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MIXED P R O B L E M S F O R L I N E A R AND Q U A S I L I N E A R 
PSEUDOPARABOLIC EQUATIONS* 

M.H.ÎLYASOV and N.M.İLYASOVA 

Abstract 

In this article, the integral operator method has been used for the 
solution of mixed problems for an inhomogeneous pseudoparabolic 
equations.The obtained solutions are constructed on the basis of the 
solutions of corresponding problems for the parabolic equations and are 
represented by the integral of the multiplication of these solutions by a 
generalized functions, which are the generalized solutions of spesific 
differential equation of hyperbolic type.This functions are determining the 
hereditary properties of the medium which fills the region where the 
physical event is examined shows the effect of this property to the solutions 
we are trying to find. The formulas which were obtained are considered as 
the consistency principles of the solutions of the problems which were put 
forward for parabolic and pseudoparabolic equations. Corresponding 
problems for pseudoparabolic quasilinear equation with linear principal part 
are investigated on the basis of having constructed solutions for linear 
problems. 

Keywords: Pseudoparabolic equation, mixed problem, deneralized 
function, fundamental solution, quasilinear equation. 

A M S subject classification: 35K15; 35K20; 35Q35. 

I.Introduction 

The theoiy of heat conduction in medium with memory based on the 
postulates of balance of energy and the entropy production inequality has 
already been proposed and studied in many works [1,2]. Various models and 
the generalized cases of this theory to R" are investigated in [3-7] (see also 
the referance of this work). 
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Istanbul, Project number 928/090597 



The purpose of this work is to investigate the solutions of mixed 
problems for the pseudoparabolic equation 

Lu + vLu + f(x,t) = u , x = (x ,x ) (1.1) 

where v is a constant, L is an elliptic operator while the coefficients 
are independent of t . This equation describes the heat conduction in 
medium with memory corresponding to the Kelvin's model [1]. In [8] 
Kelvin's model used for the problem of sound propagation in a viscous gas 
(see also [9]). 

In [10] the authors solved a generalized mixed boundary value 
problem for the pseudoparabolic equation of the form Mut +Lu = f, where 
M and L are second order differential operators in the space variable and 
M is elliptic. They proved existance, uniqueness and regulariti of the 
solution and discussed its asymptotic behavior. Some theoretical problems 
of these and other partial differential equations are investigated in the 
monograph [11], which we refer for discussion and bibliography of work 
concerning problems of this type. We represent the solution of considered 
problem by the integral 

u(x, t) = jL>(x, r)w(t, r)dr (1.2) 
o 

where u(x,t)\s the solution of corresponding problem for the parabolic 
equation arised from (1.1) when v = 0 and w(t,r) is the generalized 
solution of an auxiliary problem for a linear differential equation of 
hyperbolic type. 

We call the relation (1.2) the correspondence principle of the solutions 
of mixed problems for the equations of pseudoparabolic and parabolic type. 
The solutions of the parabolic equations which were obtained by exact, 
approximate of numerical methods don't cause any difficulty while one 
transfers them to the proper solutions of pseudoparabolic equations. The 
function w(t,r) depends neither on the form of medium (domain) nor on 
the initial and boundary conditions. It does not also depend on the medium 
being homogeneous or inhomogeneous (on the coefficients of equation), but 
depends only on the hereditary property of medium, and characterizes the 
influence of this property on solutions. I t w i l l be called the kernel of 
influence. 
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The homogeneous boundary value problem, inhomogeneous 
pseudoparabolic equation and inhomogeneous boundary conditions w i l l be 
investigated separately. Behaviour of solution when v —> 0 , and for large 
and small values of time w i l l be investigated, too. Solutions of 
corresponding problems for a quasilinear pseudoparabolic equation 

Lu + vLu + F(x,t,u,u ) = w , u =(w ,---,u ) (1.3) 
/ X t X X X 

1 H 
with linear boundary conditions w i l l be found using constructed solutions 

for linear problems. 
As an example the mixed problem for equation (1.3) has been 

considered when L is a self-adjoint operator of the second order, on the 
bounded domain. In the special case of L = A (Laplace operator) Cauchy 
problem is considered as well as the mixed problem with Dirichlet and 
Neumann boundary conditions for a half space and infinite strip. In [12] 
considering method has been used for solving some nonstationary dynamic 
problems for viscoelastic materials. 

