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1 Introduction

In a complex Banach space E we consider the problem of finding a function u(·) ∈ C2([0, T ];E)∩

C([0, T ];D(A)) and an element φ ∈ E from the system

u′′(t) = Au(t) + φ, 0 ≤ t ≤ T,

u′(0) = x,

u′(T ) =
L∑

i=1

kiu
′(ξi) + y,

u(θ) = z,

(1.1)

where {ξi} is the sequence of the various numbers in the interval (0, T ), the number θ ∈ (0, T )

is fixed and the coefficients {ki} are real, A is a closed linear operator with dense domain D(A)
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in the space E, the element z ∈ D(A) is given. The investigation of Bitzadze-Samarsky type

problems in abstract setting were started in [3, 4, 14].

We assume that the differential equation in (1.1) has an elliptic type. This means that A

is a positive operator (see [31]) : all non positive numbers belong to its resolvent set, and the

estimate

||(λI +A)−1|| ≤ M

1 + λ
for any λ ≥ 0 (1.2)

holds for some M > 0.

Any positive operator A possesses the positive root B = A1/2 and operator −A1/2 generates

a strongly continuous (see [1, 19, 23]) analytic C0-semigroup V (t) = exp(−t
√
A). Moreover, for

any positive values of t the spectral radius of the operator V (t) is less than 1. This fact provides

the invertibility of the operator I − V (t) for any t > 0 ( [5,9,10]). The value of semigroup V (·)

is determined through the Green’s function of the basic boundary value problem.

The problem (1.1) is inverse problem with overdetermination. One can find details of de-

scription of such class of problems in [13,15–21,24–27].

2 Solution of direct problem

Inverse problem (1.1) is related to the direct problem which were considered in [4, 14]

u′′(t) = Au(t) + f(t), 0 ≤ t ≤ T,

u′(0) = x,

u′(T ) =
L∑

i=1

kiu
′(ξi) + y.

(2.1)

The solution of problem (2.1) is connected with Neumann problem
u′′(t) = Au(t) + f(t), 0 ≤ t ≤ T,

u′(0) = ũ0,

u′(T ) = ũT .

(2.2)

The Green’s function of problem (2.2) has the form

G(t, s) =
1

2
A−1/2(V (2T )− I)−1

(
V (t+ s)+V (|t− s|)+V (2T − t− s)+V (2T −|t− s|)

)
. (2.3)

Assume that ũ0, ũT ∈ D(A1/2), f(·) ∈ C 1([0, T ];E), then the solution of problem (2.2)

exists, is unique and is given by the formula (see [10–12])
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u(t) = (V (2T )− I)−1
[
(V (t) + V (2T − t))A−1/2ũ0 − (V (T − t) + V (T + t))A−1/2ũT

]

+

T∫
0

G(t, s)f(s)ds. (2.4)

One also has

u′(t) = (I−V (2T ))−1
(
(V (t)−V (2T−t))ũ0+(V (T−t)−V (T+t))ũT

)
+

T∫
0

Gt(t, s)f(s)ds. (2.5)

The solvability of problem (2.1) is closely related to the distribution of zeros of the entire function

η(w) = 1− e−2Tw −
L∑

i=1

ki

(
e−(T−ξi)w − e−(T+ξi)w

)
. (2.6)

Definition 2.1 Function (2.6) is called the characteristic function of problem (2.1).

Theorem 2.1 ( [14]) Let x, y ∈ D(A1/2), f(·) ∈ C1([0, T ];E). Assume also that characteristic

function (2.6) is not vanished in the half-plane Re z > 0. Then there is a unique solution of

problem (2.1).

Corollary 2.1 ( [14]) Let x, y ∈ D(A1/2), f(·) ∈ C1([0, T ];E), L = 1, |k1| ≤ 1. Then there is

a unique solution of problem (2.1).

Corollary 2.2 ( [14]) Let E be a Hilbert space, the operator A be self-adjoint, x, y ∈ D(A1/2),

f(·) ∈ C1([0, T ];E). Assume that characteristic function (2.6) is not vanished on the positive

semi-axis of the real line. Then there is a unique solution of problem (2.1).

