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Abstract. This paper is concerned with the oscillatory behavior of all solutions of

nonlinear second order damped dynamic equation

(r(t)Ψ(x∆(t))∆ + p(t)Ψ(x∆(t)) + q(t)f(xσ(t)) = 0, t ∈ T,

where Ψ, f , p, q and r are rd-continuous functions. By using a generalized Ric-

cati transformation and integral averaging technique, we give some new sufficient

conditions which ensure that every solution of this equation oscillates.
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1 Introduction

In present paper, we study second order dynamic equation

(r(t)Ψ(x∆(t))∆ + p(t)Ψ(x∆(t)) + q(t)f(xσ(t)) = 0, (1.1)

where Ψ, f , p, q and r are rd-continuous functions.

We will give new oscillation criteria for this equation which has not been previously discussed

in the literature.

We assume that:

(H1) p, q ∈ Crd(R,R+),

(H2) Ψ : T → R is such that Ψ2(v) ≤ κvΨ(v) for κ > 0, v ̸= 0,

(H3) f : T → R is such that f(v)
v ≥ λ > 0, and vf(v) > 0, u ̸= 0,
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(H4) r ∈ C1
rd([t0,∞),R+),

∞∫
t0

( 1r e−p
r
(t, t0))∆t = ∞.

In the sequel, we suppose that solutions to equation (1.1) exist for all t ∈ [t0,∞)T and a solution

of (1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞)T; otherwise, it is said to

be nonoscillatory. Equation (1.1) is termed oscillatory if all its solutions oscillate. The equation

itself is called oscillatory if all its solutions are oscillatory.

The theory of time scales, which has recently received a lot of attention, was introduced

by Stefan Hilger in his PhD thesis in 1988 in order to unify continuous and discrete analysis

(see [1]). Since Stefan Hilger formed the definition of derivatives and integrals on time scales,

several authors have expounded on various aspects of the new theory, see the paper by Agar-

wal, Bohner, O’Regan, and Peterson [2], Saker, Agarwal, O’Regan [3]. The book on the subject

of time scales, by Bohner and Peterson [4] summarizes and organizes much of time scale calculus.

The increasing interest in oscillation of solutions to different classes of dynamic equations is

motivated by their applications in the natural sciences, we refer the reader to [3, 5-11].

In [3], Saker, Agarwal, O’Regan considered the non-linear dynamic equation

(a(t)x∆(t))∆ + p(t)x∆
σ

(t) + q(t)f(xσ(t)) = 0,

where a, p, q are positive functions. They established some sufficient conditions for oscillation.

The authors supposed that uf(u) > 0, f(u)/u ≥ K > 0 and f ′(u) ≥ k for u ̸= 0.

Şenel [11] studied the second order damped dynamic equation

(r(t)Ψ(x∆(t))∆ + p(t)Ψ(x∆(t)) + q(t)xσ(t) = 0.

He assumed that Ψ : T → R, Ψ(u)
|u| ≥ κ for κ > 0, u ̸= 0. In this paper, we have dealt with more

general equation. The purpose of this paper is to extend related results reported in [3,11] to a

nonlinear dynamic equation (1.1).

Note that, in special case T = R, σ(t) = t, µ(t) = 0, x∆(t) = x′(t), Ψ(x∆(t)) = Ψ(x′(t)). In

this case, (1.1) involves the non-linear second order differential equation

(r(t)Ψ(x′(t)))′ + p(t)Ψ(x′(t)) + q(t)f(x(t)) = 0.

168



M. Tamer Şenel

2 Main results

Theorem 2.1 Assume that (H1) − (H4) hold and there exists a positive real rd-continuous

differentiable function ρ(t) such that

lim sup
t→∞

∫ t

t0

[
λρ(s)q(s)− δ(s)ξ2(s)

]
∆s = ∞, (2.1)

where δ(t) = κr(s)
4ρ(s) , ξ(t) =

[
ρ∆(t)− ρ(t)p(t)

r(t)

]
. Then, (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of (1.1) for t ≥ T1 > t0. Now, we assert that

x∆(t) is either positive or negative sign on the interval [T2,∞) for some T2 ≥ T1. From (1.1),

since q(t) > 0 and f(x(t)) > 0 it follows that

(r(t)Ψ(x∆(t))∆ + p(t)Ψ(x∆(t)) = −q(t)f(xσ(t)) < 0,

i.e.,

(r(t)Ψ(x∆(t))∆ + p(t)Ψ(x∆(t)) < 0.