I I . Statement of the Problem 

Let fici?" be a nonempty open bounded or unbounded (half-
space, infinite strip, etc.) domain with the boundary S , which we w i l l 
assume to be a piecewise smooth surface. In a cylinder Q = fix (0,7") , let 

us consider a mixed problem for the linear pseudoparabolic equation 
Lit + vLui +f(x,t) = u (x, t) e Q , (2.1) 

u\ = 0 xeQ, (2.2) 
'(=+0 V ' 

5M = 0 xeS, te(0,T) (2.3) 
where L = L(x,d\dx) is an elliptic operator, v is a positive constant, 
B = B(x, d | dx) is a linear boundary operator and T is a positive finite 
number or + oo. 

We say that u = u(x,t) is a solution of the problem (2.1)-(2.3) i f all 
the derivatives of u which occur in (2.1) are continuous functions in , 

all the derivatives of u which occur in (2.3) are continuous on 

fix(0,r), fi = fiu1S', and satisfies (2.1) at each point (x,t)eQ , satisfies 

(2.2) at each point x e f i , and satisfies (2.3) at each point (x,t) eSx(0,T). 
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We w i l l suppose that data (the function fand the coefficients of the 
operators L and B) of the problem satisfy the necessary smoothness 
conditions for existence of a unique classical (or generalized) solution of 
corresponding problem for parabolic equation, which arises from (2.1)-(2.3) 
when [13].Under the same conditions we w i l l construct a unique classical 
(or generalized) solution of corresponding problem for parabolic equation 
(2.1)-(2.3) 

III.Solution of the Problem 

Let us construct the solution of the problem (2.1)-(2.3). We call 
the solution Gv (x, t) of the problem 

Gv -LGv-vLGv =S(t)S(x-£), (x,t)eQ, (3.1) 

G"(x,£,+0) = 0, X G Q , (3.2) 

BGv\s = 0, (3.3) 

the Green function o f the problem (2.1)-(2.3). 
Let us suppose that the solution G(x ,£ , r ) of the following problem for 

parabolic quation 
LG = G , x e O , T > 0 , (3.4) 

r 

G(x,£,+0) = <S(x-£), x e f i , (3.5) 

BG\s=0, (3.6) 

is known. 

Now let us consider a solution m (t, r ) of the following problem 

co + co +vco =S(t)S(j), (3.7) 
r / (T 

a)(0,T) = 0;a> (f,0) = 0,fi> (f,0) = 0,io - > 0 , r - > o o . (3.8) 

Theorem 3.1. The generalized solution of the problem (3.1)-(3.3) is 
co 

Gv (x, 0 = jG(x, £,T)(D (t, r)dr (3.9) 
0 

where G(x, r ) and co (t, r) are the generalized solutions of the problems 
(3.4)-(3.6) and (3.7),(3.8) respectively. 

Proof: Putting (3.9) into (4.1), and assuming the possibility of 
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differentiation with respect to coordinates and t under the integral sign, we 
obtain 

cc 00 CO 

pco d-u-fo LGdr - v ^oLGdr = S{x - %)S(t). 
0 0 0 

Using the equation (3.4) and the conditions (3.8), after integrating by parts 
we have 

CO 

p(co +a) +vco )dT = S(x-%)S(t). 
0 

Taking into account (3.5) and (3.7), this equation is satisfied 
identically. The initial condition (3.2) is satisfied by virtue of the condition 
co (0,r) = 0, and the boundary condition (3.3) follows from (3.6). 

