THE NECESSARY CONDITIONS OF OPTIMALITY IN INEQUALITY TYPE FOR ONE NONSMOOTH PROBLEM

Erhan Ozdemir, Musa Agamaliyev and A.G.Agamaliyev

Abstract: Necessary conditions of optimality of the first order inequality type for the problems of optimal control described by the of extreme-differential equations and quality criterion maximum type are obtained in this paper.type maximum principle of Pontryagin are obtained.

Keywords: Optimal control, nonsmooth analisus,differential equations

AMC Classifcation Number: 49J52,49K15,49K30,49K35
Consider the following minimization problem

$$
\begin{equation*}
I(u)=\max _{a \in A} \int_{0}^{1} F(a, t, x(t), u(t)) d t \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \dot{x}(t)=\max _{q \in Q} f(q, t, x(t), u(t)), \quad x\left(t_{0}\right)=x_{0}, \tag{2}\\
& u(t) \in U \subset R^{r} \tag{3}
\end{align*}
$$

where $x(t) \in R^{m}$ is a vector-function of phase variables, t_{0}, x_{0} are fixed, t_{1} is free. $Q \subset R^{s}, B \in R^{l}$ are given compacts, m-dimensional vector-function $f(q, t, x, u)$ and $F(a, t, x, u)$ is continuons together with the first-order partial derivatives with respect to t, x on $Q x\left[t_{0}, t_{1}\right] x R^{m \prime} x U$, besides

$$
\begin{aligned}
& \min _{q \in R(t, x, u)} f_{i}(q, t, x, u), \max _{q \in R(t, x, u)} f_{i}(q, t, x, u) \\
& \min _{q \in R(t, x, u)} f_{x}(q, t, x, u), \max _{q \in R((t, x, u)} f_{x}(q, t, x, u)
\end{aligned}
$$

are bounded on $Q x\left[t_{0}, t_{1}\right] x R^{m} x U$,

$$
R(t, x, u)=\left\{q \in Q: \max _{\bar{q} \in Q} f(\bar{q}, t, x, u)=f(q, t, x, u)\right\}
$$

$F(a, t, x, u)$ is continuons together with the first-order partial derivatives with respect to t, x on $A x\left[t_{0}, t_{1}\right] \times R^{m} x U$.

The system (2) implies that for each component maximum is taken separately. By this we mean that the set of q parameters for each row,
generally speaking, differs from the corresponding set for any other row. Thus,

$$
f:(q, x, u)=\left\{\begin{array}{c}
f_{1}\left(q_{11}, \ldots, q_{1 s}, x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{r}\right) \\
f_{2}\left(q_{21}, \ldots, q_{2 s}, x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{r}\right) \\
\left.\ldots \ldots \ldots, \ldots \ldots, \ldots, x_{m}, \ldots, u_{1}, \ldots, u_{r}\right) \\
f_{m}\left(q_{m 11}, \ldots, q_{m s}, \ldots, x_{m}, u_{1}, \ldots\right.
\end{array}\right.
$$

there, no direct connection among the maximization s of distinct rows, generally speaking, exist. In fact, here, various components are dependent on differing parameters and the maximization is derived from the set of parameters in $\mathrm{QxQx} . . \mathrm{xQ}$.

Under the above assumptions to every adimisible control $u(t)$, $t \in\left[t_{0}, t_{1}\right]$ corresponds the unique solution $x(t)$ of system (2) defined on $\left[t_{0}, t_{1}\right]$.

Let $x(t), t \in\left[t_{0}, t_{1}\right]$ be the solution of equation (2) corresponding to an admissible control $u(t)$.
Assume also that for every $v \geq 0, \tau \in[0,1]$ the following condition is satisfied

$$
t_{1}-t_{0}=\int_{0}^{1} v(\tau) d \tau
$$

Analogously to the case of [1] one can show that if a measurable rdimensional vector-function $w(\tau)$ assuming values in U are such that the equality $w(\tau)=u(t(\tau))$ is satisfied almost everywhere on

$$
\Delta(v)=\{\tau \in[0,1]: v(\tau)>0\}
$$

where $t(\tau)=t_{0}+\int_{0}^{\tau} v(s) d s, \quad \tau(t)$ is the inverse to $t(\tau)$, then function $y(\tau)=x(t(\tau))$ is a solution of the following equation

$$
\begin{equation*}
\dot{y}(\tau)=v(\tau) \max _{q \in Q} f(q, t(\tau), \dot{y}(\tau), w(\tau)) \tag{5}
\end{equation*}
$$