Theorem 2.2 ( [14]) Let E be a Hilbert space, the operator A be self-adjoint and positive

definite, x, y ∈ D(A1/2), f(·) ∈ C1([0, T ];E). Assume also that a condition

L∑
i=1

(|ki|+ ki) ≤ 2 (2.7)

is satisfied. Then there is a unique solution of problem (2.1).

3 Solution of inverse problem

Move on to the analysis of inverse problem (1.1). One was considered in the work [14].
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Lemma 3.1 ( [14]) For the Green’s function (2.3) of problem (2.1) the following identities are

true
T∫

0

G(t, s)ds = −A−1,

T∫
0

Gt(t, s)ds = 0. (3.1)

Because of Lemma 3.1 formulas (2.4) and (2.5) are converted into the following

u(t) = (V (2T )− I)−1
(
(V (t) + V (2T − t))A−1/2x

−(V (T − t) + V (T + t))A−1/2u′(T )
)
−A−1φ, (3.2)

and

u′(t) = (I − V (2T ))−1
(
(V (t)− V (2T − t))x+ (V (T − t)− V (T + t)u′(T ))

)
. (3.3)

In the problem (1.1) the last two equality leads to the following system to find the unknown

elements u′(T ) ∈ D(A1/2) and φ ∈ E

u′(T ) =

L∑
i=1

ki

(
(I − V (2T ))−1((V (ξi)− V (2T − ξi))x

+(V (T − ξi)− V (T + ξi))u
′(T ))(I − V (2T ))−1

)
+ y,

(V (2T )− I)−1
(
(V (θ) + V (2T − θ))A−1/2x

−(V (T − θ) + V (T + θ))A−1/2u′(T )A−1/2
)
−A−1φ = z.

Multiplying the first equation by I−V (2T ), and the second by A, we arrive at the following

system 
Ψu′(T ) = h,

φ = (V (2T )− I)−1
(
(V (θ) + V (2T − θ))A1/2x

−(V (T − θ) + V (T + θ))A1/2u′(T )
)
−Az,

(3.4)

where

Ψ = I − V (2T )−
n∑

i=1

ki(V (T − ξi)− V (T + ξi)),

and

h =
n∑

i=1

ki {(V (ξi)− V (2T − ξi))x}+ (I − V (2T ))y.

Thus inverse problem (1.1) also is reduced to the equation Ψu′(T ) = h. Solving this equation

and substituting u′(T ) in the second equation of the system (3.4) we find the unknown element

φ = (V (2T )− I)−1
(
(V (θ)+V (2T − θ))A1/2x− (V (T − θ)+V (T + θ))A1/2Ψ−1h

)
−Az. (3.5)
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The question of invertibility of the operator Ψ was studied in the work [14]. The results of

this work leads to the following statements

Theorem 3.1 ( [14]) Let x, y ∈ D(A1/2), z ∈ D(A). Assume that characteristic function (2.6)

has zeros only in the half-plane Re z ≤ 0. Then there is a unique solution of inverse problem

(1.1).

Corollary 3.1 ( [14]) Let x, y ∈ D(A1/2), z ∈ D(A), L = 1 and |k1| ≤ 1. Then there is unique

solution of problem (1.1).

Theorem 3.2 ( [14]) Let E be a Hilbert space, the operator A be self-adjoint and positive

definite, elements of x, y ∈ D(A1/2), z ∈ D(A). Assume that condition (2.7) is satisfied. Then

there is a unique solution of inverse problem (1.1).

4 Discretization of operators

Here we are following the approach of [20]. Semidiscrete and full discretization schemes will be

considered.

4.1 General approximation scheme

The general approximation scheme, due to [7, 28–30] can be described in the following way.

Let En and E be Banach spaces and {pn} be a sequence of linear bounded operators pn : E →

En, pn ∈ B(E,En), n ∈ IN = {1, 2, · · · }, with the property:

∥pnx∥En → ∥x∥E as n → ∞ for any x ∈ E.