The theorem is proved. 
Let us construct the solution of problem (3.7),(3.8). The Laplace 

transformations with respect to t and r gives 

m (p,X) = . 
p + X-vvpX 

After inverse transformations we get 

co (t,T) = -H(t)H(T)e<,+r)lvI (-yftr) (3.10) 
V 0 V 

Theorem 3.2. The function co (t,r) , represented by the formula 

(3.10), is a generalized solution of the problem (3.7), (3.8). This function is 
nonnegative, vanishes when t<0 and x < 0 , and when t —> GO, T —> oo, is 

infinitely differentiable at (t, r) ^ (0,0), and is locally integrable in R1. 
Besides, 

co 

jfo(t,T)dT = H(t). (3.11) 
0 

Proof: The function (3.10) satisfies the equation (3.7) because of the 
following expressions 
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-8{T)H(t)e"v -\H(t)H(T)e-^[I - -J 
V V 0 \T 

vco = <?(r)£(0 --^(r)/f(Oe"' / , / --S{t)H(T)erlv 

tr V V 

+ ± f f ( O W * [ 2 / o - ^ 7 - ^ / ] . 

The validity of the conditions (3.8) is clear. The infinite differentiability of 
(3.10) in the region (t,r) ^ (0,0) comes from the infinite differentiability o f 
the functions, included in (3.10). So, we have 

\co{t,T)dr = ̂ - e - " v \erlvI (-StJr~)dT = H(t). 
o v +o ° V 

The proof of the theorem is complete. 
The solution of the problem (2.1)-(2.3) is represented by the convolution 

of functions Gv (x,%,i)md f{x,t) 

no 

= - Hfax,£rK('+r-")/l7 ( - - 7 ) ) / ( £ z ? ) ^ ^ . (3-12) 

Here d§ = d^---d^. 

Theorem 3.3. If f(x,t)eC(Q ) and f = 0 for t<0, then the 

function(3.12) is a solution of the problem (2.1)-(2.3). 
Proof: From (3.12) we get 
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ur-\\G{x^,r)erlvf^,t)dzd^ 

-\(ip(x,^r)e-^-'^M>ri)U0 - X^-I ^drjdtd^ (3.13) 

Lu^-\\^Ge{,"-',yvf{^,n)ldT]dTd4. 

Here the argument —yjr(t-rj) of Bessel functions I^ and 1^ has not 

been written for the sake of the conciseness. Using (3.4) in the last equality 
we find 

Lu = --k°-")lvf(x,ri)dri 

1 ' 1 0 Ft 
+ \\\\Gfe-^lv[Ia -JLJLlJdTdTjd^, (3.14) 

v no+o " T 

which is obtained by integrating by parts. 
By the same way from (3.13) we find 

vLu = - / ( * , ' ) + - lk(l-',yvf(x>r])dTj+- \\Gf(£,t)eTlvdTd$ 
I V J V JJ 

V 0
 v

 O+O 

- 4 - { j W ^ ^ p / - & - & ]drdndZ. (3.15) 

Substituting (3.13), (3.14) and (3.15) in (2.1) we show that the 
function (3.12) satisfies the equation (2.1). 

The validity of the initial condition (2.2) is clear, and the boundary 
condition (2.3) is satisfied by virtue of (3.6). 

It is easily shown that the functions under the integral sign in 
(3.12)-(3.15) are continuous on the corresponding domains. Moreover, 
using the boundedness of the integral (see [15]) 

p(x,Z,T)dt, 
n 

and the value of integrals 
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i ] / 0 f ^ V ^ V - ( ' + r ) / v , = i . 
y 0

J vv ; 

VJ

n\T [V 

-(/ +r)A <ir = l-e t>0, 
0 

~(l+T-t])/\> -)di = v, (3-16) 
] t-r/ ^v^(t-7]Y 

it is easily proved that the integrals included in the formulas (3.12)-(3.15) 
are uniformly convergent on . The theorem is proved. 

