EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 1, 2015, 15-25 ISSN 1307-5543 – www.ejpam.com

Characterization of Prime Ideals in $(\mathcal{Z}^+, \leq_{\mathscr{D}})$

Sankar Sagi

College of Applied Sciences, Sohar, Ministry of Higher Education, Sultanate of Oman

Abstract. A convolution is a mapping $\mathscr C$ of the set $\mathscr Z^+$ of positive integers into the set $\mathscr D(\mathscr Z^+)$ of all subsets of $\mathscr Z^+$ such that, for any $n \in \mathscr Z^+$, each member of $\mathscr C(n)$ is a divisor of n. If $\mathscr D(n)$ is the set of all divisors of n, for any n, then $\mathscr D$ is called the Dirichlet's convolution. Corresponding to any general convolution $\mathscr C$, we can define a binary relation $\leq_{\mathscr C}$ on $\mathscr Z^+$ by " $m \leq_{\mathscr C} n$ if and only if $m \in \mathscr C(n)$ ". It is well known that $\mathscr Z^+$ has the structure of a distributive lattice with respect to the division order. The division ordering is precisely the partial ordering $\leq_{\mathscr D}$ induced by the Dirichlet's convolution $\mathscr D$. In this paper, we present a characterization for the prime ideals in $(\mathscr Z^+, \leq_{\mathscr D})$, where $\mathscr D$ is the Dirichlet's convolution.

2010 Mathematics Subject Classifications: 06B10,11A99

Key Words and Phrases: Poset, Lattice, semi lattice, Convolution, ideal

1. Introduction

A Convolution is a mapping $\mathscr{C}: \mathscr{Z}^+ \longrightarrow \mathscr{P}(\mathscr{Z}^+)$ such that $\mathscr{C}(n)$ is a set of positive divisors on $n, n \in \mathscr{C}(n)$ and $\mathscr{C}(n) = \bigcup_{m \in \mathscr{C}(n)} \mathscr{C}(m)$, for any $n \in \mathscr{Z}^+$. Popular examples are the Dirichlet's convolution \mathscr{D} and the Unitary convolution \mathscr{U} defined respectively by

 $\mathcal{D}(n)$ = The set of all positive divisors of n

and

 $\mathcal{U}(n)$ = The set of Unitary divisors of n

for any $n \in \mathcal{Z}^+$. If \mathscr{C} is a convolution, then the binary relation $\leq_{\mathscr{C}}$ on \mathcal{Z}^+ , defined by

 $m \leq_{\mathscr{C}} n$ if and only if $m \in \mathscr{C}(n)$,

is a partial order on \mathcal{Z}^+ and is called the partial order induced by \mathscr{C} [2]. It is well known that the Dirichlet's convolution induces the division order on \mathcal{Z}^+ with respect to which \mathcal{Z}^+ becomes a distributive lattice, where, for any $a, b \in \mathcal{Z}^+$, the greatest common divisor(GCD) and the

Email address: sagi_sankar@yahoo.co.in

http://www.ejpam.com

least common multiple(LCM) of a and b are respectively the greatest lower bound(glb) and the least upper bound(lub) of a and b. In fact, with respect to the division order, the lattice \mathcal{Z}^+ satisfies the infinite join distributive law given by

$$\left(a \vee (\bigwedge_{i \in I} b_i) = \bigwedge_{i \in I} (a \vee b_i)\right)$$

for any $a \in \mathscr{Z}^+$ and $\{b_i\}_{i \in I} \subseteq \mathscr{Z}^+$. In this paper, we discuss various aspects of ideals and filters in (\mathscr{Z}^+, \leq_C) and eventually present a characterization of prime ideals in $(\mathscr{Z}^+, \leq_{\mathscr{Q}})$ where \mathscr{D} is the Dirichlet's convolution Actually a general convolution may not induce a lattice structure on \mathscr{Z}^+ . However, most of the convolutions we are considering induce a meet semi lattice structure on \mathscr{Z}^+ . For this reason, we first consider a general semi lattice and study it's ideals and later extend these to (\mathscr{Z}^+, \leq_D) .

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive ($a \leq a$), transitive ($a \leq b, b \leq c \Longrightarrow a \leq c$) and antisymmetric ($a \leq b, b \leq a \Longrightarrow a = b$) and that a pair (X, \leq) is called a partially ordered set(poset) if X is a non-empty set and $X \in A$ is a partial order on $X \in A$. For any $X \in A$ and $X \in A$, $X \in A$ is called a lower(upper) bound of $X \in A$ if $X \in A$ if $X \in A$ is a non-empty set and $X \in A$ if $X \in A$ is a lower(upper) bound of $X \in A$ if $X \in A$ is a least upper bound(lub) of $X \in A$ in $X \in A$ is a finite subset $X \in A$, the glb of $X \in A$ is denoted by $X \in A$ is denoted by $X \in A$ in $X \in A$ in $X \in A$ in $X \in A$ is a finite subset $X \in A$.