Conversely, if $w(\tau)$ is bounded and measurable on $\Delta(v)$ and assumes values in U and $y(\tau)$ is a solution of equation (5) corresponding to
control $v(\tau) \geq 0, \quad \tau \in[0, i]$, then $u(t)=w(\tau(t))$ is an admissible in problem (1)-(4) control and $x(t)=y(\tau(t))$ is the solution of equation (2) corresponding to control $u(t)$.

Let $\left(x_{*}(t), u_{*}(t), t_{1}^{*}\right)$ be an optimal solution to problem (1)-(4). Then $t_{*}(\tau), y_{*}(\tau)=x_{*}\left(t_{*}(\tau)\right), v_{*}(\tau)$ is a solution to the following reduced problem:

Minimize

$$
\begin{equation*}
I(u)=\max _{a \in A} \int_{0}^{1} F(a, t, x(t), u(t)) d t \tag{6}
\end{equation*}
$$

subject to

$$
\begin{array}{cc}
\dot{y}(\tau)=v(\tau) \max _{q \in Q} f(q, t(\tau), y(\tau), w(\tau)) \\
t(\tau)=v(\tau), & t(0)=t_{0} \\
& v(\tau) \geq 0, \tag{9}\\
\tau \in[0,1]
\end{array}
$$

Where

$$
\begin{aligned}
& t_{*}(\tau)=t_{0}+\int_{0}^{v_{*}}(s) d s \\
& \nabla\left(v_{*}\right)=\left\{\tau \in[0,1]: v_{*}(\tau)>0\right\}
\end{aligned}
$$

$w(\tau)$ is a given r -dimensional vector-function assuming values in U an satisfying

$$
w_{*}(\tau)=u_{*}\left(t_{*}(\tau)\right)
$$

aimost every where on $\Delta\left(v_{*}\right)$
Again similar to $[1]$ one can show that $\left(t_{*}(\tau), y_{*}(\tau), z_{*}(\tau)=0, \nu_{*}(\tau)\right)$ is the unique quadruple providing the minimum to the following functional

$$
\begin{equation*}
I(v)=\max _{a \in A} \int_{b}^{1} v(\tau) F(a, \tau, x(\tau), u(\tau)) d \tau+\int_{0} z^{2}(\tau) d \tau \tag{10}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \dot{y}(\tau)=v(\tau) \max _{q \in Q} f(q, t(\tau), y(\tau), w(\tau)), y(0)=x_{0}, \tag{11}\\
& i(\tau)=v(\tau), \quad t(0)=t_{0} \tag{12}\\
& \dot{z}(\tau)=\left|v(\tau)-v_{\mathbf{*}}(\tau)\right|, z(0)=0 \tag{13}\\
& v(\tau) \geq 0, \quad \tau \in[0,1] \tag{14}
\end{align*}
$$

Let a sequence of vector-functions $f_{:}^{n}(t, x, u)$ converge uniformly (jointly on variables) to the function $\max _{q \in Q} f(q, t, x, u)$ for $n \rightarrow \infty$ and let the following inequalities are satisfied

$$
\begin{align*}
& \min _{q \in R(t, x, u)} f_{x}(q, t, x, u)-\frac{1}{n} \leq f_{x}^{n}(t, x, u) \leq \max _{q \in R(t, x, u)} f_{x}(q, t, x, u)+\frac{1}{n} \tag{15}\\
& \min _{q \in R(t, x, u)} f_{:}(q, t, x, u)-\frac{1}{n} \leq f_{:}^{n}(t, x, u) \leq \max _{q \in R(t, x, u)} f_{t}(q, t, x, u)+\frac{1}{n} \tag{16}
\end{align*}
$$

