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Abstract. In this paper, by using *—set [24] we introduce a new class of sets called 5*g—closed sets,
which is stronger than g—closed sets and weaker than closed sets. We define two new separation ax-
ioms called T, and 3**T, , spaces as applications of 3*g—closed sets. The notions 3*g—continuity
and f*g—irresoluteness are also introduced.
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1. Introduction and Preliminaries

To date, many studies have been made on closed sets and set concepts derived from this
set. The concept of g—closed sets was introduced by Levine [17] and was used to obtain a
Ty /5 space in which the closed sets and g—closed sets coincide. This natural generalization
of a closed set concept has made it possible to use the concept in many areas, especially in
quantum physics [13] and computer graphics [13-15]. The notion has been studied exten-
sively in recent years by many topologists. More importantly several new separations which
are between Tj and T, such as Ty, Ty, mgp — T1/5 and T34 are suggested. Some of these
have been found to be useful in computer science and digital topology (see [7, 12-15], for
example). As a brief literature review, related studies of g—closed sets can be summarized as
follows. Dontchev and Noiri [8] introduced the notion of rg—closed sets which are weaker
than that of g—closed sets. Kumar [16] defined the notion of g*-closed sets that are gener-
alizations of g—closed sets and introduced T;,, and “T;, spaces as applications of g*-closed
sets. Devi et al. [6] introduced and studied gs—closed and sg—closed sets which are weaker
than g—closed sets. Arya and Nour [1] gave some properties of s-normal spaces by using
gs—open sets. The notion of s-normal space was studied extensively by Noiri [20]. Zaitsev
[25] introduced the notions of 7-closed sets and guasi normal spaces.

Dontchev and Noiri [8] introduced the notion of tg-closed sets and obtained some theo-
rems in quasi normal spaces by using this notion. Of course, these studies of general topology
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are not limited with these [4,9-10].More recently, several topologists have defined new sepa-
ration axioms at topological space by giving some convenient definitions of variety. Park [21]
has introduced the class of mgp—closed sets which is weaker than gp—closed and stronger
than gpr-closed sets. Park and Park [22] further studied the class of mgp—closed sets and
defined the concepts mGP-compactness and mwGP-connectedness. Aslim et al. [2] have in-
troduced the notions of wgs—closed sets which are implied by that of gs—closed sets and
7gs — T1/5-spaces. On the other hand, recently Yuksel and Beceren [24] have defined the no-
tion of B*-set and established a decomposition of continuity. At this point, we shall introduce
and study the notions of $*g—closed sets which are situated between the class of closed sets
and g—closed sets. Using these sets, we introduce two new separation axioms called 3*T
and Ty /5. (Both 3*T;, and Ty, contain the class of Ty, spaces.) We show that the
class of 3T/, spaces is the dual of the class of f*T;,, spaces to the class of Ty, spaces.
We also introduce 3*g—continuity and 3*g—irresolute functions for preservation theorems.
It should be mentioned that the present work may be found relevant to work of Witten [23].

Throughout this paper, spaces (X, 7) and (Y, o) (or simply X and Y) always mean topo-
logical spaces on which no separation axioms are assumed unless explicitly stated. Let A be a
subset of a space X. The closure of A and the interior of A are denoted by CI(A) and Int(A),
respectively. A subset A is said to be locally closed (briefly, LC-set) [3] if A= U NV, where
U is open and V is closed. A subset A is said to be regular open (resp. regular closed) if
A = Int(CI(A) (resp. A = Cl(Int(A)). The finite union of regular open sets is said to be
m-open. The complement of a m-open set is said to be n-closed. A subset A is said to be
semiopen [5] if A C Cl(Int(A)) and the complement of a semiopen set is called semiclosed.
The intersection of all semiclosed sets containing A is called the semiclosure [5] of A and is
denoted by sCI(A). Dually the semiinterior [5] of A is defined to be the union of all semiopen
sets contained in A and is denoted by sInt(A). A subset A is said to be pre open [19] if
A C Int(CI(A)) and the complement of a pre open set is called pre closed. The intersection
of all preclosed sets containing A is called the preclosure [19] of A and is denoted by pCI(A).
Dually the preinterior [19] of A is defined to be the union of all pre open sets contained in
A and is denoted by pInt(A). Note that sCI(A) = AU Int(CI(A)), sInt(A) = AN Cl(Int(A)),
pCI(A) =AU Cl(Int(A)) and pInt(A) =ANInt(CIL(A)).