Let

y(t) = r(t)Ψ(x∆(t)),

then we have

y∆(t) +
p(t)y(t)

r(t)
< 0

which implies that (
y(t)e p

r
(t, T1)

)∆

< 0.

Then,

y(t)e p
r
(t, T1)

is decreasing and thus y(t) is eventually negative or positive. Then, x∆(t) has fixed sign for all

sufficiently large t and we have one of the following:

First, we consider x∆(t) ≥ 0 on [T2,∞) for some T2 ≥ T1. From (1.1) we have

x(t) > 0, x∆(t) ≥ 0, (r(t)Ψ(x∆(t))∆ ≤ 0, t ≥ T2. (2.2)

We now define

w(t) := ρ(t)
r(t)Ψ(x∆(t))

x(t)
, t ≥ T2. (2.3)
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Then, w(t) > 0, and satisfies

w∆(t) =
[
r(t)Ψ(x∆(t))

]σ [ρ(t)
x(t)

]∆
+
ρ(t)

x(t)

[
r(t)Ψ(x∆(t))

]∆
.

In view of (1.1) and (2.2), we see that for t ≥ T3 = σ(T2)

w∆(t) =
ρ∆(t)x(t)− ρ(t)x∆(t)

x(t)xσ(t)

[
r(t)Ψ(x∆(t))

]σ
− ρ(t)

x(t)

[
p(t)Ψ(x∆(t)) + q(t)f(xσ(t))

]
. (2.4)

However, from (2.2) it follows that

r(t)Ψ(x∆(t)) ≥ (r(t)Ψ(x∆(t)))σ, xσ(t) ≥ x(t). (2.5)

Using (2.5), (H2) and (H3) in (2.4), we have

w∆(t) ≤ ρ∆(t)
wσ(t)

ρσ(t)
− ρ(t)

xσ(t)
p(t)Ψ(x∆(t))− ρ(t)

q(t)f(xσ(t))

xσ(t)

− ρ(t)
x∆(t)

(xσ(t))2
[r(t)Ψ(x∆(t))]σ (2.6)

≤ ρ∆(t)
wσ(t)

ρσ(t)
− ρ(t)

xσ(t)
p(t)

(r(t)Ψ(x∆(t)))σ

r(t)
− λρ(t)q(t)

− ρ(t)
x∆(t)(r(t)Ψ(x∆(t)))σ(wσ(t))2

((ρ(t)r(t)Ψ(x∆(t)))σ)2
(2.7)

≤ ρ∆(t)
wσ(t)

ρσ(t)
− ρ(t)p(t)

r(t)

(r(t)Ψ(x∆(t)))σ

xσ(t)
− λρ(t)q(t)

− ρ(t)
(wσ(t))2

κ(ρσ(t))2r(t)
(2.8)

≤ ρ∆(t)
wσ(t)

ρσ(t)
− ρ(t)p(t)

r(t)

wσ(t)

ρσ(t)
− λρ(t)q(t)

− ρ(t)
(wσ(t))2

κ(ρσ(t))2r(t)
(2.9)

≤ −λρ(t)q(t) +

[
ρ∆(t)− ρ(t)p(t)

r(t)

]
wσ(t)

ρσ(t)

− ρ(t)
(wσ(t))2

κ(ρσ(t))2r(t)

≤ −λρ(t)q(t) + ξ(t)
wσ(t)

ρσ(t)
− ρ(t)

(wσ(t))2

κ(ρσ(t))2r(t)
, (2.10)
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where

ξ(t) =

[
ρ∆(t)− ρ(t)p(t)

r(t)

]
.

Then,

w∆(t) ≤ −λρ(t)q(t) + κr(t)ξ2(t)

4ρ(t)
−

[√
ρ(t)

κr(t)

wσ(t)

ρσ(t)
− 1

2

√
κr(t)

ρ(t)
ξ(t)

]2

,

w∆(t) ≤ λρ(t)q(t)− δ(t)ξ2(t).