The problem of minimization offunctional

$$
I(v)=\max _{a \in A} \int_{0}^{1} v(\tau) F(a, \tau, x(\tau), u(\tau)) d \tau+\int_{0}^{1} z^{2}(\tau) d \tau
$$

subject to condiditions (12)-(14) and
$\dot{y}(\tau)=v(\tau) f^{n}\left(t(\tau), y(\tau), w_{*}(\tau)\right) \quad, \quad y(0)=x_{0}$
has a solution $\left(t_{n}(\tau), y_{n}(\tau), z_{n}(\tau), v_{n}(\tau)\right)$.
Denote

$$
p_{n}(\tau)=\max _{a \in A} \int_{0}^{\tau} v_{n}(s) F\left(a, s, y_{n}(s), u(s)\right) d s+\int_{0}^{\tau} z_{n}^{2}(s) d s
$$

Cleary

$$
\begin{aligned}
p_{n}(1)= & \max _{a \in A} \int_{b}^{d} v_{n}(\tau) F\left(a, t_{n}(\tau), y_{n}(\tau), w_{*}(\tau)\right) d \tau+ \\
& +\int_{b}^{a} z_{n}^{2}(\tau) d \tau \leq \max _{a \in A} \int_{0}^{1} v_{*}(\tau) F\left(a, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right) d \tau
\end{aligned}
$$

By Arzela criterion there exist uniformly converging sequences

$$
p_{k}(\tau) \rightarrow p(\tau), y_{k}(\tau) \rightarrow y(\tau), z_{k}(\tau) \rightarrow z(\tau) \text { for } k \rightarrow \infty
$$

By virtue of convexity of isystems

$$
\begin{gathered}
\dot{p}=v \max _{a \in A} F\left(a, t, y, w_{*}(\tau)\right)+z^{2} \\
\dot{y}=v \max _{q \in Q} f(q, t, y, w(\tau)), \quad v \geq 0 \\
\dot{t}(\tau)=v(\tau)
\end{gathered}
$$

$$
\begin{aligned}
& \dot{z}(\tau)=\left|v(\tau)-v_{\star}(\tau)\right|, \\
& v(\tau) \geq 0
\end{aligned}
$$

functions $p(\tau), y(\tau), z(\tau)$, satisfy it for some control $v(\tau) .(\operatorname{Sec}[7])$. Quadruple $(t(\tau), p(\tau), y(\tau), z(\tau))$ satisfies conditions (9)-(13) woreover

$$
I(\nu)=p(1) \leq I\left(v_{*}\right)
$$

It follows from the uniqueness of optimal quadruple $\left(t_{*}(\tau), y_{*}(\tau), z_{*}(\tau)=0, \nu_{*}(\tau)\right)$, that

$$
y_{n}(\tau) \rightarrow y_{*}(\tau), z_{n}(\tau) \rightarrow z_{*}(\tau)=0
$$

for $n \rightarrow \infty$ uniformly on τ.The last relation implies $\nu_{n}(\tau) \rightarrow \nu_{*}(\tau)$ for almost all τ.
It follows from $\nu_{n}(\tau) \rightarrow \nu_{*}(\tau)$ that $t_{n}(\tau) \rightarrow t_{*}(\tau)$ for almost all τ.
Lemma. For a control $v_{n}(\tau), \tau \in[0,1]$ be optimal in problem (10),(12)-(14),(17) it is necessary that the following condition be satisfied

$$
\begin{align*}
& \min _{a \in A\left(y_{n}(1)\right)} \\
& {\left[\left(\nu-v_{n}(\tau)\right) \Psi_{n}^{\prime}(\tau, a) f^{n}\left(t_{n}(\tau), y_{n}(\tau), w_{*}(\tau)\right)-F\left(a, t_{n}(\tau), y_{n}(\tau), w_{*}(\tau)+s_{n}(\tau, a)\right)\right]} \\
& \left.\quad+\quad+\Psi_{n}{ }^{2}(\tau)\left[\nu-v_{n}(\tau)\right\rangle-\mid v_{n}(\tau)-v_{*}(\tau)\right] \leq 0
\end{align*}
$$

for almost all $\tau \in[0,1]$ and for all $v \geq 0$. There $\left\{\Psi_{n}(\tau, a), a \in A\left(y_{n}(1)\right)\right\}$, $\left\{s_{n}(\tau, a), a \in A\left(y_{n}(1)\right)\right\}$ is a solution to the system
$\psi_{n}(\tau, a)=\int_{-}^{d} v_{n}(s)\left[\psi_{n}^{\prime}(s, a) f_{y}^{n}\left(t_{n}(s), y_{n}(s), w_{*}(s)\right)-F\left(a, t_{n}(s), y_{n}(s), w_{*}(s)\right)\right] d s$,
$s_{n}(\tau, a)=\int_{t}^{d} v_{n}(s)\left[\psi_{n}^{\prime}(s, a) f_{t}^{n}\left(t_{n}(s), y_{n}(s), w_{*}(s)\right)-F_{t}\left(a, t_{n}(s), y_{n}(s), w_{*}(s)\right)\right] d s$,

$$
\begin{equation*}
\psi_{n}^{2}(s)=2 \int_{\lambda}^{1} z_{n}(s) d s \tag{20}
\end{equation*}
$$

