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Characterization of Prime Ideals in (", <,)
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Abstract. A convolution is a mapping % of the set Z* of positive integers into the set 2 (Z*) of all
subsets of " such that, for any n € ' , each member of 4 (n) is a divisor of n. If 2(n) is the set of
all divisors of n, for any n, then 2 is called the Dirichlet’s convolution. Corresponding to any general
convolution €, we can define a binary relation <., on Z* by “m < n if and only if m € €(n)”.
It is well known that ™" has the structure of a distributive lattice with respect to the division order.
The division ordering is precisely the partial ordering <, induced by the Dirichlet’s convolution 2. In
this paper, we present a characterization for the prime ideals in (£, <,) , where 2 is the Dirichlet’s
convolution.
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1. Introduction

A Convolution is a mapping % : Z* — 2 (%) such that 6(n) is a set of positive divisors

onn,n € %(n)and €(n)= U %6 (m), for any n € ™. Popular examples are the Dirichlet’s
me<%(n)
convolution 2 and the Unitary convolution % defined respectively by

9(n) = The set of all positive divisors of n

and
% (n) = The set of Unitary divisors of n

for any n € ™. If 6 is a convolution, then the binary relation < on ™, defined by,
m < n if and only if m € €(n),

is a partial order on Z* and is called the partial order induced by % [2]. It is well known that
the Dirichlet’s convolution induces the division order on Z* with respect to which Z* becomes
a distributive lattice, where, for any a, b € &+, the greatest common divisor(GCD) and the
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least common multiple(LCM) of a and b are respectively the greatest lower bound(glb) and
the least upper bound(lub) of a and b . In fact, with respect to the division order, the lattice
Z* satisfies the infinite join distributive law given by

(av(/\ bi)=/\(aVbi))

i€l i€l

foranya € " and {b;},; C Z*. In this paper, we discuss various aspects of ideals and filters
in (%, <;) and eventually present a characterization of prime ideals in (%7, <,) where 9 is
the Dirichlet’s convolution Actually a general convolution may not induce a lattice structure
on Z*. However , most of the convolutions we are considering induce a meet semi lattice
structure on Z*. For this reason, we first consider a general semi lattice and study it’s ideals
and later extend these to (Z*,<p).

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation <
on X which is reflexive (a < a), transitive (a < b,b < ¢ = a < ¢) and antisymmetric
(a £ b,b £ a = a = b) and that a pair (X, <) is called a partially ordered set(poset) if
X is a non-empty set and < is a partial order on X. For any A C X and x € X, x is called
a lower(upper) bound of A if x < a(respectively a < x) for all a € A. We have the usual

notations of the greatest lower bound(glb) and least upper bound(lub) of Ain X. If Ais a
n

finite subset {a;,a,, - ,a,}, the glb of A(lub of A) is denoted by a; Aay A+ Aa, or /\ a;
i=1

n
(respectively by a; Va, V---Va, or \/ a;). A partially ordered set (X, <) is called a meet semi

lattice if a A b (=glb{a, b}) exists f01; alll aand b € X. (X, <) is called a join semi lattice if a V b
(=lub{a, b}) exists for all a and b € X. A poset (X, <) is called a lattice if it is both a meet
and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, A, V),
where A and V are binary operations which are associative, commutative and idempotent and
satisfying the absorption laws, namely a A(aV b) =a =aV (aAb) forall a,b € X ; in this
case the partial order < on X is such that a A b and a V b are respectively the glb and lub of
{a, b}. The algebraic operations A and V and the partial order < are related by

(a=aAb&=a<b&<=aVb=hb).

Throughout the paper, #* and 4 denote the set of positive integers and the set of non-
negative integers respectively.

Definition 1. A mapping 6 : Z* — 2 (%) is called a convolution if the following are satisfied
foranyne ™.

(1). €(n)is a set of positive divisors of n

2). ne<€(n)
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3. ¢(m= |J <€m.

me¥€(n)
Definition 2. For any convolution € and m and n € %™, we define
(m <nifandonlyifme %(n))
Then < is a partial order on %" and is called the partial order induced by 6 on Z™*.