2. *g—-closed Sets

Definition 1. A subset A of a space (X, T) is called a generalized closed set (briefly, g—closed)
[17]if CI(A) C U whenever A C U and U is open. The complement of a g—closed set is called a
g—open set.

(a) a regular generalized closed set (for short, rg—closed) [8] if CI(A) C U whenever A C U
and U is regular open in X;

(b) g*-closed [16] if CI(A) C U whenever AC U and U is g—open;
(c) mg—closed [8]if CI(A) C U whenever AC U and U is m-open in X;
(d) gp—closed [18] if pCI(A) C U whenever AC U and U is open in X;
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(e) gs—closed [1]if sCI(A) C U whenever AC U and U is open in X;
() mgp—closed [21]if pCl(A) C U whenever AC U and U is m-open inX;
(g) mgs—closed [2]if sCI(A) C U whenever AC U and U is m-open in X;

(h) mgs—open (resp. g*-open, Tg—open, gp—open, Tgp—open, gs—open) if the complement
of Ais mgs—closed (resp. g*-closed, mg—closed, gp—closed, mgp—closed, gs—closed).

Definition 2. A subset A of a space (X,7) is called
(a) a f3*-set [24]if A=U NV, where U is open and Int(V) = Cl(Int(V)).
(b) B*g—closed if CI(A) € U whenever AC U and U is a 3*-set.
(c) B*sg—closed if sCl(A) C U whenever AC U and U is a 3*-set.
(d) *pg—closed if pCI(A) C U whenever AC U and U is a f8*-set.

(e) B*pg—open (resp. f*g—open, f*sg—open) if the complement of A is 5*pg—closed (resp.
B*g—closed, B*sg—closed).

The class of all f*g—closed subsets of (X, 7) is denoted by *GC(X, 7).
Levine [17] and Kumar [16] gave the following diagrams using some of the expressions,
respectively.

DIAGRAM I.
closed set — g—closed set — rg—closed set

DIAGRAM II.
closed set — g*—closed set — g—closed s

Furhermore, Aslim et al. [2] indicated that every gs—closed set is a mgs—closed set
and every mg—closed set is a mgs—closed set. They gave the following diagram using these
properties.

DIAGRAM III.
pre-closed — gp—closed — mgp —closed
T T T
m—closed — closed — g—closed — mg —closed
l ! l

semi-closed — gs—closed — mgs— closed

Remark 1. A LC-set is independent from a g—closed set as it can be seen from the next two
examples.
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Remark 2. Let X = {a,b,c} and T = {X,0,{a}}. Then {a} is a LC-set, but it is not a g—closed
set.

Remark 3. Let X = {a,b,c} and v = {X,0,{a}}. Then {a, b} is a g—closed set, but it is not a
LC-set.

Theorem 1. For a subset A of a topological space (X, T), the following are equivalent:
(a) Ais a LC-set.
(b) A=UNCI(A) for some U open set.
Proof.

(a) — (b): Since Ais a LC-set, then A= U NV, where U is open and V is closed. So,AC U
and A C V. Hence, CI(A) C CI(V). Therefore, ACUNCIA) CcUNCL(V)=UNV =A.
Thus, A= UNCIA).

(b) — (a): It is obvious because CI(A) is closed.

Theorem 2. For a subset A of a topological space (X, T), the following are equivalent:
(a) Ais closed.
(b) Ais a LC-set and g—closed.
Proof.
(a) — (b): This is obvious.

(b) — (a): Since A is a LC-set, then A= U N CI(A), where U is an open set in X. So, AC U
and since A is g—closed, then CI(A) C U. Therefore, CI(A) CUNCI(A) = A. Hence, A is
closed.