$A\left(y_{n}(1)\right)=\left(a \in A: \max _{\bar{a} \in A} \int_{b}^{1} v_{n}(\tau) F\left(\bar{a}, t_{n}(\tau), y_{n}(\tau), w_{*}(\tau)\right) d \tau=\int_{b}^{1} v_{*}(\tau) F\left(a, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right) d \tau\right)$

Prof: Let $v_{n}(\tau), \tau \in[0,1]$ be an optimal control in problem (10),(12)(14),(17), and let $\bar{\nu}_{n}(\tau)$ be an admizible control defined as

$$
\bar{v}_{n}(\tau)=\left\{\begin{array}{l}
v(\tau), \tau \in[\theta, \theta+\varepsilon] \tag{22}\\
v_{n}(\tau), \tau \in[0,1] /[\theta, \theta+\varepsilon]
\end{array}\right.
$$

Where $v(\tau) \geq 0, \theta \in[0,1]$ is an arbitrary regular point of control $\nu_{n}(\tau)$, and $\varepsilon>0$ is a sufficiently small positive number such that $\theta+\varepsilon<1$

Denote $y_{n}(\tau), z_{n}(\tau)$ and $\bar{y}_{n}(\tau), \bar{z}_{n}(\tau)$ solutions of system (17),(13) corresponding to controls $v_{n}(\tau)$ and $\bar{\nu}_{n}(\tau)$, respectively.

Using the well-known scheme (see e.q.[8]) one can easly show that

$$
\begin{equation*}
\left\|\bar{y}_{n}(\tau)-y_{n}(\tau)\right\|=\left\|\Delta y_{n}(\tau)\right\| \leq k \varepsilon \quad(k=\text { const }>0) \tag{23}
\end{equation*}
$$

for all $\tau \in[0,1]$.
Turn to calculation of the increment of quality criterion
Clearly

$$
\begin{equation*}
\Delta I\left(\dot{v}_{n}\right)=\max _{b \in B} \Phi\left(\bar{y}_{n}(1), b\right)-\max _{b \in B} \Phi\left(y_{n}(1), b\right)+\int_{0}^{1}\left[\bar{z}_{n}^{2}(\tau)-z_{n}^{2}(\tau)\right] d \tau \geq 0 \tag{24}
\end{equation*}
$$

If the following expansion has a place

$$
\Delta I\left(v_{n}\right)=I\left(\bar{v}_{n}\right)-I\left(v_{n}\right)=\varepsilon \delta^{\prime} I\left(v_{n}\right)+0(\varepsilon)
$$

then call $\delta^{\prime} I\left(v_{n}\right)$ the first variatinal of function $I\left(v_{n}\right)$.
Applying the modified method of increments developed in [3] for the control problems with nonsmoth quality criterion the first variation of functions $I\left(v_{n}\right)$ can be found as

$$
\begin{gathered}
\delta^{\prime} I\left(v_{n}\right)=\min _{b \in B\left(y_{n}(\mathrm{t})\right)} \\
{\left[\left(v-v_{n}(\tau)\right) \Psi_{n}^{\prime}(\tau, b) f^{n}\left(t_{n}(\tau), y_{n}(\tau) y_{n}\left(\omega_{1}(\tau)\right), w_{*}(\tau)\right)+s_{n}(\tau, b)\right]+} \\
\left.+\Psi_{n}^{2}(\tau)\left[v-v_{n}(\tau)|-| v_{n}(\tau)-v_{*}(\tau)\right]\right]
\end{gathered}
$$