(respectively by $a_1 \vee a_2 \vee \cdots \vee a_n$ or $\bigvee_{i=1}^n a_i$). A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b$ (=glb $\{a,b\}$) exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \vee b$ (=lub $\{a,b\}$) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee) , where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge (a \vee b) = a = a \vee (a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a,b\}$. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$(a = a \land b \iff a \le b \iff a \lor b = b).$$

Throughout the paper, \mathcal{Z}^+ and \mathcal{N} denote the set of positive integers and the set of non-negative integers respectively.

Definition 1. A mapping $\mathscr{C}: \mathscr{Z}^+ \longrightarrow \mathscr{P}(\mathscr{Z}^+)$ is called a convolution if the following are satisfied for any $n \in \mathscr{Z}^+$.

- (1). $\mathscr{C}(n)$ is a set of positive divisors of n
- (2). $n \in \mathcal{C}(n)$

(3).
$$\mathscr{C}(n) = \bigcup_{m \in \mathscr{C}(n)} \mathscr{C}(m)$$
.

Definition 2. For any convolution \mathscr{C} and m and $n \in \mathscr{Z}^+$, we define

$$(m \le n \text{ if and only if } m \in \mathscr{C}(n))$$

Then $\leq_{\mathscr{C}}$ is a partial order on \mathscr{Z}^+ and is called the partial order induced by \mathscr{C} on \mathscr{Z}^+ .

In fact, for any mapping $\mathscr{C}: \mathscr{Z}^+ \longrightarrow \mathscr{P}(\mathscr{Z}^+)$ such that each member of $\mathscr{C}(n)$ is a divisor of $n, \leq_{\mathscr{C}}$ is a partial order on \mathscr{Z}^+ if and only if \mathscr{C} is a convolution, as defined above [1, 4].

Definition 3. Let \mathscr{C} be a convolution and p a prime number. Define a relation $\leq_{\mathscr{C}}^p$ on the set \mathscr{N} of non-negative integers by

$$\left(a \leq_{\mathscr{C}}^{p} b \text{ if and only if } p^{a} \in \mathscr{C}(p^{b})\right)$$

for any a and $b \in \mathcal{N}$.

It can be easily verified that $\leq_{\mathscr{C}}^p$ is a partial order on \mathscr{N} , for each prime p. The following is a direct verification.

Theorem 1. Let \mathscr{C} be a convolution.

- (1). If $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ is a meet(join) semilattice, then so is $(\mathcal{N}, \leq_{\mathscr{L}}^p)$ for each prime p.
- (2). If $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ is a lattice, then so is $(\mathcal{N}, \leq_{\mathscr{L}}^p)$ for each prime p.

3. Ideals in
$$(\mathcal{Z}^+, \leq_D)$$

Recall that most of the convolutions like Dirichlet's convolution, Unitary convolution and k-free convolution induce meet semi lattice structure on \mathcal{Z}^+ [3]. For this reason we study ideals in a general meet semi lattice and later study ideals in the lattice structure \mathcal{Z}^+ induced by the division ordering /. The division ordering / is precisely the partial ordering \leq_D induced by the Dirichlet's convolution D. Throughout this section, unless otherwise stated, by a semi lattice we mean a meet semi lattice only.

Definition 4. Let (X, \leq) be a poset. A non-empty subset I of X is called an **initial segment** if

$$a \in I, x \in X \text{ and } x \leq a \Longrightarrow x \in I.$$

Definition 5. Let (S, \land) be a semi lattice. A non-empty subset I of S is called an ideal of S if the following are satisfied

- (1). $x \in S$ and $x \le a \in I \Longrightarrow x \in I$
- (2). For any a and $b \in I$, there exists $c \in I$ such that $a \le c$ and $b \le c$

Definition 6. Let (S, \land) be a semi lattice and $a \in S$. Then the set

$$\{a\} := \{x \in S | x \le a\} = \{y \land a | y \in S\}$$

is an ideal of S and is called the **Principal ideal** generated by a in S. Note that (a] is the smallest ideal of S containing a.

Now, we present the following

Theorem 2. Let a and b be elements of a meet semi lattice (S, \wedge) . Then the following are equivalent to each other.