Definition 4.1 The sequence of elements {xn}, xn ∈ En, n ∈ IN, is said to be P-convergent to

x ∈ E if and only if ∥xn − pnx∥En → 0 as n → ∞ and we write this xn
P−→x.

Definition 4.2 The sequence of elements {xn}, xn ∈ En, n ∈ IN, is said to be P-compact if for

any IN ′ ⊆ IN there exist IN ′′ ⊆ IN ′ and x ∈ E such that xn
P−→x, as n → ∞ in IN ′′.

Definition 4.3 The sequence of bounded linear operators Bn ∈ B(En), n ∈ IN, is said to be PP-

convergent to the bounded linear operator B ∈ B(E) if for every x ∈ E and for every sequence

{xn}, xn ∈ En, n ∈ IN, such that xn
P−→x one has Bnxn

P−→Bx. We write then Bn
PP−→B.
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For analytic C0-semigroups the following theorem holds.

Theorem 4.1 ( [22]) Let operators A and An generate analytic C0-semigroups. The following

conditions (A) and (B1) are equivalent to condition (C1).

(A) Compatibility. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvent converges

(λIn −An)
−1 PP−→(λI −A)−1,

(B1) Stability. There are some constants M ≥ 1 and ω such that

∥(λIn −An)
−1∥ ≤ M

|λ− ω|
, Reλ > ω, n ∈ IN,

(C1) Convergence. For any finite µ > 0 and some 0 < θ < π
2 we have

max
η∈Σ(θ,µ)

∥ exp(ηAn)u
0
n − pn exp(ηA)u0∥ → 0

as n → ∞ whenever u0
n

P−→u0. Here Σ(θ, µ) = {z ∈ Σ(θ) : |z| ≤ µ}, and Σ(θ) = {z ∈ C :

|arg z| ≤ θ}.

Normally they assume that conditions (A) and (B1) for the corresponding C0-semigroup

case are satisfied without any restriction of generality if any discretization processes in time are

considered.

Definition 4.4 A sequence of operators {Bn}, Bn ∈ B(En), n ∈ IN , is said to be stably conver-

gent to an operator B ∈ B(E) if and only if Bn
PP−→B and ∥B−1

n ∥B(En) = O(1), n → ∞. We

will write this as: Bn
PP−→B stably.

Definition 4.5 A sequence of operators {Bn}, Bn ∈ B(En), is called regularly convergent to

the operator B ∈ B(E) if and only if Bn
PP−→B and the following implication holds:

∥xn∥En = O(1) & {Bnxn} is P-compact =⇒ {xn} is P-compact.

We write this as: Bn
PP−→B regularly.

Theorem 4.2 ( [30]) Let Cn, Qn ∈ B(En), C,Q ∈ B(E) and R(Q) = E. Assume also that

Cn
PP−→C compactly and Qn

PP−→Q stably. Then Qn + Cn
PP−→Q+ C converge regularly.

Theorem 4.3 ( [30]) For Qn ∈ B(En) and Q ∈ B(E) the following conditions are equivalent:

(i) Qn
PP−→Q regularly, Qn are Fredholm operators of index 0 and N(Q) = {0},

(ii) Qn
PP−→Q stably and R(Q) = E,

(iii) Qn
PP−→Q stably and regularly,

(iv) if one of conditions (i)–(iii) holds, then there exist Q−1
n ∈ B(En), Q

−1 ∈ B(E), and

Q−1
n

PP−→Q−1 regularly and stably.

123



The approximation of Bitzadze-Samarsky type inverse problem for elliptic equations

Definition 4.6 The region of stability ∆s = ∆s({An}), An ∈ C(Bn), is defined as the set of all

λ ∈ C such that λ ∈ ρ(An) for almost all n and such that the sequence {∥(λIn − An)
−1∥}n∈IN

is bounded for almost all n. The region of convergence ∆c = ∆c({An}), An ∈ C(En), is defined

as the set of all λ ∈ C such that λ ∈ ∆s({An}) and such that the sequence of operators

{(λIn −An)
−1}n∈IN is PP-convergent to some operator S(λ) ∈ B(E).