Bu virtue ofinequality (24) the assertion of Lemma follows.
Since $z_{n}(\tau) \rightarrow 0$ for $n \rightarrow \infty$, it follows from (21) that $\Psi_{n}^{z}(\tau) \rightarrow 0$ for $n \rightarrow \infty$ uniformly on τ. Since the sequence of matrix-functions

$$
\left\{f_{y}^{n}\left(t_{n}(\tau), y_{n}(\tau), w_{*}(\tau)\right)\right\}, \quad\left\{f_{!}^{n}\left(t_{n}(\tau), y_{n}(\tau), w_{*}(\tau)\right)\right\}
$$

is bounded we can choose subsequences weakly converging to some measurable functions $A(\tau)$, and $h(\tau)$, respectively .It follows then from conditions (15) and (16) that

$$
\begin{aligned}
& \min _{q \in R\left(l \cdot(\tau), y_{0}(\tau), w_{*}(\tau)\right)} f_{y}\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right) \leq A(\tau) \leq \\
& \max _{q \in R\left(l_{\cdot}(\tau), y_{0}(\tau), w_{0}(\tau)\right)} f_{y}\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right) \\
& \min _{q \in R\left(l_{\cdot}(\tau), y_{0}(\tau), \theta_{0}(\tau), w_{*}(\tau)\right)} f_{t}\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right) \leq h(\tau) \leq \\
& \max _{q \in R\left(l_{*}(\tau), y_{*}(\tau), \theta_{0}(\tau), w_{*}(\tau)\right)} f_{1}\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right)
\end{aligned}
$$

We can choose a subsequence from sequence $\left\{\Psi_{n}(\tau, a), a \in A\left(y_{n}(1)\right)\right\}$ which uniformly on τ converges to some function $\Psi(\tau, a)$ for each $a \in A\left(y_{n}(1)\right)$.

Then wehove from (19) and (20)

$$
\begin{equation*}
\psi(\tau, a)=\int_{*} v_{*}(s)\left[A^{\prime}(s) \psi_{n}(s, a)-F_{y}\left(a, t_{n}(s), y_{n}(s), w_{*}(s)\right)\right] d s \tag{25}
\end{equation*}
$$

$s(\tau, a)=\int_{\tau}^{d} v_{*}(s)\left[h^{\prime}(s) s_{n}(s, a)-F_{t}\left(a, t_{n}(s), y_{n}(s), w_{*}(s)\right)\right] d s$,
Besides, passing in (18) to limit for $n \rightarrow \infty$, we obtain that the maximum principle is satisfied for $\left(t_{*}(\tau), y_{*}(\tau), v_{*}(\tau)\right)$

$$
\begin{equation*}
\operatorname{mim}_{b \in B(y,(1))}\left[\left(v-v_{n}(\tau)\right) \Psi^{\prime}(\tau, a) \max _{q \in Q} f\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right)-F\left(a, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right)+s(\tau, b)\right] \leq 0 \tag{27}
\end{equation*}
$$

(27) implies, that

$$
\begin{equation*}
\operatorname{mim}_{a \in A(y \cdot(1))}\left[\Psi^{\prime}(\tau, a) \max _{q \in Q} f\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right)-F\left(a, t_{*}(\tau), y_{*}(\tau) w_{*}(\tau)\right)+s(\tau, a)\right] \leq 0 \tag{28}
\end{equation*}
$$

$\max _{u \in A(y \cdot(1))}\left[\Psi^{\prime}(\tau, a) \max _{q \in Q} f\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right)-F\left(a, t_{*}(\tau), y_{*}(\tau) w_{*}(\tau)\right)+s(\tau, a)\right] \geq 0$ for almost all $\tau \in \Delta\left(v_{*}\right)$,

$$
\begin{equation*}
\operatorname{mim}_{a \in A(\nu,(1))}\left[\Psi^{\prime}(\tau, a) \max _{g \in Q} f\left(q, t_{*}(\tau), y_{*}(\tau), w_{*}(\tau)\right)-F\left(a, t_{*}(\tau), y_{*}(\tau) w_{*}(\tau)\right)+s(\tau, a)\right] \leq 0 \tag{29}
\end{equation*}
$$

for almost all $\tau \in[0,1] / \Delta\left(v_{*}\right)$
Theorem: For the optimality of a control $u_{*}(t), t \in\left[t_{0}, t_{1^{*}}\right]$ in problem (1)-(4) it is necessary that the following conditions be sasisfied