- (1). There exists smallest ideal of S containing a and b.
- (2). The intersection of all ideals of S containing a and b is again an ideal of S.
- (3). a and b have least upper bound in S.

Proof. (1) \iff (2): is trivial.

 $(1) \Longrightarrow (3)$: Let I be the smallest ideal of S containing a and b. Then, there exists $x \in I$ such that

$$a \le x$$
 and $b \le x$

Therefore x is an upper bound of a and b. If y is any other upper bound of a and b, then (y] is an ideal of S containing a and b and hence $I \subseteq (y]$. Since $x \in I$, we get that $x \in (y]$ and therefore $x \le y$. Thus x is the least upper bound of a and b.

(3) \Longrightarrow (1): Let $a \lor b$ be the least upper bound of a and b. Then $a \le a \lor b$ and $b \le a \lor b$ and hence $(a \lor b]$ is an ideal containing a and b. If I is any ideal containing a and b, then there exists $x \in I$ such that

$$a \le x$$
 and $b \le x$ and hence $a \lor b \le x$

so that $a \lor b \in I$ and $(a \lor b] \subseteq I$. Thus $(a \lor b]$ is the smallest ideal of S containing a and b. \square

Although the intersection of an arbitrary class of ideals need not be an ideal, a finite intersection is always an ideal.

Theorem 3. Let (S, \wedge) be a semi lattice and $\mathscr{I}(S)$ the set of all ideals of S. Then $(\mathscr{I}(S), \cap)$ is a semilattice and $a \mapsto (a]$ is an embedding of (S, \wedge) onto $(\mathscr{I}(S), \cap)$.

Proof. By the above theorem, it follows that $(\mathcal{I}(S), \cap)$ is a semi lattice. Also, for any a and b in S, we have

$$(a] \cap (b] = (a \wedge b]$$

and

$$(a] \subseteq (b] \iff a \in (b] \iff a \le b$$

Therefore $a \mapsto (a]$ is an embedding of S into $\mathscr{I}(S)$.

Theorem 4. A semi lattice (S, \wedge) is a lattice if and only if $\mathscr{I}(S)$ is a lattice and, in this case, $a \mapsto (a]$ is an embedding of the lattice S into the lattice S(S).

Proof. It is well known that the set $\mathcal{I}(S)$ of ideals of a lattice (S, \land, \lor) is again a lattice in which,

$$I \wedge J = I \cap J$$

and

$$I \lor J = \{x \in S | x \le a \land b, \text{ for some } a \in I \text{ and } b \in J\}$$

for any ideals I and J, in this case,

$$(a] \lor (b] = (a \lor b]$$

for any a and b in S, so that $a \mapsto (a]$ is an embedding of lattices.

Conversely, suppose that $\mathscr{I}(S)$ is a lattice. Let a and $b \in S$ and I be the least upper bound of [a] and [b] in $\mathscr{I}(S)$. Then I is the smallest ideal containing a and b and hence by Theorem 2, $a \lor b$ exists in S. Therefore S is a lattice.

For a lattice (L, \wedge, \vee) , any ideal of the semi lattice (L, \wedge) turns out to be the usual ideal of the lattice (L, \wedge, \vee) .

Definition 7. Let (S, \land) be a semi lattice. A non-empty subset F of S is called filter of S if, for any $a, b \in S$,

$$a \land b \in F \iff a \in F \text{ and } b \in F$$

Theorem 5. Let (S, \land) be a semi lattice and P a proper ideal of S. Then the following are equivalent to each other

- (1). For any elements a and b in S, $a \land b \in P \Longrightarrow a \in P$ or $b \in P$
- (2). For any ideals I and J of S, $I \cap J \subseteq P \Longrightarrow I \subseteq P$ or $J \subseteq P$
- (3). S P is a filter of S.

Proof. (1) \Longrightarrow (2): Let I and J be ideals of S. Suppose that $I \not\subseteq P$ and $J \not\subseteq P$. Then there exist $a \in I$ and $b \in J$ such that $a \notin P$ and $b \notin P$. Then,by (1), $a \land b \notin P$. But $a \land b \leq a \in I$ and $a \land b \leq b \in J$ and hence $a \land b \in I \cap J$. Therefore $I \cap J \not\subseteq P$.

(2) \Longrightarrow (3): If $a \le b$ and $a \in S - P$, then clearly $b \in S - P$. Also,

$$a \text{ and } b \in S - P \Longrightarrow a \notin P \text{ and } b \notin P$$

$$\Longrightarrow (a] \not\subseteq P \text{ and } (b) \not\subseteq P$$

$$\Longrightarrow (a \land b] = (a] \cap (b) \not\subseteq P$$

$$\Longrightarrow x \notin P \text{ for some } x \leq a \land b$$

$$\Longrightarrow x \leq a \land b \text{ and } x \in S - P$$

$$\Longrightarrow a \land b \in S - P$$

Thus S - P is a filter of S.