Theorem 3. Let (X, v) be a topological space. Then we have
(a) Every closed set is a 3*g—closed set.
(b) Every [3*g—closed set is a g—closed set.
Proof.
(a) This is obvious.

(b) Let Abe a f*g—closed set of (X,7) and A C U where U € 7. Since every open set is a
P*-set, so U is a f3*-set of (X, 7). Since Ais a f*g—closed set, we obtain that CI(A) C U,
hence A is a g—closed set of (X, 7).
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Remark 4. The converses of Theorem 3 need not be true as shown in the following examples.

Example 1. Let X = {a, b,c,d} and v = {X,0, {b}, {c},{a, b}, {b,c},{a, b,c},{a, b,d}}. Then
{a, b} is a B*g—closed set, but it is not a closed set.

Example 2. Let X = {a, b,c} and 7 = {X, 0, {a}, {c}, {a, b}, {a,c}}. Then {c} is a g—closed set,
but it is not a 8*g—closed set.

Theorem 4. Let (X, T) be a topological space. Then we have
(a) Every [3*g—closed set is a 3*pg—closed set.
(b) Every [3*g—closed set is a 3*sg—closed set.

Proof. This is obvious.

Remark 5. The converses of Theorem 4 need not be true as shown in the following examples.

Example 3. Let X = {a, b,c} and T = {X, 0, {a}, {c}, {a, b}, {a,c}}. Then {a, b} isa *pg—closed
set which is not a B*g—closed set.

Example 4. Let X = {a, b,c} and T = {X, 0, {a}, {c}, {a, b}, {b,c}}. Then {b,c}isa *sg—closed
set which is not a *g—closed set.

It can be expanded to the following diagram using Diagrams I, II and III

DIAGRAM IV,

n-closed — B*pg-closed —  gpclosed . mgp-closed

] ]
Ly o*-closed W

/

closed —— p*oclosed —= g-closed — mg-closed

¥ |
LC-set B*sg-closed ———= gs-closed —» mgs-closed

Remark 6. By the two examples stated below, we show that B*g—closed and g*-closed are
independent of each other.

Example 5. Let X = {a, b,c,d} and v = {X,0, {b}, {c},{a, b}, {b,c},{a, b,c},{a, b,d}}. Then
{a, b} is a B* g—closed set, but it is not a g*-closed set.

Example 6. Let X = {a, b,c} and 7 = {X, 0, {a}, {c},{a, b}, {a,c}}. Then {c} is a g*-closed set,
but it is not a 8*g—closed set.
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Remark 7. A 3*-set is independent from *g—closed as it can be seen from the next two exam-
ples.

Example 7. Let X = {a,b,c} and v = {X,0,{a}}. Then {a} is a B*-set, but it is not a
B*g—closed set.

Example 8. Let X = {a,b,c} and T = {X,0, {b}, {c}, {a, b}, {b, c}}. Then {a, b} is a f*g—closed
set, but it is not a 3*-set.

Theorem 5. If A is both B*-set and *g—closed set of (X, T), then A is closed.

Proof. Let A be both *-set and 3*g—closed set of (X, 7). Then CI(A) C A, whenever A is
a *-set and A C A. So we obtain that A= CI(A) and hence A is closed.
Proposition 1. If A and B are 3* g—closed sets, then AUB is 3*g—closed.

Proof Let AUB C U, where U is a 3*-set. Since A, B are $*g—closed sets, CI(A) € U and
CI(B) €U, whenever AC U, BC U and U is a 8*-set. Therefore,
CI(AUB) = CI(A)UCI(B) C U. Hence we obtain that AUB is a 3*g—closed set of (X, 7).

Remark 8. The intersection of two B*g—closed sets are not always a 3*g—closed set.

Example 9. Let X = {a, b,c,d} and v = {X,0, {b}, {c},{a, b}, {b,c},{a, b,c},{a, b,d}}. Then
{a,b} and {b,c} are B*g—closed sets, but {a, b}(){b,c} = {b} is not B*g—closed.

