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Elliptic Curves and Pythagorean Triples
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Abstract. The aim of this paper is to study the family of elliptic curves of the form

y2 = x(x − a2)(x − b2),

where (a, b, c) is a primitive Pythagorean triple. First we show that the rank is positive. Then we
construct some subfamilies with rank ≥ 2 by different methods.
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1. Introduction

An elliptic curve E over the rational field Q is a curve that is given by

Y 2 = X 3 + aX 2 + bX + c, a, b, c ∈Q, (1)

with the condition that the polynomial X 3 + aX 2 + bX + c has no multiple zeroes. Mordell
proved that on an elliptic curve over Q, the rational points form a finitely generated abelian
group which is denoted by E(Q) [2]. Here we can apply the structure theorem for the finitely
generated abelian groups to E(Q) to obtain a decomposition of E(Q) ' Zr × E(Q)tors, where
r is an integer called the rank of E and E(Q)tors is the finite abelian group consisting of all
elements of finite order in E(Q).

In 1976, Barry Mazur proved the following seminal result [4]. The torsion group E(Q)tors
of any elliptic curve E over Q is one of the following 15 types. Moreover, each of these cases
occurs for infinitely many curves E over Q.

¨

Z/mZ m= 1,2, 3, . . . , 10, 12,

Z/2Z×Z/mZ m= 2,4, 6,8.
(2)

This shows that E(Q) cannot contain a point of order 11, nor of any order n≥ 13.
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On the other hand, it is not known which values of r are possible. The current record is
an example of elliptic curve over Q with r ≥ 28 found by Elkies in May 2006.

In this paper, we first introduce a family of elliptic curves over Q of the form

y2 = x(x − a2)(x − b2),

where, (a, b, c) is a pythagorean triple and show that they have positive ranks. In section
2, we briefly describe the construction of this family and show that its the torsion group is
Z/2Z×Z/2Z. Then we prove that it has positive rank. Finally by using by MRANK program
[1], we can find some curves with rank 5. In section 3, we describe a method to find a subfamily
with rank ≥ 2. The resulting subfamily corresponds to the points of a specific elliptic curve
having positive rank too. Finally in section 4, by letting a = t2 − 1, b = 2t, and c = t2 + 1
as functions of the rational parameter t, we study the family as a parameter family and show
that it has a subfamily of rank ≥ 2. By this method we can find 4 curves of rank equal to 6.

Remark 1. If s is any nonzero rational number, then replacing (a, b, c) by (sa, sb, sc), one has
(sa)2 + (sb)2 = (sc)2 (but possibly these numbers are rational rather than integral), and the
corresponding elliptic curve

y2 = x(x − (sa)2)(x − (sb)2),

is over Q isomorphic to the original one. The isomorphism is given by (x , y) → (s2 x , s3 y). In
particular this implies that it is not necessary to demand that the pythagorean triple is primitive.
Whenever it is convenient in some proof, we can assume the triple to be primitive, without loss of
generality.

Our main motivation for the study of this family is its similarity with the well-known Frey
curves of the form

y2 = x(x − a2)(x + b2) (3)

with a2 + b2 = c2.

2. Results About The New Family of Curves

A primitive pythagorean triple is a triple of nonzero integers (a, b, c) so that a, b, and c
have no common divisors and satisfy the relation a2 + b2 = c2. In general, we can generate
(a, b, c) by the following relations:

a = i2 − j2, b = 2i j, c = i2 + j2, (4)

where gcd (i, j) = 1, and i, j have opposite parity.
Throughout, we focus on the elliptic curves of the form

y2 = x(x − a2)(x − b2), (5)

where (a, b, c) is a primitive pythagorean triple.
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Lemma 1. Let E be given by y2 = x3 + ax2 + bx + c and P = (x , y) ∈ E(Q). Then P has order
2 if and only if y = 0.

Proof. Please see [10, page 77].

Lemma 2. The elliptic curve defined by (5) has three points of order 2.

Proof. It is clear that the points P1 = (0,0), P2 = (a2, 0), P3 = (b2, 0) are of order 2. Then
E(Q)[2]' Z/2Z×Z/2Z .

We wish to show the torsion group of (5) is Z/2Z×Z/2Z. So we have to prove that there
are no points of order 4, 6, and 8. In order to show that the above family has no point of order
4, we need the following theorem.