 $(3) \Longrightarrow (1)$: For any a and $b \in S$,

$$a \notin P$$
 and $b \notin P \Longrightarrow a$ and $b \in S - P$
 $\Longrightarrow a \land b \in S - P$
 $\Longrightarrow a \land b \notin P$

Definition 8. Any proper ideal P of a semi lattice (S, \land) is said to be a **prime ideal** if any one (and hence all) of the conditions in Theorem 5 is satisfied.

4. Prime Ideals in (\mathcal{Z}^+, \leq_D)

Now we shall turn our attention to the particular case of the lattice structure on \mathcal{Z}^+ induced by the division ordering / and study the ideals and prime ideals of \mathcal{Z}^+ . The division ordering is precisely the partial ordering \leq_D induced by the Dirichlet's convolution D.

First we observe that $\left(\theta: (\mathcal{Z}^+,/) \longrightarrow (\sum_p \mathcal{N},\leq)\right)$ is an order isomorphism where θ is defined by

$$(\theta(a)(p) = \text{ The largest } n \in \mathcal{N} \text{ such that } p^n \text{ divides } a, \text{ for any } a \in \mathcal{Z}^+ \text{ and } p \in \mathcal{P})$$

and

$$\left(\sum_{p} \mathcal{N}\right) = \{f : \mathcal{P} \longrightarrow \mathcal{N} | f(p) = 0 \text{ for all but finite } p\}.$$

Here ${\mathcal P}$ stands for the set of primes and ${\mathcal N}$ stands for the set of non-negative integers.

Definition 9. Adjoin an external element ∞ to \mathcal{N} and extend the usual ordering \leq on \mathcal{N} to $\mathcal{N} \cup \{\infty\}$ by defining $a < \infty$ for all $a \in \mathcal{N}$. We shall denote $\mathcal{N} \cup \{\infty\}$ together with this extended usual order by \mathcal{N}^{∞} .

Theorem 6. Let $\alpha : \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ be a mapping and define

$$I_{\alpha} = \{ n \in \mathcal{Z}^+ | \theta(n)(p) \le \alpha(p) \text{ for all } p \in \mathcal{P} \}$$

Then I_{α} is an ideal of $(\mathcal{Z}^+,/)$ and every ideal of $(\mathcal{Z}^+,/)$ is of the form I_{α} for some mapping $\alpha: \mathcal{P} \longrightarrow \mathcal{N}^{\infty}$

Proof. Since no prime divides the integer 1, we get that $\theta(1)(p) = 0 \le \alpha(p)$ for all $p \in \mathcal{P}$ and hence $1 \in I_{\alpha}$. Therefore I_{α} is a non-empty subset of \mathcal{Z}^+ .

$$m$$
 and $n \in I_{\alpha} \Longrightarrow \theta(m)(p) \le \alpha(p)$ and $\theta(n)(p) \le \alpha(p)$ for all $p \in \mathscr{P}$
 $\Longrightarrow \theta(m \lor n)(p) = Max\{\theta(m)(p), \theta(n)(p)\} \le \alpha(p)$ for all $p \in \mathscr{P}$

$$\Longrightarrow m \lor n \in I_{\alpha}$$

and

$$m \leq_D n \in I_\alpha \Longrightarrow \theta(m)(p) \leq \theta(n)(p) \leq \alpha(p) \text{ for all } p \in \mathscr{P}$$

 $\Longrightarrow \theta(m)(p) \leq \alpha(p) \text{ for all } p \in \mathscr{P}$
 $\Longrightarrow m \in I_\alpha.$

Thus I_{α} is an ideal of $(\mathcal{Z}^+,/)$. Conversely suppose that I is any ideal of $(\mathcal{Z}^+,/)$. Define $\alpha: \mathcal{P} \longrightarrow \mathcal{N}^{\infty}$ by

$$\alpha(p) = Sup\{\theta(n)(p)|n \in I\}$$
 for any $p \in \mathscr{P}$

Note that $\alpha(p)$ is either a non-negative integer or ∞ , for any $p \in \mathcal{P}$. Therefore α is a mapping of \mathcal{P} into \mathcal{N}^{∞} .

$$n \in I \Longrightarrow \theta(n)(p) \le \alpha(p)$$
 for all $p \in \mathscr{P}$
 $\Longrightarrow n \in I_{\alpha}$