In fact, for any mapping 6 : * — 2 (%Z*) such that each member of 6 (n) is a divisor
of n, < is a partial order on Z* if and only if € is a convolution, as defined above [1, 4].

Definition 3. Let € be a convolution and p a prime number. Define a relation S?g on the set &
of non-negative integers by

(a S{; b if and only if p® € ‘g(pb))
foranyaand b € A

It can be easily verified that ng is a partial order on A", for each prime p. The following
is a direct verification.

Theorem 1. Let 6 be a convolution.
(D). If (£, <) is a meet(join) semilattice, then so is (N, S%)for each prime p.

(2). If (*,<) is a lattice, then so is (A, <) for each prime p.

3. Ideals in (&7, <))

Recall that most of the convolutions like Dirichlet’s convolution, Unitary convolution and
k-free convolution induce meet semi lattice structure on Z* [3]. For this reason we study
ideals in a general meet semi lattice and later study ideals in the lattice structure Z* induced
by the division ordering /. The division ordering / is precisely the partial ordering <, induced
by the Dirichlet’s convolution D. Throughout this section, unless otherwise stated, by a semi
lattice we mean a meet semi lattice only.

Definition 4. Let (X, <) be a poset. A non-empty subset I of X is called an initial segment if
a€l,xeXandx <a=x €1.

Definition 5. Let (S, A) be a semi lattice. A non-empty subset I of S is called an ideal of S if the
following are satisfied

(1). xeSandx<a€el=—=x¢€l

(2). For any a and b € I, there exists c € I such thata <cand b <c
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Definition 6. Let (S, A) be a semi lattice and a € S. Then the set
(al:={xeS|x<a}={y Aaly €S}

is an ideal of S and is called the Principal ideal generated by a in S. Note that (a] is the smallest
ideal of S containing a.

Now, we present the following

Theorem 2. Let a and b be elements of a meet semi lattice (S, A). Then the following are equiv-
alent to each other.

(1). There exists smallest ideal of S containing a and b.
(2). The intersection of all ideals of S containing a and b is again an ideal of S.
(3). a and b have least upper bound in S.

Proof. (1) < (2) : is trivial.
(1) = (3) : Let I be the smallest ideal of S containing a and b. Then, there exists x € I such
that
a<xand b<x

Therefore x is an upper bound of a and b. If y is any other upper bound of a and b, then (y]
is an ideal of S containing a and b and hence I C (y]. Since x € I, we get that x € (y] and
therefore x < y. Thus x is the least upper bound of a and b.
(3)=(1): LetaV b be the least upper bound of a and b. Thena <aVb and b <aV b and
hence (a V b] is an ideal containing a and b. If I is any ideal containing a and b, then there
exists x € I such that

a<xand b<xand henceaVb<x

sothatavb el and (aVb] CI. Thus (aV b] is the smallest ideal of S containing a and b. [

Although the intersection of an arbitrary class of ideals need not be an ideal, a finite inter-
section is always an ideal.

Theorem 3. Let (S, A) be a semi lattice and #(S) the set of all ideals of S. Then (#(S),N) is a
semilattice and a — (a] is an embedding of (S, A) onto (#(S),N).

Proof. By the above theorem, it follows that (#(S),N) is a semi lattice.Also, for any a and
bin S, we have
(a]n(b]=(anb]

and
(a]€(b]e=ac(b]<a<b

Therefore a — (a] is an embedding of S into .#(S). O

Theorem 4. A semi lattice (S, A) is a lattice if and only if #(S) is a lattice and, in this case,
a — (a] is an embedding of the lattice S into the lattice .#(S).
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Proof. It is well known that the set .#(S) of ideals of a lattice (S, A, V) is again a lattice in
which,
INJ=INnJ

and
IVIi={xeS|x<aAb,forsomeac]and beJ}

for any ideals I and J, in this case,
(a]v(b]=(aVb]

for any a and b in S, so that a — (a] is an embedding of lattices.

Conversely, suppose that .#(S) is a lattice. Let a and b € S and I be the least upper bound of
(aland (b] in .£(S). Then I is the smallest ideal containing a and b and hence by Theorem 2,
aV b exists in S. Therefore S is a lattice. O

For a lattice (L, A, V), any ideal of the semi lattice (L, A) turns out to be the usual ideal of
the lattice (L, A, V).