Carrying out the same procedure for the function coit, r), we get the 
following asimptotic expressions 

co (t,r) ~ 2(tr)"4 H{t)H{r)S{^ -Jt) 

for v —» 0, and 

2T t V t 
for t » l 

Using (3.18), we find 

(3.17) 

(3.18) 

Ja> (t~Tj,T)dri = l for T < t, and = 0 for r > t ,(3.19) 

For ¿ « 1 we get 

p> (t,r)d T = e -rlv {\-e"v) (3.20) 

Using (3.17) and (3.18) in (3.9), in both cases we get Gv~ G, i.e. in 
the first case the solution of the mixed problem for pseudoparabolic 
equation changes into the solution of corresponding problem for parabolic 
equation. The second result shows that for sufficiently large values of time 
the effect of hereditary property of medium vanishes. 

IV.Quasilinear Equation 

Let us consider the problem 
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Lu + vLit + F(x,t,u,u ) = w (x,t)eQ , (4.1) 
i x I T 

u\ = 0 xeQ, (4.2) 
;=+o 

£ » = 0 xeS,te(0,T), (4.3) 

where w = (u ,---,u ) . 
.V -V .V 

1 n 

We shall assume the following condition on the function F : 
1°. The function F is defined and continuous on the set 

{(.x,t,u,p)\(x,t)eQT,-co<u<co)-co<pi < oo, i = l,n, p = (_pj _ )} ; 
2° . For each c > 0 and for I w U / ' \<c i = l,n , the function F is 

uniformly H'lder continuous with respect to x and t on each compact 
subset of ; 

3°. There exists a constant C such that 
F 

\F{x,t,u p\---,p l)-F(x,t,u p2,---,p 2 ) | 
1 1 n 2 1 n 

^Cr[\"-"2\+£\P*-p2 I] (4-4) 

holds for all (u ,p p ' ) , / = 1,2; 
t 1 ii 

4 ° . For unbounded , we add the assumption that F is bounded 
for bounded u and p . 

Theorem 4.1. Let there exists unique solution G(x, r) of the linear 

problem (3.4)-(3.6), for the parabolic equation, and the conditions V - 4 ° 
holds for the function F . Then, there exists a unique bounded solution 
u = u(x,t) of the problem (4.1)-(4.3) that is the unique solution with 
bounded continuous derivative u of the integrodifferential equation 
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1 0 0 ' 9 
u(x,t) = - l l p i x ^ e ^ - ^ I ^ T i t - T j ) ) 

V -KXÎO V 

x F ( £ 7, w ( £ 77), (£ ij))drjd%dT. (4.5) 

Proof. The equation (4.5) is obtained from the solution (3.12) of the 
linear problem (2.1)-(2.3) by formally substituting the function f{x,t) to 

the F(x,t,u,u ) . From (4.5) we find 

co I 

\ [[pe-^-^U, - -i-ItWit^M^rîlu^^dtjd&T, 

1 / 
Lu = --!-t!-<l+T-''VvF(x,ij,u(x,t]),ux(x,T]))clTi 

V 0 

1 0 0 ' It — 
+ — J J ^ e ^ ^ t / o - J — / J F ( # , 7 M ^ ) , ^ ( ^ ) W ^ , (4.6) 

^ +ono * T 

vLu = -F(x,t,u,u ) + — \eH'"nVvF{x,n,u{x,T]),u {x,7]))dri 
v t 

I 
v 

+ - jpe-"vF(Ç,t,utf,0,u{(£,t))dÇdT 

- - T )\P^T~n)'V
 [2/ 0 - Jjf-It ~ J^-It F ( £ , »7, «(£.7). «, (£, V))drid^dr. 