Definition 4.7 The region of compact convergence of resolvents, ∆cc = ∆cc(An, A), where

An ∈ C(En) and A ∈ C(E) is defined as the set of all λ ∈ ∆c ∩ ρ(A) such that (λIn −

An)
−1 PP−→(λI −A)−1 compactly.

Theorem 4.4 ( [8]) Assume that ∆cc ̸= ∅. Then for any ζ ∈ ∆s the following implication

holds:

∥xn∥En = O(1) & ∥(ζIn −An)xn∥En = O(1) =⇒ {xn} isP-compact. (4.1)

Conversely, if for some ζ ∈ ∆c ∩ ρ(A) implication (4.1) holds, then ∆cc ̸= ∅.

4.2 Discretization of abstract elliptic problem

One can consider the Neumann problems in Banach spaces En:

u′′
n(t) = Anun(t) + φn, t ∈ [0, T ], u′

n(0) = ũ0
n, u

′
n(T ) = ũT

n , (4.2)

with strongly positive operators An, An and A are compatible, u0
n

P−→u0, uT
n

P−→uT . We are

going to describe here also the discretization of (4.2) in variable t. One of the simplest difference

scheme is 
Uk+1

n −2Uk
n+Uk−1

n

τ2
n

= AnU
k
n + φ̄n, k ∈ {1, · · · , [ Tτn ]− 1},

U1
n − U0

n = τnũ
0
n, U

K
n − UK−1

n = τnũ
T
n ,

(4.3)

where τn = T/K (K ∈ N).

The solution of (4.3) is given by

Uk
n = −A−1

n φ̄n − (In −Rn)
−1(In −R2K

n )−1(In −R2K−2
n )−1 (4.4)

×
((

(Rk
n +R2K−k

n )(In −R2K−1
n ) + (RK−k

n +RK+k
n )(RK−1

n −RK
n )

)
τnũ

0
n

−
(
(Rk

n +R2K−k
n )(RK−1

n −RK
n ) + (RK−k

n +RK+k
n )(In −R2K−1

n )
)
τnũ

T
n

)
,

where

Rn = (In + τnBn)
−1, Bn =

Anτn +
√
An

√
τ2nAn + 4

2
. (4.5)

124



Dmitry Orlovsky, Sergey Piskarev

Indeed, the general solution of equation in (4.3) can be written as

Uk
n = (Rk

n +R2K−k
n )a+ (RK−k

n +RK+k
n )b−A−1

n φ̄n,

where the system to find a, b looks like
(Rn − In)(In −R2K−1)a+ (In −Rn)

2RK−1
n b = τnũ

0
n,

−(In −Rn)
2RK−1

n a− (Rn − In)(In −R2K−1)b = τnũ
T
n .

(4.6)

The determinant of system (4.6) equals to

∆ = −(In −Rn)
2(In −R2K)(In −R2K−2).

Thus

a = ∆−1
(
− (Rn − In)(In −R2K−1)τnũ

0
n − (In −Rn)

2RK−1
n τnũ

T
n ,

)
,

b = ∆−1
(
(In −Rn)

2RK−1
n τnũ

0
n + (Rn − In)(In −R2K−1)τnũ

T
n

)
.

So one gets (4.4).

Theorem 4.5 Assume that conditions (A) and (B1) are satisfied, resolvents (λI−A)−1, (λIn−

An)
−1 are compact and ∆cc ̸= ∅. Assume also that ũ0

n
P−→ũ0, ũT

n
P−→ũT and φn

P−→f(·) = φ. Then

solutions of (4.2) converge to solution of (2.2), i.e. un(t)
P−→u(t) uniformly in t ∈ [0, T ].

Proof. Since exp(tBn)
PP−→ exp(tB) compactly for any t > 0, it follows that the solutions of

(4.2) converge to solution of (2.4). Theorem is proved.

Theorem 4.6 Assume that conditions (A) and (B1) are satisfied, resolvents (λI−A)−1, (λIn−

An)
−1 are compact and ∆cc ̸= ∅. Assume also that ũ0

n
P−→ũ0, ũT

n
P−→ũT and φ̄n

P−→f(·) = φ̄. Then

solutions of (4.3) converge to solution of (2.2), i.e. Uk
n

P−→u(t) uniformly in t = kτn ∈ [0, T ].