Definition 7. Let (S, A) be a semi lattice. A non-empty subset F of S is called filter of S if, for any
a,bes,
aANbeF<acFandbeF

Theorem 5. Let (S,A) be a semi lattice and P a proper ideal of S. Then the following are
equivalent to each other

(1). For any elementsaand binS,aNbeP—=—a€PorbeP
(2). For any ideals I and J of S, INJ CP=—=ICPorJCP
(3). S—Pisa filter of S.

Proof. (1) = (2): Let I and J be ideals of S. Suppose that I P and J € P. Then there
existael and b € J such thata ¢ P and b ¢ P. Then,by (1),aAb ¢ P. ButaAb <a eI and
aANb<beJandhenceaAbelInJ. Therefore INJ € P.

(2)=@): Ifa<band aeS—P, then clearly b € S —P. Also,

aandbeS—P=—a¢Pand b¢ P
=—=(a]ZPand (b]ZP
=(aAb]l=(a]N(b]ZP
=x ¢ P forsome x <aAb
—x<aAbandxeS—P
=—=aAbeS—P

Thus S — P is a filter of S.
(3)=(1): Forany a and b €S,
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a¢Pand b¢ P=—aand beS—P
—=aAbeS—P
—aAb¢P

O

Definition 8. Any proper ideal P of a semi lattice (S, A) is said to be a prime ideal if any one
(and hence all) of the conditions in Theorem 5 is satisfied.

4. Prime Ideals in (Z*, <)

Now we shall turn our attention to the particular case of the lattice structure on 2" induced
by the division ordering / and study the ideals and prime ideals of Z*. The division ordering
is precisely the partial ordering <j, induced by the Dirichlet’s convolution D.

First we observe that | 6 : (Z*,/)— O A, S)) is an order isomorphism where 0 is
P
defined by
(G(a)(p) = The largest n € A4 such that p" divides a , foranya € " and p € 9)

and

(ZW)Z{f : @ — A|f(p) =0 for all but finite p}.
P

Here & stands for the set of primes and .4 stands for the set of non-negative integers.

Definition 9. Adjoin an external element oo to A and extend the usual ordering < on A to
N U {00} by defining a < oo for all a € A. We shall denote A U {o0} together with this
extended usual order by N °° .

Theorem 6. Let a : & — A °° be a mapping and define
I, = {n € Z*16(n)(p) < a(p) for all p € P}

Then 1, is an ideal of (%7, /) and every ideal of (%7,/) is of the form I, for some mapping
a:P— N

Proof. Since no prime divides the integer 1, we get that 6(1)(p) =0 < a(p) for all p € &
and hence 1 € I,. Therefore I, is a non-empty subset of Z* .

m and ne I, =0(m)(p) < a(p) and 6(n)(p) < a(p) forallp e &
=60(mVn)(p) = Max{0(m)(p),0(n)(p)} < a(p) for all p € &
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—mvVnel,
and

m<pnel,=0(m)(p) <0(n)(p) <a(p)forallpe»
=0(m)(p) < a(p) forallp e &
—mel,.
Thus I, is an ideal of (Z*,/). Conversely suppose that I is any ideal of (Z*,/). Define
a:P — N by
a(p) = Sup{6(n)(p)|n €I} for any p € &

Note that a(p) is either a non-negative integer or oo, for any p € &. Therefore a is a mapping
of @ into N *°.

nel =0(n)(p) <a(p)forallpe
=—=nel,

Therefore I € I,. On the other hand, suppose n € I,. Then 8(n)(p) < a(p) for all p € &.
Since 6(n) € >. A, |6(n)| is finite. If |§(n)| = ¢, then n =1 € I. Suppose |6(n)| is non-empty.
P

Let |6(n)| = {p1,p2---,p,}. Then O(n)(p) =0 forall p # p;, 1 <i < r and O(n)(p;) € N
Now, for each 1 < i < r, 8(n)(p;) < a(p;) = Sup{6(m)(p;)lm € I} and hence there exists
m; € I such that 8(n)(p;) < 8(m)(p;). Now, putm=m;VmyV---Vm,, then m € [ and

0(n)(p;) < Max{6(m;)(p;),...,0(m;)(p;)} = 6(m)(p;)

for all 1 <i <r. Also, since 6(n)(p) = 0 for all p # p;, we get that (n)(p) < 8(m)(p) for all
p € P sothat n <, m €I and therefore n € I. Therefore I, CI. Thus I =1,. O

Note that, if a is the constant map 0 defined by a(p) = 0 for all p € &, then I, = {1} and
that, if « is the constant map ©0, then I, = ™.