Therefore $I \subseteq I_{\alpha}$. On the other hand, suppose $n \in I_{\alpha}$. Then $\theta(n)(p) \leq \alpha(p)$ for all $p \in \mathscr{P}$. Since $\theta(n) \in \sum_{p} \mathscr{N}$, $|\theta(n)|$ is finite. If $|\theta(n)| = \phi$, then $n = 1 \in I$. Suppose $|\theta(n)|$ is non-empty. Let $|\theta(n)| = \{p_1, p_2 \cdots, p_r\}$. Then $\theta(n)(p) = 0$ for all $p \neq p_i$, $1 \leq i \leq r$ and $\theta(n)(p_i) \in \mathscr{N}$. Now, for each $1 \leq i \leq r$, $\theta(n)(p_i) \leq \alpha(p_i) = Sup\{\theta(m)(p_i)|m \in I\}$ and hence there exists

$$\theta(n)(p_i) \le Max\{\theta(m_1)(p_i), \dots, \theta(m_i)(p_i)\} = \theta(m)(p_i)$$

 $m_i \in I$ such that $\theta(n)(p_i) \leq \theta(m)(p_i)$. Now, put $m = m_1 \vee m_2 \vee \cdots \vee m_r$, then $m \in I$ and

for all $1 \le i \le r$. Also, since $\theta(n)(p) = 0$ for all $p \ne p_i$, we get that $\theta(n)(p) \le \theta(m)(p)$ for all $p \in \mathcal{P}$ so that $n \le_D m \in I$ and therefore $n \in I$. Therefore $I_\alpha \subseteq I$. Thus $I = I_\alpha$.

Note that, if α is the constant map $\overline{0}$ defined by $\alpha(p) = 0$ for all $p \in \mathcal{P}$, then $I_{\alpha} = \{1\}$ and that, if α is the constant map $\overline{\infty}$, then $I_{\alpha} = \mathcal{Z}^+$.

Definition 10. For any mappings α and β from \mathscr{P} into \mathscr{N}^{∞} , define

$$\alpha \leq \beta$$
 if and only if $\alpha(p) \leq \beta(p)$ for all $p \in \mathcal{P}$.

Thus \leq is a partial order on $(\mathcal{N}^{\infty})^{\mathcal{P}}$.

Theorem 7. The map $\alpha \mapsto I_{\alpha}$ is an order isomorphism of the poset $((\mathcal{N}^{\infty})^{\mathcal{P}}, \leq)$, onto the poset $(\mathcal{I}(\mathcal{Z}^+), \subseteq)$ of all ideals of $(\mathcal{Z}^+, /)$.

Proof. Let α and $\beta: \mathscr{P} \mapsto \mathscr{N}^{\infty}$ be any mappings. Clearly, $\alpha \leq \beta \Rightarrow I_{\alpha} \subseteq I_{\beta}$. On the other hand, suppose that $I_{\alpha} \subseteq I_{\beta}$. We shall prove that $\alpha(p) \leq \beta(p)$ for all $p \in \mathscr{P}$ so that $\alpha \leq \beta$. To prove this, let us fix $p \in \mathscr{P}$. If $\beta(p) = \infty$ or $\alpha(p) = 0$, trivially $\alpha(p) \leq \beta(p)$. Therefore, we can assume that $\beta(p) < \infty$ and $\alpha(p) > 0$. Consider $n = p^{\beta(p)+1}$. Then

$$\theta(n)(p) = \beta(p) + 1 \le \beta(p)$$
.

and hence $n \notin I_{\beta}$. Since $I_{\alpha} \subseteq I_{\beta}$, $n \notin I_{\alpha}$ and therefore $\theta(n)(q) \nleq \alpha(q)$ for some $q \in \mathscr{P}$. But $\theta(n)(q) = 0$ for all $q \neq p$. Thus

$$\beta(p) + 1 = \theta(n)(p) \nleq \alpha(p)$$

 $\alpha(p) < \beta(p) + 1.$

Therefore $\alpha(p) \leq \beta(p)$. This is true for all $p \in \mathcal{P}$. Thus $\alpha \leq \beta$. Also $\alpha \mapsto I_{\alpha}$ is a surjection. Thus $\alpha \mapsto I_{\alpha}$ is an order isomorphism of $((\mathcal{N}^{\infty})^{\mathcal{P}}, \leq)$, onto $(\mathscr{I}(\mathcal{Z}^{+}), \subseteq)$.

