and

$$\mathbf{T}_{,ii} = 2A_i \mathbf{T}_{,i} \tag{42}$$

and so

$$\mathbf{T}_{,bb} = 2A_b \mathbf{T}_{,b} \tag{43}$$

572

where $A_1, A_2, ..., A_n$ are arbitrary functions of variables $x^1, x^2, ..., x^n$.

Using (43) in (39) and (40), we have

$$\mathbf{T}_{in} = A_n \mathbf{T}_i + A_i \mathbf{T}_n. \tag{44}$$

Now let us use the quantities given by (36) in (34) which must be satisfied by any hypersurface. Then we have the following conditions:

$$\Delta_0(ij) = 0, \Delta_1(ij) = 0, ..., \Delta_{i-1}(ij) = 0, \Delta_{i+1}(ij) = 0,$$
(45)

...,
$$\Delta_{j-1}(ij) = 0$$
, $\Delta_{j+1}(ij) = 0$, ..., $\Delta_{n-1}(ij) = 0$

$$\Delta_i(ij) + \Delta_0(jn) = 0, \quad \Delta_i(ij) + \Delta_0(in) = 0, \tag{46}$$

$$\Delta_i(in) + \Delta_i(jn) + \Delta_0(nn) = 0 \tag{47}$$

and (37) and (39) again.

From (44) and (45), using (46) we get

$$\mathbf{T}_{,ij} = A_j \mathbf{T}_{,i} + A_i \mathbf{T}_{,j}. \tag{48}$$

The results (43), (44) and (48) can be expressed by a single equation as

$$\mathbf{T}_{,ab} = A_b \mathbf{T}_{,a} + A_a \mathbf{T}_{,b}, \qquad (a, b = 1, 2, ..., n).$$
 (49)

(47) is automatically satisfied by these results.

From (37) to (40) and from (45) to (47) all equations are satisfied by (49). Thus we have the following theorem.

Theorem 1. A transformation T which preserves the asymptotic directions of a hypersurface must satisfy the equations

$$\mathbf{T}_{,ab} = A_b \mathbf{T}_{,a} + A_a \mathbf{T}_{,b}, \qquad (a, b = 1, 2, ..., n)$$
 (50)

where $A_1, A_2, ..., A_n$ are arbitrary functions of variables $x^1, x^2, ..., x^n$.

REFERENCES 573

References

- [1] Y. Alagöz, Z. Soyuçok, A note "On transformation preserving asymptotic lines of surfaces in Three-Dimensional Euclidean Space". Bulletin of the Technical University of Istanbul. Submitted.
- [2] Y. Aminov, The Geometry of Submanifolds. Gordon and Breach Science Publisher, Amsterdam, 2001, p.36-45.
- [3] L. P Eisenhart, A Treatise on The Differential Geometry of Curves and Surfaces. Dover Publications, Inc., New York, 1960, p.202.
- [4] *F. Uras*, On transformation preserving asymptotic lines of surfaces in Three-Dimensional Euclidean Space. *Bulletin of the Technical University of Istanbul*. 48, 1: 165-179 (1995).
- [5] *C. E. Weatherburn*, *An Introduction to Riemannian Geometry and The Tensor Calculus*. Cambridge University Press, Cambridge, 1963, p.134.