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A STOCHASTIC EPIDEMIC MODEL

P.K. DAS and S.5. DE

Abstract A stochastic epidemic model of SIS type has
been investigated. For this, the corresponding Fokker-Planck
equation has been sclved for staticonary or equilibrium
transition probabilities. The spatial patterns of spread for
the infectives for different transition stationary state

probabilities have been obtained®.

1. Introduction

The aim o¢f the present paper 1is to introduce a
stochastic epidemic model of SIS type. Anderson and May
1979, [1] Liu et al, 1987, [2], Hethcote and Van den
Driessche 19981; [3] Mena-Lorca anhd Hethcote .199%2, [4] and
others have considered the deterministic epidemic models of
SIS types. Here, a stochastic generalisation of such a model
has been proposed. In the following section, the Fokker-
Planck equation for this model has been derived and solved.
In the subsequent section, the random spread of the

infectives has been incorpecrated in this stochastic model

The first authcr acknowledge to U.G.C., for Senicr Research Fellowship.

165




and corresponding Fokker-Planck equation  has been solved for
the equilibrium transition probabilities. The spatial
pattern of the spread for infectives has been obtained for a

few cases of these equilibrium transition probabilities.

2. SIS Stochastic Epidemic Model

In a SIS epidemic model with a fixed population size N
is divided into disjoint classes of susceptibles S(t) and
infectives I(t) which depend on time t such I(0) = Iy >0 and
S(t) + I(t) = N. The rate of increase of infectives due to
the expose of susceptible to the infection agents or
infectives is given by {B + PB') S(t) where B and P’ are
deterministic contact rate and its stochastic fluctuation
respectively. It is assumed heré that infection does not
give rise to immunity and the rate at which infectives
reéover and become susceptible again is given by(y + ¥) I(t)
where ¥y and ¥y are deterministic recovery rate and its

stochastic fluctuation respectively.

Also, it is implicity assumed that births and deaths
occur within the fixed population size N at equal rates and
that 2ll the new born individuals are susceptible. The rate
of decrease of infective is given by (§ + &) 1{t) where &
and & are the specific birth and death rate and its

stochastic fluctuation respectively. The fluctuations B+, &
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are supposed to be Wiener processes with specified

properties as will be given below.

The stochastic differential equation for I(t) is, thus

a generalisation cof the deterministic model and is given by

I'it) = (B + B I{t) s(t) - (y+ ) I(L) - (8 + &) I(t)
= (B+p) IN-1) - (y +¥)I - (8§ +8)1I
= £(I) + n(t) g(I) + n'(t) g'(I) {1)
where

E(I) = BI (N-I) -(y + 81

-1

(n]
—
1}

where n(t) = B and %' (t) = BN - ¥ - & are the Wiener

processes satisfying the statistical property with
<n{t} >C and < Mty mitz) > = 28 (t; - t2)
<’ (t) >0 and < n'(t1) n'itz2) > = 28 (t) - t,).

The Fokker-Planck equation correspending to  the

stochastic differential equation (I) is

op of 8p o
= e —— - f —
ot P 1 (D) 27 * 2

{{g® + g?)p}
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This partial differential eguation can be solved for
the eguilibrium transition probabilities for large I and it

is found to be

OBI - BN + v + &

41°
K C c? D
P(Ir t/Iorto) __Iq‘e dq [1 —é—i+—m2_a{2
+ CDh _ B 3 _ o)) . IBC o X 2 _a
181" 121° ~ 1441° ~ 481" 2401° 288017 12017 2017
+ ]
Where
CZ
A = = a—
2
3CP
B =
4
cC=-8

2
D = ﬁlEL - J%_ etc.

Thus we see that equilibrium transition probability for
large number of infectives I is vanishingly small. For very
small number of infectives we can find the solution for the
egquilibrium transition probability which is given Ey

m 2BI

P{I, t/I,, to)=.zulm“l"""8 SN-vy -3

Y + 8
For, N9 ———, p > 0 as I —+ 0
p
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vy + 8
For, N, ———, p = @ as I - 0

p

Therefore, for the equilibrium transition probability

of complete wiping out of the epidemic

+ &
We must have , N<Z —lj————
p
y + 8
Also if N = ————, then for very small number of infectives
p

we can find the solution for the eguilibrium transition

probability which is given by
121

C
p(l, t/Io, to} =—Ize ﬁ

Here also this transition probability becomes large for

small number of infectives.