$$
\begin{align*}
& \operatorname{mim}_{a \in A\left(x_{*}\left(t_{*}\right)\right)}\left[p^{\prime}(t, b) \max _{q \in Q} f\left(q, t, x_{*}(t), u_{*}(t)\right)-F\left(a, t, x_{*}(t), u_{*}(t)\right)+r(t, a)\right] \leq 0 \\
& \max _{a \in A\left(x_{*}\left(t_{*}\right)\right)}\left[p^{\prime}(t, b) \max _{q \in Q} f\left(q, t, x_{*}(t), u_{*}(t)\right)-F\left(a, t, x_{*}(t), u_{*}(t)\right)+r(t, a)\right] \geq 0 \tag{32}\\
& \min _{a \in A\left(x_{*}\left(t_{*}\right)\right)}\left[p^{\prime}(t, b) \max _{q \in Q} f\left(q, t, x_{*}(t), u_{*}(t)\right)-F\left(a, t, x_{*}(t), u_{*}(t)\right)+r(t, a)\right] \leq 0 \tag{33}
\end{align*}
$$

where $p(t, b)$ and $r(t, b)$ are a solution to the problem
$\dot{p}(t, a)=-A^{\prime}(t) p(t, a)-F\left(a, t, x_{*}(t), u_{*}(t)\right), \quad p\left(t_{1^{*}}, a\right)=-\Phi_{x}\left(x_{*}\left(t_{1^{*}}\right), a\right)$, $a \in A\left(x_{*}\left(t_{1^{*}}\right)\right)$

$$
\begin{equation*}
\dot{r}(t, a)=-h^{\prime}(t) p(t, a)-F_{t}\left(a, t, x_{*}(t), u_{*}(t)\right), \quad r\left(t_{1^{*}}, a\right)==a \in A\left(x_{*}\left(t_{1^{*}}\right)\right) \tag{34}
\end{equation*}
$$

$$
\begin{align*}
& \min _{q \in R\left(t, x_{*}(t), u_{*}(t)\right)} f_{x}\left(q, t, x_{*}(t), u_{*}(t)\right) \leq A(t) \leq \max _{q \in R\left(t, x_{*}(t), u_{*}(t)\right)} f_{x}\left(q, t, x_{*}(t), u_{*}(t)\right) \tag{35}\\
& \min _{q \in R\left(\left(t, x_{*}(t), u_{*}(t)\right)\right.} f_{i}\left(q, t, x_{*}(t), u_{*}(t)\right) \leq h(t) \leq \leq \max _{q \in R\left(t, x_{*}(t), u_{*}(t)\right)} f_{i}\left(q, t, x_{*}(t), u_{*}(t)\right)
\end{align*}
$$

for almost all $t \in\left[t_{0}, t_{1^{*}}\right]$ and all $u \in U$.

$$
A\left(x_{*}\left(t_{1^{*}}\right)\right)=\left(a \in A: \max _{\bar{a} \in A} \int_{0}^{1_{*}^{*}} F\left(\bar{a}, t, x_{*}(t), u_{*}(t)\right) d \tau=\int_{0}^{1_{0}^{*}} F\left(a, t, x_{*}(t), u_{*}(t)\right) d t\right) .
$$

REFERENCES

1. Agamali.yev A.G The maximum pricipal for an extremal problem. İzvetiya AN Azerb.SSR.1977. No. 6
2. Agamali.yev A.G.,Gasanov K.K. A Theorem on existence of optimal control for one non-smooth control problem. DAN Azerb. SSR. T. XXXVII No 12. 1981.
3. Alseviç V.V. Zadaça terminalnogo upravleniya s nedifferençiruyemım kriteriyem kaçestva. Sb."differençialnıye i integralnye uravneniya", No 2, izd-vo İrkutskogo un-ta, 1973
4. Bellman R. Dynamic programming. Princeton Univ. Press. 1957.
5. ClarkeF.H., Generalized gradients and applications,Trans. Amer. Math. Soc. 1975. Vol. 205. pp. 247-262.
6. Demyanov V.F. Minimaks: V.N: Vvedeniye v minimaks. M. Nauka 1972.
7. Filippov A. F. O nekotorix voprosax teorii optimalnogo regulirovaniya. Vestn.Mosk.un-ta,1959,No2.
8. Gabasov.R.,Kirillova.F. The Qualitative Theory of Optimal Processes. Nauka. 1971.