Integrating from T3 to t, we obtain

w(t)− w(T3) ≤ −
∫ t

T3

[
λρ(s)q(s)− δ(s)ξ2(s)

]
∆s

which yields ∫ t

T3

[
λρ(s)q(s)− δ(s)ξ2(s)

]
∆s ≤ w(T3)− w(t) < w(T3), t ≥ T3

for all large t. This is contrary to (2.1).

Next, we consider x∆(t) < 0 for t ≥ T2 ≥ T1 .

Now we define z(t) = −r(t)Ψ(x∆(t)). Then, by using (1.1) and (H2), (H4), we have

z∆(t) +
p(t)

r(t)
z(t) ≥ 0 ⇒ z(t) ≥ z(T2)e−p

r
(t, T2).

Thus,

−r(t)Ψ(x∆(t)) ≥ z(T2)e−p
r
(t, T2)

Ψ(x∆(t)) ≤ −z(T2)
(

1

r(t)
e−p

r
(t, T2)

)
.

By (H2) there is a κ > 0, so that

κx∆(t) ≤ −z(T2)
(

1

r(t)
e−p

r
(t, T2)

)
. (2.11)

Integrating (2.11) from T2 to t, we have

x(t)− x(T2) ≤
r(T2)Ψ(x(T2))

κ

∫ t

T2

(
1

r(s)
e−p

r
(s, T2)

)
∆s,

or

x(t) ≤ x(T2) +
r(T2)Ψ(x(T2))

κ

∫ t

T2

(
1

r(s)
e−p

r
(s, T2)

)
∆s.

Thus, condition (H4) implies that x(t) is eventually negative. This contradiction completes the

proof.
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Corollary 2.2 Suppose that (H1)− (H4) hold. If

lim sup
t→∞

∫ t

t0

[
λq(s)− κp2(s)

4r(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Corollary 2.3 Suppose that (H1)− (H4) hold. If

lim sup
t→∞

∫ t

t0

[
sγλq(s)− κ(r(s)(sγ)∆ − sγp(s))2

4r(s)
κs−γ

]
∆s = ∞, (2.12)

then (1.1) is oscillatory.

Example 2.1 Consider a second order non-linear dynamic equation(
1

t2

(
x∆(t)

1 + (x∆(t))2

))∆

+
1

t2

(
x∆(t)

1 + (x∆(t))2

)
+

1

t

(
1

xσ(t)

)
= 0, t > 0,

where r(t) = 1
t2 , p(t) =

1
t2 , q(t) =

1
t , Ψ(x∆) = x∆(t)

1+(x∆(t))2
. All conditions of Corollary 2.2 are

satisfied. Hence, it is oscillatory.

Corollary 2.4 Assume that (H1)− (H4) hold. If

lim sup
t→∞

∫ t

t0

[
Z(s, t0)λq(s)−

κr(s)

4Z(s, t0)

(
(Z(s, t0))

∆ − Z(s, t0)p(s)

r(s)

)2
]
∆s = ∞,

where Z(t, t0) =
∫ t

t0
1

r(s)∆s, then every solution of (1.1) is oscillatory.

Now, let us introduce the class of functions R which will be extensively used in the sequel. Let

D0 ≡ {(t, s) ∈ T2 : t > s ≥ t0} and D ≡ {(t, s) ∈ T2 : t ≥ s ≥ t0}. The function H ∈ Crd(D,R)

belongs to the class R, if

(i) H(t, t) = 0, t ≥ t0, H(t, s) > 0, on D0,

(ii) H has a continuous ∆-partial derivative H∆
s (t, s) on D0 with respect to the second variable.

(H is rd-continuous function if H is rd-continuous function in t and s.)

Theorem 2.5 Assume that (H1) − (H4) hold. Let ρ(t) be a positive real rd-continuous differ-

entiable function and let H : D → R be rd-continuous function such that H belongs to the class

R where

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)λρ(s)q(s)− δ(s)(φ(t, s))2

H(t, s)

]
∆s = ∞, (2.13)

where

δ(t) =
κr(s)

4ρ(s)
, φ(t, s) = ρσ(s)H∆

s (t, s) +H(t, s)ξ(s).