Theorem 6. If A is a 3*g—closed set of (X,7) such that A C B C Cl(A), then B is also a
B*g—closed set of (X, 7).

Proof. Let U be a *-set of (X, 7) such that B C U. Then A C U. Since A is 3*g—closed,
we have CI(A) C U. Now CI(B) C CI(CI(A)) = Cl(A) c U. Therefore, B is also a 3*g—closed
set of (X, 7).

Theorem 7. For any topological space (X, ), every singleton {x} of X is a 3*-set.

Proof Let x € X, If {x} € 7, then {x} isa B*-set [3]. If {x} & T,

then Int({x}) =0 = Cl(Int({x})), so {x} is a B*-set.
Corollary 1. For every x € X, {x} is a 3*g—closed set of (X, ) if and only if {x} is a closed set
of X.
Proof.
Necessity: Let {x} be $*g—closed. Then, by Theorem 7 {x} is closed.

Sufficiency: Let {x} be a closed set. By Theorem 3 {x} is 3*g—closed.

Theorem 8. Let A be *g—closed in (X, 7). Then CI(A) — A does not contain any non-empty
complement of a 3*-set.

Proof. Let A be a f*g—closed set. Suppose that F is the complement of a f3*-set and
F C CI(A)—A. Since FC CI(A)—ACX—-A, ACX —F and X —F is a 3*-set. Therefore,
CI(A)CcX —F and F C X — CI(A). However, since F C CI(A) —A, F =0.
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3. B*g—closures

In this section, the notion of the 8*g—closure is defined and some of its basic properties
are studied.

Definition 3. For a subset A of (X, T), we define the [3*g—closure of as follows:
B*g—CIlA) = ﬂ F is B*g—closed in X, AC F}.

Lemma 1. Let A be a subset of (X,7) and x € X. Then x € f*g — Cl(A) ifand only if VNA#
for every [3*g—open set V containing x.

Proof. Suppose that there exists a 3*g—open set V containing x such that VNA = 0.
SinceACX —V, *g — CI(A) C X — V and then x ¢ 8*g — CI(A). Conversely, suppose that
x ¢ B*g — CI(A). Then there exists a *g—closed set F containing A such that x ¢ F. Since
x€X—FandX —F is B*g—open, (X —F)NA=0.

Lemma 2. Let A and B be subsets of (X, ). Then we have
(@) B*g—Cl(@)=0and B*g — Cl(X)=X.
(b) IfAC B, then f*g — CIl(A) c B*g — CI(B).
(c) B*g—Cl(A)=p*g—Cl(p"g — Cl(A)).
(d) B*g—CI(AUB)=f"g — Cl(A)U B*g — CI(B).
(e) f*g—CI(ANB) c B*g —Cl(A)NB*g — CL(B).

Proof. Straightforward.

Remark 9.

(@) IfAis B*g—closed in (X, T), then B*g — CI(A) = A. but the converse is not true as seen by
the following example:

(b) In general, B*g — Cl(A)N B*g — ClL(B) £ B*g — CI(AN B). for example,

Example 10. Let X = {a, b,c,d} and T = {X,0, {b}, {c},{a, b},{b,c},{a, b,c},{a, b,d}}. Let
A= {b} then f*g — CI(A) = 3*g — CI({b}) = {b} but {b} is not *g—closed set.

Example 11. Let X = {a,b,c,d} and T = {X,0, {b}, {c},{a, b}, {b,c},{a, b,c},{a, b,d}}. Let
A={a,c} and B={a, b}. Then *g — Cl(A)Nn*g — CI(B) ={a,d} & {a} = *g — CI(ANB).