Corollary 1. For any α and $\beta: \mathscr{P} \to \mathscr{N}^{\infty}$,

$$I_{\alpha} \cap I_{\beta} = I_{\alpha \wedge \beta}$$
.

and

$$I_{\alpha} \cup I_{\beta} = I_{\alpha \vee \beta}$$
.

where $\alpha \wedge \beta$ and $\alpha \vee \beta$ are point-wise g.l.b and l.u.b of α and β .

First we state the following two theorems from "Lattice Structures on \mathcal{Z}^+ induced by convolutions" [3].

Theorem 8. Let \mathscr{C} be a convolution which is closed under finite intersections and $\leq_{\mathscr{C}}$ be the partial order on \mathscr{Z}^+ induced by \mathscr{C} . Then $(\mathscr{Z}^+, \leq_{\mathscr{C}})$ is a lattice if and only if it is directed above.

Theorem 9. Let \mathscr{C} be a convolution.

- (1). If $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ is a meet(join) semilattice, then so is $(\mathcal{N}, \leq_{\mathscr{C}}^p)$ for each prime p
- (2). If $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ is a lattice, then so is $(\mathcal{N}, \leq_{\mathscr{C}}^p)$ for each prime p.

Theorem 10. Let $\mathscr C$ be a multiplicative convolution such that $(\mathscr Z^+,/)$ is a meet semi lattice. For any $\alpha:\mathscr P\to\mathscr N^\infty$, let

$$I_{\alpha} = \{ n \in \mathcal{Z}^+ | \theta(n)(p) \leq_{\mathcal{L}}^{\mathcal{P}} \alpha(p) \text{ for all } p \in \mathcal{P} \}.$$

Then the following are equivalent to each other.

- (1). I_{α} is an ideal of $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ for any $\alpha : \mathscr{P} \to \mathcal{N}^{\infty}$.
- (2). $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ is directed below
- (3). $(\mathcal{Z}^+, \leq_{\mathscr{C}})$ is a lattice.

Proof. (2) \Leftrightarrow (3) follows from Theorem 8

 $(1) \Rightarrow (2)$: Let $\alpha : \mathscr{P} \to \mathscr{N}^{\infty}$ be defined by $\alpha(p) = \infty$ for all $p \in \mathscr{P}$. Then

$$I_{\alpha} = \{ n \in \mathcal{Z}^+ | \theta(n)(p) \leq_{\mathscr{L}}^{\mathscr{P}} \alpha(p) = \infty \text{ for all } p \in \mathscr{P} \}$$

and hence, by (1), \mathscr{Z}^+ is an ideal of $(\mathscr{Z}^+, \leq_{\mathscr{C}})$ which implies that $(\mathscr{Z}^+, \leq_{\mathscr{C}})$ is directed above. (3) \Rightarrow (1): From (3) and Theorems 8 and 9, it follows that $(\mathscr{N}, \leq_{\mathscr{C}}^p)$ is a lattice for each $p \in \mathscr{P}$

and $\theta(m \vee n)(p) = \theta(m)(p) \vee \theta(n)(p)$ in $(\mathcal{N}, \leq_{\mathscr{C}}^p)$ for any m and $n \in \mathscr{Z}^+$ and $p \in \mathscr{P}$. Let $\alpha : \mathscr{P} \to \mathscr{N}^{\infty}$ be any mapping. Then, for any m and $n \in \mathscr{Z}^+$,

$$m \leq_{\mathscr{C}} n \in I_{\alpha} \Longrightarrow \theta(m)(p) \leq_{\mathscr{C}}^{p} \theta(n)(p) \leq_{\mathscr{C}}^{p} \alpha(p) \text{ for all } p \in \mathscr{P}.$$

 $\Longrightarrow \theta(m)(p) \leq_{\mathscr{C}}^{p} \text{ for all } p \in \mathscr{P}.$
 $\Longrightarrow m \in I_{\alpha}.$

and

$$m$$
 and $n \in I_{\alpha} \Longrightarrow \theta(m)(p) \leq_{\mathscr{C}}^{p} \alpha(p)$ and $\theta(n)(p) \leq_{\mathscr{C}}^{p} \alpha(p)$ for all $p \in \mathscr{P}$.
 $\Longrightarrow \theta(m)(p) \vee \theta(n)(p) \leq_{\mathscr{C}}^{p} \alpha(p)$ for all $p \in \mathscr{P}$.
 $\Longrightarrow m \vee n \in I_{\alpha}$.

Therefore I_{α} is an ideal of $(\mathcal{Z}^+, \leq_{\mathscr{C}})$.

Now, we have the following Theorems which characterize the prime ideals of the lattice $(\mathcal{Z}^+, \leq_{\mathscr{D}})$ where \mathscr{D} is the Dirichlet's convolution.