Then, (1.1) is oscillatory.
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Proof. Let x be an eventually positive solution of (1.1) for t ≥ T1 > t0. In view of Theorem 2.1,

we see that x∆(t) is positive or negative sign. If x∆(t) < 0, from the second case of Theorem 2.1,

we get a contradiction. If x∆(t) is eventually positive, there exists T2 ≥ T1 such that x∆(t) ≥ 0

and proceed as in the proof of first part of Theorem 2.1 and get (2.10). From (2.10) it follows

that

w∆(t) ≤ −λρ(t)q(t) + ξ(t)
wσ(t)

ρσ(t)
− ρ(t)

(wσ(t))2

κ(ρσ(t))2r(t)
. (2.14)

Multiplying (2.14) by H(t, s), we get

H(t, s)w∆(t) ≤ −H(t, s)λρ(t)q(t) + H(t, s)ξ(t)
wσ(t)

ρσ(t)

− H(t, s)ρ(t)
(wσ(t))2

κ(ρσ(t))2r(t)
,

or

H(t, s)λρ(t)q(t) ≤ −H(t, s)w∆(t) + H(t, s)ξ(t)
wσ(t)

ρσ(t)

− H(t, s)ρ(t)
(wσ(t))2

κ(ρσ(t))2r(t)
,

Using the integration by parts formula, we have∫ t

T2

H(t, s)λρ(s)q(s)∆s ≤ − H(t, t)w(t) +H(t, T2)w(T2) +

∫ t

T2

H∆
s (t, s)wσ(s)∆s

+

∫ t

T2

H(t, s)ξ(s)
wσ(s)

ρσ(s)
∆s

−
∫ t

T2

H(t, s)ρ(s)
((wσ(s))2

κ(ρσ(s))2r(s)
∆s.

Since H(t, t) = 0, we obtain∫ t

T2

H(t, s)λρ(s)q(s)∆s ≤ H(t, T2)w(T2)

+

∫ t

T2

[
ρσ(s)H∆

s (t, s) +H(t, s)ξ(s)
] wσ(s)

ρσ(s)
∆s

−
∫ t

T2

H(t, s)ρ(s)
((wσ(s))2

κ(ρσ(s))2r(s)
∆s

≤ H(t, T2)w(T2) +

∫ t

T2

φ(t, s)
wσ(s)

ρσ(s)
∆s

−
∫ t

T2

H(t, s)ρ(s)
((wσ(s))2

κ(ρσ(s))2r(s)
∆s.
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Therefore, from the proof of Theorem 2.1, we obtain∫ t

T2

H(t, s)λρ(s)q(s)∆s ≤ H(t, T2)w(T2) +

∫ t

T2

κr(s)

4ρ(s)H(t, s)
φ2(t, s)∆s

−
∫ t

T2

[√
H(t, s)ρ(s)

κr(s)

wσ(s)

ρσ(s)
− 1

2

√
κr(s)

ρ(s)H(t, s)
φ(t, s)

]2

∆s.

Hence, we obtain∫ t

T2

H(t, s)λρ(s)q(s)∆s ≤ H(t, T2)w(T2) +

∫ t

T2

δ(s)

H(t, s)
φ2(t, s)∆s,

where δ(t) = κr(t)
4ρ(t) . Then, for all t ≥ T2, we have

∫ t

T2

[
H(t, s)λρ(s)q(s)− δ(s)

H(t, s)
φ2(t, s)

]
∆s ≤ H(t, T2)w(T2)

and this implies that

lim sup
t→∞

1

H(t, T2)

∫ t

T2

[
H(t, s)λρ(s)q(s)− δ(s)φ2(t, s)

H(t, s)

]
∆s ≤ w(T2)

which contradicts (2.13). This contradiction completes the proof.

Corollary 2.6 Suppose that the assumptions of Theorem 2.5 hold. If

lim sup
t→∞

1

H(t, T2)

∫ t

T2

H(t, s)

[
λq(s)− δ(s)

(
H∆

s (t, s)

H(t, s)
− p(s)

r(s)

)2
]
∆s = ∞,

then (1.1) is oscillatory.

Corollary 2.7 Let assumption (2.13) in Theorem 2.5 be replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)λρ(s)q(s) = ∞,

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
r(s)

ρ(s)H(t, s)

(
H(t, s)ξ(s) + ρσ(s)H∆

s (t, s)
)2]

∆s <∞.