Definition 4. For a subset A of (X, T),
(@) c*(A)=({F: F is g—closed, AC F} : g-closure of A [18];

(b) mg—cl(A)=({F : F is ng—closed, AC F} : mg—closure of A [11].
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Definition 5. For a topological space (X, 7),

() ct"={UcCX:c*"X-U)=X-U)} [18];

b prr={UcX:fg—cdX-U)=X-U}

(0 ngtr={UcCcX:ng—clX-U)=X-U)} [11];
Proposition 2. For a subset A of (X, T), the following statements hold:

(a) Ac mg —cl(A) C c*(A) c B*g —cl(A).

(b)) tCpr*cett CcmgT™

Proof. The proof follows from definitions.

Definition 6. A topological space (X, ) is said to be
(a) Ty, space [17] if every g—closed set is closed.
(b)) T; /o space [16] if every g*-closed set is closed.
(c) *Ty/y space [16] if every g—closed set is g*-closed.
Theorem 9. Let (X, T) be a space. Then
(a) Every g—closed set is closed (i.e. (X,7)is Ty/p) if and only if ct* = 7.
(b) Every [3*g—closed set is closed (i.e. (X,7)is *Ty/) if and only if 7™ = 7.
(c) Every g—closed set is 3*g—closed (i.e. (X,7)is f**Ty5) if and only if ct* = B7™.
Proof.

(a) Let A€ ct*. Then ¢*(X —A) = (X — A). By hypothesis, CI(X —A)=c* (X —A)=X—-A
and hence A € 7. Conversely, let A be a g—closed set. Then c¢*(A) = A and hence
X —Acct*=1,1ie. Ais closed.

(b) LetAe€ B1*. Then *g — cl(X —A) = X — A and by hypothesis,
ClX—-A)=p*g—cl(X—A)=X —A. Hence Ae 7.

(c¢) Similar to (a).

Definition 7. A topological space (X, 7) is called a 3Ty /5 space if every 3* g —closed set is closed.

Theorem 10. A topological space (X,7) is * T, if and only if each singleton of X is open or
X — {x} is a B*-set for each x € X.

Proof.
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Necessity: Let x be a point of X. Suppose that X — {x} is not a f*-set. Then X — {x} is
B*g—closed. Since (X, 7) is f*Ty /5 , X — {x} is closed and thus {x} is open in (X, 7).

Sufficiency: Suppose that A is 5*g—closed. We shall show that CI(A) C A. Let x be any
point of CI(A). Then {x} is open in (X, 7) or X — f3*-set.

(i) In case {x} is open: Since x € CI(A), {x} NA # 0 and hence x € A.

(ii) Incase X —{x}isa f3*-set: By Theorem 8, CI(A)—A does not contain any nonempty
complement of a 3*-set. Therefore, x ¢ CI(A) —A but x € CI(A). Thus, x € A.

By (i) and (ii), we obtain CI(A) C A and hence A is closed.

Theorem 11. Every Ty, space is a 3Ty 5 space.

Proof. Let (X, 7) be a Ty, space and A a 3*g—closed set of (X, 7). By Theorem 3, Ais a
g—closed set of (X, 7). Since X is a Ty, space, A is closed. Therefore, X is a f*T;/, space.

Definition 8. A topological space (X, T) is called a 3**T; 5 space if every g—closed set is 3*g—closed.
Theorem 12. Every Ty, space is a Ty /5 space.

Proof. Let (X, 7) be a T, space and A a g—closed set of (X, 7). Since X is a T/, space, A
is closed. By Theorem 3, Ais a 3*g—closed set of (X, 7). Therefore, X is a 3T, /, space.

Theorem 13. A space (X, 7) is Ty, space if and only if it is Ty /5 and BTy ,.
Proof.
Necessity: It follows from the Theorems 11 and 12.

Sufficiency: Suppose that X is both 3*T;/, and ™ T;/,. Let A be a g—closed set of X.
Since X is 3Ty ,, then A is f*g—closed. Since X is a 3*T;/, space, then A is a closed
set of X. Thus X is a Ty, space.

4. f*g—open Sets

Theorem 14. Let (X, 7) be a topological space. A C X is 3*g—open if and only if F C Int(A)
whenever X — F is a 3*-set and F C A.

Proof.