Thus, we conclude that we can have an equilibrium
transition probabilities for complete wiping out of epidemic
for the case when

y + 5

B

N <

3. Stochastic generalisation with random dispersal of
infectives
We may consider the stochastic S5IS model with random
dispersal of infectives,
For random dispersal of infectives the stochastic

differential eguation is
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g% = £(I) + n{X, )+ oAl (2)

De (1987, 1991, 199%), |[6, 7, 81 has introduced the
stochastic partial differential eguation of the fcllowing
form (alsc cther feorms) from the consideraticn of the random
nature of the contributory functions of the ecolcocgical

niches or factors that directly or indirectly influence the

growth and evelution of biological system.

OxX; x,t) =
at T B

+ o (X, t)

where X; (X, t) 1s the bic-densities of the ith species

)

(i =1,2) at X € R" (n=1l,2) at time t and 5 = S(&) and S
i

stands for functional derivative w.r.t.X; (£; are the random
variables).

For different chcoices of the functiconal S gives the
different governing stochastic differential equations.

Here a1 = ~ 9s + n{ %, t)
ar ar Mt

where,

kdx

03]
I

1 2
;Tj[a (VI)? = BNI® + - B1° + 81 + 4I° ] dx
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The Fokker-PIanck equation corresponding to the ;tochastic
differential equation (Langevin equation) (2) can be written

as

& 5 5 E

op
= - + P .
At fax o 8I%(x)  BI(xX) STk e
5 8 8s :
=Jdx — {(— + — )P i

8T BT 51
for the transition probability which can be written as a
path integral as
t” . |:

1
p(I’, t'/ I”, t*) =C [ exp (=~ - [ dta(1, I, t)}DI(t) i
L

With boundary conditions i

I{x, t') = I’ (xX)
I(x, t") = I" (%)
Where A(I, I, t) = 7;—[ dx I(x, t) + —§§4A‘_v :
3l (x, t)
and I = _%?

For the stationary state, a (VI)? — BNIZ? + - BI® + 812 + 41

3

is independent of time in the region V of R?

2
a{VI)? - pNI? + - BI* + yI%? + 81% = £(x), say

We first consider f(x) = 0.

Then

2
3

BI* + yI® + 8I%2 =0 (4)
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The first order non-linear partial differential eguation can
be solved by Jacobi’s method (Sneddon, 1957) [7]1. The
subsidiary eguaticns are (for two dimensional).

dX]_ dXz dX3 dul dl.]z

20 - 2o u a 2 @) 8]
b 2 ouy(I? (PN + ¥ + b + 5 BT

dL'l3
= {5)

~us? (~2BNI + 2BI2 + 29I + 28I)

where

du
a){.i

i=1, 2

u; =

X = (X1, X2); I = X3 and u being assumed relation between x

and x3 that is u{x, X3) = 0 or u{x:, %z, x3) =0

From (4)

a (u+ ) +u’ {—ﬁN12+2— 13 + y1% + §1%) = 0 6
), E S - (6)

Solving u;'s we get u; = constant = a; (i = 1,2) and uf{—IZBN

+ (y + 8 17+ —% pI’} = constant a(say)

2 2 ) 2 2
o (a1t az) +a=00r, a=-a (aa+ ay

We can find the complete integral of the egquation (&)

and hence integrating the Pfaffian equation
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3 2
du = E uidxi = ¥ Ll]_dX]_ + us dl

1 i=1

3 7
2 yola,® + a’)

= uidxi + x dl

i-1 5
v IPN-(y+8) TF - 7;-313

|

The solution v = 0 1s given by

yoala?® + a)
={a1Xy + azXp) = J 3 dl = constant
I2(Bu~ y - &) - §-BI3

After performing the integration we have

I = ;—(QN— ¥ = 8) sec h? ¢/2

A-(aiX: + ayx;)

b =
Va(a? + ax’)
For this case, the spatial pattern has been depicted in
Fig. 1.
For non zerc constant f{z), the complete integral can

be found in the similar fashicn.

for, f(x) = -B/3(N-p)?, where p = 7ﬁ+ 8
we have
I = "E'(BN-Y—ﬁ) sech? J(ﬁN—Y_S)x A~ (Aaxy + Roxe) 8)

2B , 2
- Vo (@ + a)+ 5--p)’
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The spatial pattern in this case has been shown in Fig. 2.
In this way we can find the equilibrium spatial

distribution of the infected populatiocn.

Concluding remark

In this consideration a stochastic epidemic model has
been proposed. The Fokker-Planck equation corresponding to
the stochastic partial differential equations has been found
and solved for the equilibrium or stationary transition
probabilities. For several values of the transitin
probabilities including the maximum one the spatial patterns
have been calculated and depicted in the figures 1-2. These
patterns thus corresponds to have some fixed probabilities.
One 1is the maximum probability actually fig 1. corresponds
to a spatial pattern having the maximum transition

probability.
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