Theorem 1. Let E be an elliptic curve defined over a field F by the equation

y2 = (x −α)(x − β)(x − γ) = x3 + ax2 + bx + c,

where Char(F) 6= 2. For (x ′, y ′) ∈ E(F), there exists (x , y) ∈ E(F) with 2(x , y) = (x ′, y ′), if and
only if x ′ −α, x ′ − β , and x ′ − γ are squares.

Proof. See [2, Theorem 4.1, page 37].

Applying this theorem to our family, we get the following result.

Proposition 1. The elliptic curve in the form (5) does not have any points of order 4.

Proof. Let P = (x , y) ∈ E(Q) be such that 4P = O . Then one of following cases must be
true:

2P = (0,0), 2P = (a2, 0), 2P = (b2, 0).

If 2P = (0, 0), then −a2 and −b2 are squares which are contradiction.
Let 2P = (a2, 0), then a2 − b2 is a square. So we have, a2 − b2 = d2 for some d ∈ Z and

a2+ b2 = c2. Therefore ( a
b )

2−1= ( d
b )

2 and ( a
b )

2+1= ( c
b )

2. This means that 1 is a congruent
number again a contradiction. The case 2P = (b2, 0) is similar.

Corollary 1. There is no points of order 8 on (5).

The following proposition is also necessary.

Proposition 2. The elliptic curve in the form (5) does not have any points of order 6.

Proof. By interchanging a and b if necessary, one may assume a2 < b2. Then after one
replaces x by x + b2, the elliptic curve E is given by

y2 = x(x + b2)(x + b2 − a2).
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Applying a result of Ono [5, Main Theorem 1] to this equation, it follows that E(Q) contains
a point of order 6 iff A, B ∈ Z exist satisfying

¨

A4 + 2A3B = b2;

B4 + 2B3A= b2 − a2.

Recall that without loss of generality we can assume (a, b, c) to be a primitive pythagorean
triple. Then only two possibilities may occur:

if b is even, then a is odd, and modulo 4 the above system looks like
¨

A4 + 2A3B ≡ 0 (mod 4);
B4 + 2B3A≡ −1 (mod 4).

this is impossible since it implies that A is even and hence −1 would be a square modulo 4.
Similarly, if b is odd, then a is even since otherwise a2+ b2 cannot be a square. Hence one

obtains the system
¨

A4 + 2A3B ≡ 1 (mod 4);
B4 + 2B3A≡ 1 (mod 4)

implying that both A and B are odd. So it would follow that 1+2≡ 1 (mod 4) which is again
a contradiction.

Now the following corollary is immediate.

Corollary 2. E(Q)tors is isomorphic to Z/2Z×Z/2Z.

Theorem 2. For each pythagorean triple (a, b, c), the elliptic curve y2 = x(x − a2)(x − b2) has
a positive rank.

Proof. It suffices to consider the point Q = (c2, abc) on (5). Clearly Q 6∈ {P1, P2, P3,O } and
so it is a point of infinite order.

After searching through 202,461 curves with i, j ≤ 1000, we found 53 curves of rank
5. The first curve with rank 5 is generated with (i, j) = (65, 58) and its generators are the
following:

P1 =[57564577194761/1008016,29006793653594700125/1012048064],

P2 =[165532287616200/2745649,505394258095121556600/4549540393],

P3 =[6192906993/64,311795186829399/512],

P4 =[24834332880/121,3321719539155360/1331],

P5 =[341015696,5742307020800].
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3. Subfamily of Rank ≥ 2

In this section, we consider a subfamily of (5) having rank ≥ 2. To do this, let the point
R= (2a2, y0) be on (5). We are going to show that the points Q and R are independent.

If R= (2a2, y0) be on (5), then we have y2
0 = 2a4(2a2 − b2). This implies that

2a2 − b2 = 2k2 (k ∈ Z) or equivalently

u4 − 4u2 + 1= v2, (6)

where u= i/ j (or u= j/i) and v = k/ j2 ( or v = k/ j2). From (6) one can easily get an elliptic
curve of the form

y2 = x3 − 4x2 − 4x + 16= (x + 2)(x − 2)(x − 4). (7)

This elliptic curve has a group of rational points isomorphic to

Z× (Z/2Z)× (Z/2Z).