Necessity: Let A be *g—open. Let X — F be a f*-setand F CA. ThenX —ACX —F
where X — F is a f3*-set. f*g—closedness of X — A implies CI(X —A) € X — F. So
F C Int(A).
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Sufficiency: Suppose X —F is a $*-setand F C Aimply F C Int(A). Let X —A C U where
Uisa f*-set. ThenX —U C Aand X — (X —U) is a f*-set. By hypothesis X —U C Int(A),
That is X —Int(A) C U and CI(X —A) C U. So, X —Ais 3*g—closed and A is $*g—open.

Theorem 15. If A is a B*g—open set of (X, T) such that Int(A) C B C A, then B is also a
B*g—open set of (X, T).

Proof. This is an immediate consequence of Theorem 6.

Definition 9. A function f : (X,7) — (Y, 0) is said to be
(a) B*g—openif f(V)is B*g—openinY for every open set V of X.
(b) *g—closed if f(F)is B*g—closed in Y for every closed set F of X.
(c) B*g—preserving (resp. contra 8*g—open) if f (F) is B*g—closed (resp. 3*g—closed) in Y
for every [3*g—closed (resp. open) set F of X.

5. *g—continuity and f8*g—irresoluteness
Definition 10. A function f : (X,7) — (Y, o) is said to be

(a) m-continuous [9] (resp. mg—continuous [8], mgp-continuous [22], wgs-continuous [2]) if
fYF) is m-closed (resp. mg—closed, mgp—closed, mgs—closed) in (X, 7) for every closed
set F of (Y,0);

(b) LC-continuous [4] if f ~X(F) is a LC-set in (X, T) for every closed set F of (Y,o);
(c) g*-continuous [17]if f ~1(F) is g*-closed in (X, 7) for every closed set F of (Y, 0);

(d) g—continuous [18] (resp. gp-continuous [19], gs-continuous [1]) if f 1(F) is g—closed
(resp. gp—closed, gs—closed) in (X, 7) for every closed set F of (Y, o).

Definition 11. A function f : (X,7) — (Y,0) is said to be 3*g—continuous (resp.
B*gp-continuous, 3*gs-continuous) if f ~*(F) is B*g—closed (resp. B*gp—closed, B*gs—closed)
in (X, ) for every closed set F of (Y, o).

Definition 12. A function f : (X,7) — (Y, 0) is said to be B*g—irresolute (resp. f3*-irresolute)
if f~Y(V)is B*g—closed (resp. B*-set) in X for every B*g—closed (resp. B*-set) set V of Y.

Definition 13. A function f : (X,7) — (Y,0) is said to be perfectly B*g—continuous (resp.
strongly B*g—continuous) if f ~(V) is clopen (resp. open) in (X, ) for every 3*g—open set V
of (Y,o).

Definition 14. A function f : (X,7) — (Y, o) is said to be almost 3*g—continuous if f ~*(V) is
B*g—open in (X, ) for every regular open set V of (Y, o).
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Definition 15. A function f : (X,7) — (Y, 0) is said to be contra f3*g—continuous if f ~*(V) is
B*g—closed in (X, 7) for every open set V of (Y, o).

Theorem 16. For a function f : (X,7) — (Y, 0), the following properties are equivalent:
(a) f is continuous,
(b) f is LC-continuous and g—continuous.
Theorem 17. For a function f : (X,7) — (Y, 0), the following properties are hold:
(a) If f is continuous, then f is 3*g—continuous.
(b) If B* g—continuous, then f is g—continuous.
Theorem 18. Let (X, T) be a topological space. Then we have
(a) If f is B*g—continuous, then f is 8*pg—continuous.
(b) If f is B*g—continuous, then f is 8*sg—continuous.

Theorem 19. For a function f : (X,t) — (Y, 0), the following properties hold:

Figure 1: *DIAGRAM 1V (repeated).

n-closed — B*pg-closed —  gpclosed . mgp-closed

[ ] f ]
| /.v g*-closed \ W

closed —— p*oclosed —= g-closed — mg-closed

| |
LC-set B*sg-closed ———= gs-closed —» mgs-closed

Proof. Obvious by Diagram 4.