Definition 10. For any mappings a and f3 from @ into A °°, define

a < B ifand only if a(p) < B(p) forallp € Z.
Thus < is a partial order on (N *°)?.

Theorem 7. The map a — I, is an order isomorphism of the poset (A °°)?, <), onto the poset
(#(Z1), Q) of all ideals of (Z,/).

Proof. Let a and 3 : 2 — A°° be any mappings. Clearly, a < 8 = I, C I5. On the other
hand, suppose that I, € I. We shall prove that a(p) < (p) for all p € # so that a < 8. To
prove this, let us fix p € #. If f(p) = oo or a(p) = 0, trivially a(p) < B(p). Therefore, we
can assume that 8(p) < oo and a(p) > 0. Consider n = pP®P)*1, Then

0(n)(p) =p(p)+1 £ B(p).



S. Sagi / Eur. J. Pure Appl. Math, 8 (2015), 15-25 22

and hence n ¢ Ig. Since I, C Ig, n ¢ I, and therefore 0(n)(q) £ a(q) for some q € #. But
6(n)(q) =0 for all g # p. Thus

B(p)+1=0(n)(p) £ alp)
a(p) <B(p) +1.

Therefore a(p) < B(p). This is true for all p € &. Thus a < . Also a — I, is a surjection.
Thus a — I, is an order isomorphism of ((A4 )7, <), onto (#(Z™), C). O

Corollary 1. Forany aand f : & — N °°,
IyNIg=Inpp.

and
IaUIﬁ :Iavﬂ.

where a A 3 and oV 3 are point-wise g.1.b and L.u.b of a and f.

First we state the following two theorems from “Lattice Structures on ™ induced by con-
volutions” [3].

Theorem 8. Let 6 be a convolution which is closed under finite intersections and <¢ be the
partial order on %™ induced by 6. Then (Z*,<) is a lattice if and only if it is directed above.

Theorem 9. Let € be a convolution.

(1). If (%, <) is a meet(join) semilattice, then so is (N, <

fg)for each prime p
(2). If (", <) is a lattice, then so is (N, S%)for each prime p.

Theorem 10. Let € be a multiplicative convolution such that (%%, /) is a meet semi lattice. For
any a: @ — N, let

I,={neZ*16(n)(p) <7 a(p) forall p € #}.
Then the following are equivalent to each other.
(1). I, is anideal of (Z*,<) forany a: @ — N°.
(2). (Z*,<y) is directed below
(3). (Z*,<) s a lattice.

Proof. (2) < (3) follows from Theorem 8
(1)=(2): Leta: P — A&° be defined by a(p) = oo for all p € . Then

I,={neZ*0(n)(p) S‘?; a(p) =oo forallp € 2}

and hence, by (1), Z* is an ideal of (2™, <) which implies that (", <) is directed above.
(3) = (1) : From (3) and Theorems 8 and 9, it follows that (4, S{’g) is a lattice for each p € &
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and O(m Vv n)(p) = 8(m)(p) vV 8(n)(p) in (AN, <) forany mand n € ¥ and p € 2. Let
a: P — N be any mapping. Then, forany m and n € ™,

m <, nel,=>0(m)(p) Seg 6(n)(p) ng a(p) forallp e #.
=0(m)(p) S{’g forallp e #.

—mel,.
and
m and n € I, =0(m)(p) <t a(p) and 6(n)(p) <-, a(p) forall p € 2.
=60(m)(p) v 8(n)(p) ng a(p) forallp e #.
—mvVnel,.
Therefore I, is an ideal of (2", <). O

Now, we have the following Theorems which characterize the prime ideals of the lattice
(", <,) where 9 is the Dirichlet’s convolution.