Proof. Compact convergence Uk
n

PP−→ exp(tB) for any kτn = t > 0 implies convergence of

solutions of (4.4) to solution of (2.4). Indeed, one can rewrite (4.4) in the form

Uk
n = −A−1

n φ̄n−

−(In −Rn)
−1(In −R2K−2

n )−1

(
(Rk

n +R2K−k−1
n )τnũ

0
n − (RK−k

n +RK+k−1
n )τnũ

T
n

)
which is completely correspond to (3.2). The term (In −Rn)

−1 gives us A
−1/2
n . It is clear that

In −R2K−2
n

PP−→I − V (2T ) stably. Theorem is proved.
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5 Convergence of solutions

In the Banach spaces En, let us consider the problem of finding the functions un(·) ∈ C2([0;T ];En)∩

C([0;T ];D(An)) and an element φn ∈ E from the system of equations

u′′
n(t) = Anun(t) + φn, 0 ≤ t ≤ T,

u′
n(0) = xn,

u′
n(T ) =

L∑
i=1

kiu
′
n(ξi) + yn,

un(θ) = zn,

(5.1)

where the points {ξi} ⊆ (0, T ), θ ∈ (0, T ), {ki} are chosen in the same way as in (1.1), the

operators An are satisfied conditions (A), (B1) from Theorem 4.1, and the elements xn, yn, zn ∈

D(An) are such that xn
P−→x, yn

P−→y, zn
P−→z and Anxn

P−→Ax,Anyn
P−→Ay,Anzn

P−→Az.

Theorem 5.1 Assume that resolvents (λI − A)−1, (λIn − An)
−1 are compact, (B1) and (1.2)

are satisfied and ∆cc ̸= ∅. Assume also that characteristic function (2.6) has zeros only in a

half-plane Re z ≤ 0. Then solutions of problem (5.1) exist for almost all n and they converge

to solution of problem (1.1), i.e. un(t)
P−→u(t) uniformly in t ∈ [0, T ] and φn

P−→φ as n ∈ IN,

whenever Anu
θ
n

P−→Auθ.

Proof. We note that one can write the solutions of approximated problem following (3.4) in

the form 
Ψnu

′
n(T ) = hn,

φn = (Vn(2T )− In)
−1

(
(Vn(θ) + Vn(2T − θ))A

−1/2
n xn

−(Vn(T − θ) + Vn(T + θ))A
−1/2
n u′

n(T )
)
−Anzn,

(5.2)

where Ψn = In−Vn(2T )−
L∑

i=1

ki(Vn(T−ξi)−Vn(T+ξi)) and hn =
L∑

i=1

ki(Vn(ξi)−Vn(2T−ξi))xn+

yn. Since Vn(t)
PP−→V (t) compactly for any t > 0 we get from Theorems 4.2 - 4.3 that Ψn

PP−→Ψ

and In − Vn(2T )
PP−→I − V (2T ) stably, i.e. Ψ−1

n
PP−→Ψ−1, (In − Vn(2T ))

−1 PP−→(I − V (2T ))−1. It

follows that φn
P−→φ. Theorem is proved.

Following (4.3) one can consider approximation of (5.1) in the form

Uk+1
n −2Uk

n+Uk−1
n

τ2
n

= AnU
k
n + φ̄n, k ∈ {1, ..., [ Tτn ]− 1},

U1
n − U0

n = τnxn,

UK
n − UK−1

n =
L∑

i=1

ki(U
[ξi/τn]+1
n − U

[ξi/τn]
n ) + τnyn,

U
[θ/τn]
n = zn,

(5.3)
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Remark 5.1 We have in (5.3) the approximation of order O(τn), but differential equation in

(5.3) is approximated with order O(τ2n). If we change the scheme and approximate (5.3) with

order O(τ2n) the stability will follow the same way as in our case and we get a convergence.

Complexity of calculations in this case is dramatically increased.