v +ono \ t T V T 

Continuities of the under the integral signs follows from the 
continuities of the functions G(x, T ) , exp(-yl v) , I0 (y) and 7, (y)/y 

on the corresponding domains and from the conditions 1° and 2° for the 
function F . Uniform convergence of these integrals follows from the 
boundedness of the functions above on the corresponding domains, and the 
conditions 3° and 4° for the function F and 
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p(x,{,r)di<MQ, (4.7) 
n 

where M0 is a positive constant (see [13]-[15]). 
By virtue of (4.6), the function u(x,t) satisfies the equation (4.1). From 
(4.5) we get 

u(x,+0) = 0, 
< CO I 

Bu\ = - f f feG | e-^-^I Fdtjd^dr = 0 
K +ono 

Thus, i f w(x,/) is the solution of integrodifferential equation (4.5), it 
is also a solution of the problem (4.1)-(4.3). Let us show that the solution of 
the integrodifferential equation (4.5) exists. The set 

Er = {z(x,t) \z,zx e C(Qr),\\ z\\r<co}, 

where Qy = Q. x (0, y], and 
H 

II z II, = sup I z(x,t) I sup I ̂  (JC,o I, 

is a Banach space. The mapping 

Az(x, t) = - ] (|G(X, £ r ) e - ( ' + r - " ) / l 7 0 ( - ^(t-tjVFtf, rjt z(£, ij\ z, (<f, rj^drjd^dr 
v +ono 1 / 1 

for (x,t) G £> y, maps Ey into ^ . By virtue of (4.4) and (4.7), we see that 

CF | |z 2 - z , || r M 0 x /o r 1 « t<y, 

CF\\z2-zl\\yMQv{\-e"v) for0<t<r« 1, 

and 

v4z, (x, i ) - Az2 (x, / ) |< • 
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dAz, , ^ dAz2 r N 

—Hx,t)~—Hx,o 
OX- ox. 

\CF || z, -z2 II, Mj for 1 «t<y, 

^\Cp\\z,-z1\\rMlv{\-e->'v) forO<t<y« 1, 'F II ^"1 " 2 11/ 

where (see [13]-[15]) 

} | | ^ ( x , ^ r ) | ^ < M , . 

Combining these formulas, it follows that 
rCF\\z]-z2\\y My for 1 « t<y, 

Az.-Az1\\<, . 
2"' \CF\\z,-z2\\rMv{\-erlv) forO<t<y«l, 

where M = .We select y such that 

CFMy<\emd or CFMv{\-ey,v) < 1. 

Hence, 4̂ is a contraction of Ey into Ey. Thus, A has a unique fixed 

point. In other words, there exists a unique function w such that u = ^ t / . 
Existence of the solution of the integrodifferential equation (4.5) 

for any finite T may be shown as was done in [15]. Solution of the problem 
(4.1)-(4.3) may be constructed by the Picard's iteration method from (4.5). 

V. Examples 

1. Let us consider the Cauchy problem 

Ati + vAw +F(x,t,u,u) = iii x e R", t e (0,T]\ u | = 0 x e R", (5.1) 

where 
d2 

dx2 8x2 

1 » 

is the Laplacian. I f the function F satisfies conditions 1° - 4 ° of sec.4, w 

is continuously differentiate and u andu are bounded, the problem 

(5.1) posseses a unique solution u = u(x,t) that is the unique solution with 
bounded continuous derivative u of the integrodifferential equation 
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1 0 0 ? 

y J J 0 0 y 
+0«" 