The group of rational points is generated by the torsion points (±2, 0) together with the point
of infinite order T = (0, 4). For each n ∈ N we have point (xn, yn) = nT on (7), which
corresponds to a point (un, vn) on (6) (see [10, section 2.17, p. 37]) by

un =
±2(xn − 4)

yn
, vn =

∓(2− u2
n xn)

2
. (8)

This turn in gives rise to some particular values of (i, j, k) two points of the forms (c2, abc)
and (2a2, 2a2k) on (5) where k is dependent on i, j.

In the next step, showing that these two points ((i2 + j2)2, 2i j(i4 − j4)) and
(2(i2 − j2)2, 2(i2 − j2)2k) are independent.

Now we are going to find a value of n and the corresponding (i, j, k) such that these two
points be independent. For n = 2 and consequently (i, j, k) = (15,4, 191) , we obtain the
elliptic curve

y2 = x3 − 58081x2 + 629006400x ,

and the points

P = (58081, 6044280),

Q = (87362, 16686142).

By using the SAGE software [6], we see that the associated height matrix has non-zero de-
terminant 50.3755 showing that the points are independent. So the specialization result of
Silverman implies that for all but finitely many rational numbers, the specialized curve also
has rank at least 2. In the following we have listed some curves of this type with rank ≥ 2.
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Table 1: Some curves with rank≥ 2.

nT (i, j) curve rank

3T (442, 161) y2 = x3 − 48967051225x2

+581572076457241803024x 2≤ rank ≤ 4

4T (50369,22920) y2 = x3 − 9378064455014478721x2

+21574787239992360293550097486811193600x 2≤ rank ≤ 3

5T (21771082,2706401) y2 = x3 − 231654135138249459108043425625x2

+3024105303624698175500634675177804 2≤ rank ≤ 4
1508758565300431760173584x

4. General Case

We began the paper with the equation a2+ b2 = c2, which can be regarded as the defining
equation of a rational curve B in P2, defined over Q. The curve B parameterizes a family of
cubic curves, given as y2 = x(x − a2)(x − b2). These curves are elliptic, except over 8 points
of B, namely over (1 : ±1 : ±

p
2) and (0 : 1 : ±1) and (1 : 0 : ±1). The curve B is isomorphic

to P1; the isomorphism is presented in (4):

P1 ' B : (i : j) 7−→ (i2 − j2 : 2i j : i2 + j2).

With t := i/ j as a coordinate function on P1, this allows to write the family of cubics as

y2 = x(x − (t2 − 1)2)(x − 4t2). (9)

This equation corresponds to an elliptic surface π : E → P1 defined over Q, or equivalently,
an elliptic curve E over the rational function field Q(t). The surface E is a so-called K3-
surface. From Tate’s algorithm one calculates that of the 8 singular fibers of π, 4 are of type
I4 and the other 4 are of type I2. Moreover one finds two points in E(Q[

p
−2](t)) namely

S1 := ((t2 + 1)2, 2t(t4 − 1)) and S2 := (−4t2, 4t(t + 1)
p
−2). Note that S1 specializes to the

point Q used in the proof of the Theorem 2. A standard intersection calculation [9] shows that
S1 and S2 are linearly independent. Using the Shioda-Tate formula for π : E → P1 and the fact
that E is K3, it follows that

20≥ 2+ 4 · 3+ 4 · 1+ rank(E(Q[
p
−2](t)))≥ 20,

hence
rank(E(Q[

p
−2](t))) = 2.

The nontrivial element σ ∈ Gal(Q[
p
−2]/Q) satisfies σ(S1) = S1 and σ(S2) = −S2. As a

consequence, the +1-eigenspace of σ, i.e., the subgroup E(Q(t)), has rank 1. Silverman’s
specialization result implies that for all but infinitely many specialization of t to a rational
number, the specialized elliptic curve over Q obtained in this way has positive rank as well.
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Theorem 2 shows that in fact a stronger assertion is true: whenever this specialization defines
an elliptic curve (so, for all rational t0 6= {0,±1}), the rank is positive. It is interesting to
remark that E provides an example of a so-called singular K3-surface defined over Q: one
such that the Picard number attains the maximal value 20. However, this value 20 is only
attained over an extension of Q; a small calculation shows it is the extension Q[

p
2,
p
−2].