Theorem 11. Let $\alpha: \mathscr{P} \to \mathscr{N}^{\infty}$ be a mapping and I_{α} is an ideal of $(\mathscr{Z}^+, \leq_{\mathscr{D}})$ defined by $I_{\alpha} = \{n \in \mathscr{Z}^+ | \theta(n)(p) \leq \alpha(p) \text{ for all } p \in \mathscr{P} \}$. Then the following are equivalent to each other.

- (1). I_{α} is a prime ideal of $(\mathcal{Z}^+, \leq_{\mathfrak{D}})$.
- (2). $\alpha(p) \neq \infty$ for some $p \in \mathcal{P}$ and for any β and $\gamma : \mathcal{P} \longrightarrow \mathcal{N}^{\infty}$,

$$\beta \land \gamma \leq \alpha \Longrightarrow \beta \leq \alpha \text{ or } \gamma \leq \alpha.$$

(3). There exists unique $p \in \mathcal{P}$ such that

$$\alpha(p) \neq \infty$$
 and $\alpha(q) = \infty$ for all $q \neq p \in \mathscr{P}$.

Proof. (1) \Longrightarrow (2) follows from Theorem 7, in which we have proved that $\beta \mapsto I_{\beta}$ is an isomorphism of the lattice $((\mathcal{N}^{\infty})^{\mathcal{P}}, \leq)$ onto the lattice of ideals of $(\mathcal{Z}^+, \leq_{\mathscr{D}})$ from the fact that $I_{\beta} \cap I_{\gamma} = I_{\beta \wedge \gamma}$ for any β and $\gamma : \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$. If $\alpha(p) = \infty$ for all $p \in \mathscr{P}$, then, since $\theta(n)(p) \in \mathscr{N}$ for all $n \in \mathscr{Z}^+$ and $p \in \mathscr{P}$,

$$I_{\alpha} = \{n \in \mathcal{Z}^+ | \theta(n)(p) < \infty\} = \mathcal{Z}^+$$

which is a contradiction to the fact that every prime ideal is a proper ideal. Thus $\alpha(p) \neq \infty$ for some $p \in \mathcal{P}$.

(2) \Longrightarrow (3): Suppose that α satisfies (2). Fix $p \in \mathcal{P}$ such that $\alpha(p) \neq \infty$. Then $\alpha(p) \in \mathcal{N}$. Now, define β and $\gamma : \mathcal{P} \longrightarrow \mathcal{N}^{\infty}$ by

$$\beta(q) = \begin{cases} 0 & \text{if } q = p \\ \infty & \text{if } q \neq p \end{cases}$$

and

$$\gamma(q) = \begin{cases} \infty & \text{if } q = p \\ 0 & \text{if } q \neq p \end{cases}$$

for any $q \in \mathcal{P}$. Then,

$$(\beta \land \gamma)(q) = \beta(q) \land \gamma(q) = 0 \le \alpha(q)$$

for all $q \in \mathcal{P}$ and hence $\beta \land \gamma \leq \alpha$. Since $\alpha(p) \neq \infty$ and $\gamma(p) = \infty$, $(\gamma)(p) \nleq \alpha(p)$ and hence $\gamma \nleq \alpha$. Therefore, by (2), $\beta \leq \alpha$ and hence

$$\infty = \beta(q) \le \alpha(q)$$
 for all $q \ne p$.

Therefore $q(p) = \infty$ for all $q \neq p$ in \mathscr{P} . This also implies the uniqueness of p. (3) \Longrightarrow (1): Let $p \in \mathscr{P}$ such that

$$\alpha(p) \neq \infty$$
 and $\alpha(q) = \infty$ for all $q \neq p \in \mathscr{P}$.

Then I_{α} is a proper ideal of $(\mathscr{Z}^+, \leq_{\mathscr{D}})$. Let J and K be any ideals of $(\mathscr{Z}^+, \leq_{\mathscr{D}})$ such that $J \cap K \subseteq I_{\alpha}$. Then there exists β and $\gamma : \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ such that $J = I_{\beta}$ and $K = I_{\gamma}$. Now, $I_{\beta \wedge \gamma} = I_{\beta} \cap I_{\gamma} = J \cap K \subseteq I_{\alpha}$ and hence $\beta \wedge \gamma \leq \alpha$ so that

$$Min\{\beta(p), \gamma(p)\} = (\beta \land \gamma)(p) \le \alpha(p).$$

Therefore $\beta(p) \leq \alpha(p)$ or $\gamma(p) \leq \alpha(p)$. Since $\alpha(q) = \infty$ for all $q \neq p$, it follows that $\beta \leq \alpha$ or $\gamma \leq \alpha$ and hence $I_{\beta} \subseteq I_{\alpha}$ or $I_{\gamma} \subseteq I_{\alpha}$. Therefore $J \subseteq I_{\alpha}$ or $K \subseteq I_{\alpha}$. Thus I_{α} is a prime ideal of $(\mathcal{Z}^+, \leq_{\mathscr{D}})$.