1 0 0 ' ? 
+ i J J J r B ( * - £ r ) e ^ y ^ 

Where 

r „ ( * , 0 = n n 2 / 4 t > t>o, (5.2) 
( 4 * 0 H / V | v | / 4 ' 

is a fundamental solution of the heat conduction equation, 

| x | 2 = x 2 + - - - + x 2 . 
1 1 1 II 

2. Suppose that f i is a half-space 
f2 = {x I x = (x , • • •, x ) e Rn~x ,x e (0, oo)}. Let us consider the problem 

1 n-l n 

Au + vAu +F(x,t,u,ux) = ii (x,t)eQ =Q.x(0,T], 

u\ = 0 x e Q , (5.3) 
'(=+0 V ' 

w| = 0 x'eR"~\ te(0,T]. 
*„=0 

I f the function F satisfies conditions 1° - 4 " of sec.4, than the 
problem (5.1) posseses a unique solution u = u(x,t) that is the unique 

solution with bounded continuous derivative u of the integrodifferential 

equation 

1 e 0 ' 1 
w(x,0 = - H J £ ( * , £ < ) e ^ ^ 

^ +oon ^ 

where 
/C(x,^ , r ) = r , M ( x ' - i ' , r ) [ r i ( x , r ) - r , ( x + £ , r ) ] , r > 0 . 

« II II II 

3. In the half-space fi let us consider the problem (see [13] p.265) 
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Àw + vÀw +F(x,t,u,ux) = Ui (x,t)eQT, 

u\ = 0 x e f i , (5.4) 
/=+o 

ÏP.~\ = n = 0 *'e*"~'> ' 6 ( 0 , 7 1 , 
1=1 U A

j n 

where b are certain real constants with b ^ 0. I f the function F satisfies 
I n 

conditions V - 4" of sec.4 then there exists a unique bounded solution 
u = u(x,t) of the problem (5.4) that is the unique solution with bounded 
continuous derivative u of the integrodifferential equation 

X 

1 0 0 ' 1 
u(x,t) = - JJjK,(*,£r)e- ( , + r -" y , 7 o (-Vr(f- t jVF&rjrt&riM&TjVd&tjdT, 

v +oon ^ 
where 

KAx,£,t) = G(x -£',x -£. ,r) + G(x -£',x +£ ,v), t>0. 
n n n n 

4. Suppose that Q. is an infinite strip Q. = {x \ x e R"~\x G (0,1)}. Let us 

consider the problem 

Au + vAu + F(x,t,u,ux) = u f (x,t)eQr> 

ti I = 0 x e D., 

u I = Q = 0 x e R"-\ t e (0,T], (5.5) 

« I = 1 = 0 x e 2?""', / e (0 ,2" ] . 

I f the function F satisfies conditions 1° - 4° of sec.4 then there exists 
a unique bounded solution u = u(x,t) of the problem (5.5) that is the unique 
solution with bounded continuous derivative u of the integrodifferential 

X 
equation 

uix^^-^U^ix -^,x -$ ,T)-<b{x-?,x + | , T ) ] E - ( ' + R - " ) / • ' 
v +oon 

,2 
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where 

0 ( x , r ) = £)r„(x' ,x + 2 w , r ) = r „_ 1 (x>) ^ r , ( x + 2m,r), r > 0 , 

and r, ((x,/) is defined by (5.2). 
5. In the strip Q let us consider the problem 

Au + vAw +F(x,t,u,ux) = u (x,t)eQ 

u\ = 0 x e i l (5.6) 

9« 
Z 6 - i H =o = 0 x ' e i r ' ' Mo,?1], 

5w E ^ U r 0
 xeBT\ te(0,T], 

I f the function F satisfies assumptions l ° - 4 ° o f sec.4 then there exists a 
unique bounded solution u = u(x,t) of the problem (5.6) that is the unique 

solution with bounded continuous derivative ux o f the integrodifferential 
equation 

„(, , /) = ! mpF(x -4\x ,T) + W ( X - ^ , X +£ ,x)]e-^-")lv 

\f J J J n n n n 
v +oon 

x I0 (-*jT(t-T)))F(4,Tj,u(Z,Ji),u((4,Ti))d!;dtidT, 

where 
CO 

VF(X,T)= YG(X',X +2W,T), r > 0 , 

and (J(X,/) is defined as 

( 4 ^ ) " / 2 6 2 

, b2x-b(bx) -iM »f , 

\b\4t l_ 
, / > 0 . 
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