Theorem 5.2 Assume that resolvents (λI − A)−1, (λIn − An)
−1 are compact, (B1) and (1.2)

are satisfied and ∆cc ̸= ∅. Assume also that characteristic function (2.6) has zeros only in a

half-plane Re z ≤ 0. Then solutions of problem (5.3) exist for almost all n and they converge to

solution of problem (1.1), i.e. Uk
n

P−→u(t) uniformly in t = kτn ∈ [0, T ] and φ̄n
P−→φ as n ∈ IN,

whenever Anu
θ
n

P−→Auθ.

Proof. To find the function Uk
n which satisfies system (5.3), we start from the discrete solution

of Neumann problem. One can find that the solution of (4.3) with some U1
n − U0

n = τnxn and

UK
n − UK−1

n = τn(∂τnUn)
K−1 is given by formula (4.4). Now, substituting this function into

conditions of (5.3) with k = [ξi/τn], k = [ξi/τn] + 1 and k = [θ/τn] one gets the system to find

φn and τn(∂τnUn)
K−1 :

Ψnτn(∂τnUn)
K−1 = hn, (5.4)

φn = −An(In −Rn)
−1(In −R2K

n )−1(In −R2K−2
n )−1

((
(R[θ/τn]

n +R2K−[θ/τn]
n )(In −R2K−1

n )

+(RK−[θ/τn]
n +RK+[θ/τn]

n )(RK−1
n −RK

n )
)
τnxn −

(
(R[θ/τn]

n +R2K−[θ/τn]
n )

×(RK−1
n −RK

n ) + (RK−[θ/τn]
n +RK+[θ/τn]

n )(In −R2K−1
n )

)
τn(∂τnUn)

K−1

)
−Anzn,

or

φn = −An(In −Rn)
−1(In −R2K−2

n )−1

((
R[θ/τn]

n +R2K−[θ/τn]−1
n

)
τnxn

−
(
RK−[θ/τn]

n +RK+[θ/τn]−1
n

)
τn(∂τnUn)

K−1

)
−Anzn, (5.5)

where

Ψn = In − δΣL
i=1ki

(
Cξi+1 +Dξi+1 − Cξi −Dξi

)
,

hn = δ

L∑
i=1

ki

(
−Aξi+1 −Bξi+1 +Aξi +Bξi

)
τnxn + τnyn,

δ = (In −Rn)
−1(In −R2K

n )−1(In −R2K−2
n )−1, Aξi = (R[ξi/τn]

n +R2K−[ξi/τn]
n )(In −R2K−1

n ),

Bξi = (RK−[ξi/τn]
n +RK+[ξi/τn]

n )(RK−1
n −RK

n ), Cξi = (R[ξi/τn]
n +R2K−[ξi/τn]

n )(RK−1
n −RK

n ),

Dξi = (RK−[ξi/τn]
n +RK+[ξi/τn]

n )(In −R2K−1
n ).
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Tiresome calculations give us

Ψn = (In −R2K−2
n )−1

(
In −R2K−2

n −
L∑

i=1

ki(R
K−[ξi/τn]−1
n +RK+[ξi/τn]−1

n )
)
,

hn = (In −R2K−2
n )−1

( L∑
i=1

ki(R
[ξi/τn]
n −R2K−[ξi/τn]−2

n )τnxn

)
+ τnyn.

Using the same way as in the proof of Theorem 5.1, we can show that Ψn = (In −

R2K−2
n )−1

(
In −R2K−2

n −ΣL
i=1ki(R

K−[ξi/τn]−1
n +R

K+[ξi/τn]−1
n )

)
PP−→(I − V (2T ))−1Ψ stably, i.e.

Ψ
−1

n
PP−→(I − V (2T ))Ψ−1. Indeed, R2K−2

n
PP−→V (2T ) compactly, since ∥kτnBn(In + τnBn)

−k∥ ≤

constant (see [2]). Hence, In − R2K−2
n

PP−→I − V (2T ) stably and (In − R2T−1
n )hn

P−→h. Thus

φ̄n
P−→φ. Theorem is proved.
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