More on such singular K3’s over Q can be read in [7].
To obtain larger ranks over Q one now applies base changes. This idea is well known;

for example, it was used in [3]. A simple explanation is that one replace the field Q(t) by a
finite extension Q(C), the function field of some curve C defined over Q. If E(Q(C)) has rank
r, then the same specialization result of Silverman implies that for all but only finitely many
rational points on C , the specialized curve also has rank at least r. In particular, this can only
be used for constructing infinitely many specializations with high rank, of the curve C contains
infinitely many rational points.

If one wants a point in E(Q(C)) with x-coordinate equal to 2(t2 − 1)2, one needs that

2(2(t2 − 1)2 − 4t2) = 4t4 − 16t2 + 4,

is a square, say = s2. The equation s2 = 4t4 − 16t2 + 4 defines a curve C1 of genus 1 with
infinitely many rational points, namely this is the example discussed in Section 3. The two
points S1 (defined earlier) and

S3 := (2(t2 − 1)2, (t2 − 1)2s)

are independent in E(Q(C1)), since their images after a given specialization are independent.
Instead of a point with x-coordinate equal to 2(t2−1)2, other slightly simpler points work

as well. For example, take x = 8t2. Then one wants 2(8t2 − (t2 − 1)2) to be a square. The
curve C2 defined by u2 = −2t4 + 20t2 − 2 has infinitely many rational many points as well. It
corresponds to the elliptic curve given by

y2 = x(x +
3
2
)(x +

1
2
),

which has
Z× (Z/2Z)× (Z/2Z),

as its group of rational points. In E(Q(C2)) one has by construction the point S4 := (8t2, 4t2s)
which turns out to be independent of S1. So again, specialization yields infinitely many exam-
ple of rank at least 2 over Q.

By taking x = t2 − 1, one needs that 3t4 − 5t2 − 2 is a square, say = s2. The curve C3
defined by s2 = 3t4−5t2−2 has infinitely many rational points as well. It corresponds to the
elliptic curve given by

y2 = (x − 3)(x2 + 4x + 28),

which has
Z× (Z/2Z),
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as its group or rational points. So in E(Q(C3)) one has by construction the point
S5 := (t2 − 1, (t2 − 1)2s) which turns out to be independent of S1.

Now We would like to follow the method described on [8, Page 89], to find a subfamily of
rank at least 2.

Consider A = −(t2 + 1)2 and B = 4t2(t2 − 1)2. Let B = b1 b2, if one can find integers
M , N , e such that gcd(M , e) = gcd(N , e) = gcd(b1, e) = 1 and b1M4 + AM2e2 + b2e4 = N2,
then (b1M2/e2, b1MN/e3) is a point on (9) as well. We let b1 = (t2 − 1), M = 2 and e = 1.
After a little computation one gets

4t2 − 20= N2. (10)

A particular solution for (10) is (t, N) = (3, 4). Using this solution we can parameterize the
corresponding hyperbola as following:

t =
3m2 − 8m+ 12

m2 − 4
, N =

4(m2 − 6m+ 4)
4−m2

, m ∈Q. (11)

It is clear that |t| ≥
p

5 or equivalency |m| > 2. By taking any rational values m > 2, we
get a rational value of t as (11), we see that the point (4(t2 − 1), 2(t2 − 1)N) is on (9). In
order to show that the points S1 = ((t2 + 1)2, 2t(t4 − 1)) and S6 := (4(t2 − 1), 2(t2 − 1)N)
are independent we use specialization (m, t, N) = (4, 7/3,4/3). This gives rise to following
elliptic curve

E7/3 : y2 = x3 −
3364
81

x2 +
313600

729
x ,

and the points

P = (
3364
81

,
32480
243

), Q = (
160
9

,
320
27
).

Now the associated height matrix of the above points has non-zero determinant 1.011058
showing that they are independent. By letting m as m = α/β with α ,β ≤ 350, we found 4
curves of rank 6. In particular m = 128/33, m = 152/27, m = 252/29, and m = 348/71 we
get the following curves with rank exactly 6.

y2 =x3 − 3546380914044004/81758650118401x2

+ 347413135010271276960000/739265720544437643649x ,

y2 =x3 − 23507162841329764/648833431339681x2

+ 5359835105795753404473600/16527220769271504425329x ,

y2 =x3 − 3546380914044004/81758650118401x2

+ 347413135010271276960000/739265720544437643649x ,

y2 =x3 − 23507162841329764/648833431339681x2

+ 5359835105795753404473600/16527220769271504425329x .
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