Theorem 11. Let a :  — A be a mapping and I, is an ideal of (%%,<,) defined by
I,={neZ*0(n)(p) < a(p) for all p € #}. Then the following are equivalent to each other.

(1). I, is a prime ideal of (Z£*,<4).
(2). a(p) # oo for some p € # and for any f andy : # — N°°,

PAYy<a=—> B <aory<a.

(3). There exists unique p € & such that

a(p)# oo and a(q) = oo forallq#p € 2.

Proof. (1) = (2) follows from Theorem 7, in which we have proved that § — Iz is an
isomorphism of the lattice ((4#°°)?, <) onto the lattice of ideals of (¥*, <) from the fact
that Ig NI, = I, for any B and y : # — A°°. If a(p) = oo for all p € P, then, since
O(n)(p) € N forallne Z* andp € 2,

Iy={neZ"|0(n)(p) <oo}=2"

which is a contradiction to the fact that every prime ideal is a proper ideal. Thus a(p) # oo
for some p € 2.

(2) = (3): Suppose that a satisfies (2). Fix p € & such that a(p) # oo. Then a(p) € A
Now, define  and y : & — A°° by

_Jo  ifg=p
ﬂ(q)—{oo ifq4p
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and

() = oo ifg=p
"0 ifq#p

for any q € #. Then,
(BAYNQ) =B@Ar(g)=0=<alq)

for all g € & and hence Ay < a. Since a(p) # oo and y(p) = oo, (v)(p) £ a(p) and hence
y £ a. Therefore, by (2), B < a and hence

oo = f3(q) < a(q) for all g # p.

Therefore q(p) = oo for all q # p in &. This also implies the uniqueness of p.
(3) = (1): Let p € & such that

a(p) # oo and a(q) = oo forallq#p € Z.

Then I, is a proper ideal of (#*,<,). Let J and K be any ideals of (¥*,<,) such that
JNK C I,. Then there exists f and y :  — A such that J = Iz and K = I,. Now,
Igpy =1IgNIL,=JNK C I, and hence Ay < a so that

Min{f(p),y(p)} = (B AY)(P) < a(p).

Therefore B(p) < a(p) or y(p) < a(p). Since a(q) = oo for all g # p, it follows that f < a or
v < a and hence Ig € I, or I, € I,. Therefore J € I, or K € I,. Thus I, is a prime ideal of
(g-ﬁ-’ S@)' O

Definition 11. For any prime number p and a € 4, define
I ={neZ"0(n)(p) < a}.
Then I, , is an ideal of (Z7*,<g). In fact I, , = I, where o : & — N °° is defined by
oo ifq#p
Note that I, , ={n€ Z~* |p®*! does not divide n}.

Theorem 12. An ideal of (%*,<) is prime if and only if it is of the form I, 4 for some p € ?
and a € N.

Proof. Let I be an ideal of (Z*,<,). Then I = I, for some mapping a : & — A °. Now,
by Theorem 11, I is prime <= there exists p € & such that a(p) # oo and a(q) = oo for all

q#pand I =1, < 1=1,,, where a = a(p). O

Theorem 13. Forany pandq&€ % andaand b € ¥,

I Clyp<—p=qanda<b
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Proof. If p=gq and a < b, then

nel,,—0(n)(p)<a<b
=0(n)(@) < b
:TLEIq’b

and hence I, , € I, . Conversely suppose that I, ; € I, ;. If p # g, then
6(¢""(p)=0<a

and hence ¢**! € I 4 €14 s0that 6(q>*1)(b) < b, which is a contradiction. Therefore p = q.

Now, since 6(p®)(p) = a, p® € I, , € I;; and hence a = 6(p®)(q) < b. Thus p = q and
a<b. O

The following are immediate consequences of Theorems 11,12 and 13.
Corollary 2. For each p € 2, let #, = {I,, ,la € A'}. Then the following hold.
(1). &, is a chain of prime ideals of (2%, <) for each p € 2.
2. #,NPy=¢ foralp#qeP.

3. U P, is the set of all prime ideals of (Z*,<4).
DEZP

Corollary 3. I is a minimal prime ideal of (%%, <) if and only if
I=1,,={n€Z"|p does not divide n}

for some p € 2.
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