Theorem 20. If f : (X,7) — (Y,0) is a 3*-irresolute and closed function, then f (A) is 3*g—closed
in Y for every B*g—closed set A of X.

Proof. Let A be any [3*g—closed set of X and U be any f8*-set of Y containing f (A). Since
f is B*-irresolute, f ~}(U) is a B*-set in X and A € f ~*(U). Therefore, we have
Cl(A) c f~Y(U) and hence f(CI(A)) C U. Since f is closed, CI(f(A)) € f(CI(A)) C U. Hence
f(A)is B*g—closed in Y.

The composition of two 3*g—continuous functions need not be *g—continuous. For,
consider the following example:
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Example 12. Let X = {a, b,c,d}, T ={X,0,{b},{c},{b,c}},0 ={X,0,{a, b,d}},
n=1{X,0,{a,d}}. Define f : (X,7) = (X,0) by f(a)=a, f(b)=c, f(c)=b, f(d)=d and
g§: X,0) = (X,n) by gla) = d, g(b) =c¢, glc) =Db, g(d) = a Then f and g are
B*g—continuous. {b,c} is closed in (X, n).
(gof)'(b,e) = f~1 (g~ ({b,c})) = £ ~'({b,c}) = {b,c} which is not f*g—closed in (X, 7).
Hence g o f is not [3*g—continuous.
Theorem 21. Let f : (X,7) — (Y,0)and g : (Y,0) — (Z,n) be any two functions. Then

(a) gof is 3*g—continuous, if g is continuous and f is 8*g—continuous.

(b) gof is f*g—irresolute, if g is B*g—irresolute and f is B*g—irresolute.

(c) gof is B*g—continuous, if g is B*g—continuous and f is 3*g—irresolute.

(d) gof is B*g—continuous, if f is f*g—continuous and g is B*g—continuous and Y is a
3" T /2-space.
Proof.

(a) Let V be closed in (Z,n). Then g (V) is closed in (Y,0), since g is continuous.
B*g—continuity of f implies that f~*(g~!(V)) is B*g—closed in (X, 7). Hence go f
is B*g—continuous.

(b) Let V be B*g—closed in (Z,n). Then g~!(V) is B*g—closed in (Y,0), since g is
B*g—irresolute. Since f is 3*g—irresolute, f “}(g~1(V))is B*g—closed in (X, 7). Hence
gof is B*g—irresolute.

(c) Let V be closed in (Z,n). Since g is 3*g—continuous, g~ (V) is B*g—closed in (Y, o).
As f is B*g—irresolute, f "1(g~1(V))is B*g—closed in (X, 7). Hence gof is 3*g—continuous.

(d) LetV beclosed in (Z,n). Then g~!(V)is f*g—closed in (Y, o), since g is 8*g—continuous.
As(Y,o0)is a BT, space, g }(V)is closed in (Y, o). B*g—continuity of f implies that
F g H(V))is B*g—closed in (X, 7). Hence g o f is f*g—continuous.

Theorem 22. Let f : (X,7) — (Y,0) be a 3*g—continuous function. If (X,7) is a f*-Ty»
space, then f is continuous.

Proof Let f be a 3*g—continuous function. Then f (V) is a f*g—closed set of X for
every closed set V of Y. Since X is a 3T, space, B*GC(X,7) = C(X, 7). Hence, for every
closed set V of Y, f~}(V) is a closed set of X and so f is continuous.

Theorem 23. Let f : (X,7) — (Y,0) be onto, 3*g—irresolute and closed. If (X,7) is a Ty,
space, then (Y, o) is also a 3Ty 5 space.

Proof. Let F be any 3*g—closed set of Y. Since f is f*g—irresolute, f ~*(F) is 8*g—closed
in X. Since X is 3*Ty 5, F~Y(F) is closed in X and hence f(f '(F)) = F is closed in Y. This
shows that (Y, o) is also a 3% T, space.
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