Definition 11. For any prime number p and $a \in \mathcal{N}$, define

$$I_{p,a} = \{ n \in \mathcal{Z}^+ | \theta(n)(p) \le a \}.$$

Then $I_{p,a}$ is an ideal of $(\mathcal{Z}^+, \leq_{\mathscr{D}})$. In fact $I_{p,a} = I_a$, where $\alpha : \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ is defined by

$$\alpha(q) = \begin{cases} a & \text{if } q = p \\ \infty & \text{if } q \neq p \end{cases}$$

Note that $I_{p,a} = \{n \in \mathcal{Z}^+ | p^{a+1} \text{ does not divide } n\}.$

Theorem 12. An ideal of $(\mathcal{Z}^+, \leq_{\mathscr{D}})$ is prime if and only if it is of the form $I_{p,a}$ for some $p \in \mathscr{P}$ and $a \in \mathscr{N}$.

Proof. Let I be an ideal of $(\mathcal{Z}^+, \leq_{\mathscr{D}})$. Then $I = I_{\alpha}$ for some mapping $\alpha : \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$. Now, by Theorem 11, I is prime \iff there exists $p \in \mathscr{P}$ such that $\alpha(p) \neq \infty$ and $\alpha(q) = \infty$ for all $q \neq p$ and $I = I_{\alpha} \iff I = I_{p,a}$, where $\alpha = \alpha(p)$.

Theorem 13. For any p and $q \in \mathcal{P}$ and a and $b \in \mathcal{N}$,

$$I_{p,a} \subseteq I_{q,b} \iff p = q \text{ and } a \le b$$

REFERENCES 25

Proof. If p = q and $a \le b$, then

$$n \in I_{p,q} \Longrightarrow \theta(n)(p) \le a \le b$$

 $\Longrightarrow \theta(n)(q) \le b$
 $\Longrightarrow n \in I_{q,b}$

and hence $I_{p,a} \subseteq I_{q,b}$. Conversely suppose that $I_{p,a} \subseteq I_{q,b}$. If $p \neq q$, then

$$\theta(q^{b+1})(p) = 0 \le a$$

and hence $q^{b+1} \in I_{p,a} \subseteq I_{q,b}$ so that $\theta(q^{b+1})(b) \le b$, which is a contradiction. Therefore p = q. Now, since $\theta(p^a)(p) = a$, $p^a \in I_{p,a} \subseteq I_{q,b}$ and hence $a = \theta(p^a)(q) \le b$. Thus p = q and $a \le b$.

The following are immediate consequences of Theorems 11,12 and 13.

Corollary 2. For each $p \in \mathcal{P}$, let $\mathcal{P}_p = \{I_{p,a} | a \in \mathcal{N}\}$. Then the following hold.

- (1). \mathscr{P}_p is a chain of prime ideals of $(\mathscr{Z}^+, \leq_{\mathscr{D}})$ for each $p \in \mathscr{P}$.
- (2). $\mathscr{P}_p \cap \mathscr{P}_q = \phi$ for all $p \neq q \in \mathscr{P}$.
- (3). $\bigcup_{p\in\mathscr{P}}\mathscr{P}_p$ is the set of all prime ideals of $(\mathscr{Z}^+,\leq_{\mathscr{D}})$.

Corollary 3. I is a minimal prime ideal of $(\mathcal{Z}^+, \leq_{\mathfrak{D}})$ if and only if

$$I = I_{p,0} = \{n \in \mathcal{Z}^+ | p \text{ does not divide } n\}$$

for some $p \in \mathcal{P}$.

References

- [1] S. Sagi. *Lattice Theory of Convolutions*, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010.
- [2] U.M. Swamy, G.C. Rao, V. S. Ramaiah. On a conjecture in a ring of arithmetic functions. *Indian Journal of Pure and Applied Mathematics*, 14(12), 1519-1530. 1983.
- [3] U.M. Swamy, S. Sagi. Lattice Structures on \mathcal{Z}^+ induced by convolutions. *European Journal of Pure and Applied Mathematics*, 4(4), 424-434. 2011.
- [4] U.M. Swamy, S. Sagi. Partial Orders induced by Convolutions. *International Journal of Mathematics and Soft Computing*, 2(1), 2011, 25-33.