Then, (1) is oscillatory.

Lemma 2.8 ([3, Remark 2.3]) Let H(t, s) = (t − s)n , (t, s) ∈ D with n > 1, we see that H

belongs to the class R. Hence,

((t− s)n)∆ ≤ −n(t− σ(s))n−1.
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Corollary 2.9 Assume that (H1)− (H4) hold. Let ρ(t) be a positive real rd-continuous differ-

entiable function and let H : D → R be an rd-continuous function such that H belongs to the

class R . If

lim sup
t→∞

1

tn

∫ t

t0

[
(t− s)nλρ(s)q(s)− δ(s)ϕ2(t, s)

(t− s)n

]
∆s = ∞, for n > 1,

where

ϕ(t, s) = (t− s)nξ(s) + nρσ(t)(t− σ(s))n−1, t ≥ s ≥ t0,

then equation (1.1) is oscillatory on [t0,∞).

3 The oscillation in case of p(t) = 0

We will give some sufficient conditions for oscillation of equation (1.1) with p(t) = 0.

Theorem 3.1 Assume that (H1) − (H4) hold and there exists a positive real rd-continuous

function ρ(t) such that

lim sup
t→∞

∫ t

t0

[
λρ(s)q(s)− δ(s)(ρ∆(s))2

]
∆s = ∞,

where δ(t) = κr(t)
4ρ(t) . Then, (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of (1.1) for t ≥ T1 > t0. From the proof of

Theorem 2.1, we see that x∆(t) is positive or negative sign. If x∆(t) is eventually negative, from

the second case of Theorem 2.1 we get a contradiction. If x∆(t) is eventually positive, then

there exists T2 ≥ T1 such that x∆(t) ≥ 0. From the proof of first part of Theorem 2.1, we get

(2.10). By (2.10), we have

w∆(t) ≤ −λρ(t)q(t) + ρ∆(t)
wσ(t)

ρσ(t)
− ρ(t)

1

κ(ρσ(t))2r(t)
(wσ(t))2.

The proof is similar to that of Theorem 2.1 and hence is omitted.

Corollary 3.2 Assume that (H1)− (H4) hold. If

lim sup
t→∞

∫ t

t0

λq(s)∆s = ∞,

equation (1.1) is oscillatory.
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Theorem 3.3 Assume that (H1) − (H4) hold. Let ρ(t) be a positive real rd-continuous differ-

entiable function and let H : D → R be rd-continuous function such that H belongs to the class

R. If

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)λρ(s)q(s)− δ(s)C2(t, s)

H(t, s)
,

]
∆s = ∞,

where

δ(t) =
κr(t)

4ρ(t)
, C(t, s) = ρσ(s)H∆

s (t, s) +H(t, s)ρ∆(s),

equation (1.1) is oscillatory.

Corollary 3.4 Assume that (H1)− (H4) hold. Let ρ(t) = 1. If

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(
λH(t, s)q(s)− κr(s)(H∆

s (t, s))2
)
∆s = ∞,

(1.1) is oscillatory.

4 The oscillation in case of f ′(u) ≥ k > 0

In this section, we assume that f : R → R is such that f ′(u) ≥ k for u ̸= 0 and some k > 0.

Theorem 4.1 Assume (H1)− (H4) hold and there exists a positive real rd-continuous function

ρ(t) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)q(s)− δ(s)ξ2(s)

υ

]
∆s = ∞,

where δ(t), ξ(t) are as defined in Theorem 2.1. Then, (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of (1.1) for t ≥ T1 > t0. From the proof of

Theorem 2.1, we see that x∆(t) is positive or negative sign. If x∆(t) is eventually negative, we

get a contradiction. If x∆(t) is eventually positive, there exists T2 ≥ T1 such that x∆(t) ≥ 0.

We now define

w(t) := ρ(t)
r(t)Ψ(x∆(t))

f(x(t))
, t ≥ T2.

Then, w(t) satisfies

w∆(t) = (r(t)Ψ(x∆(t)))σ
[

ρ(t)

f(x(t))

]∆
+

ρ(t)

f(x(t))
(r(t)Ψ(x∆(t)))∆.
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In view of (1.1) and (2.5), we have

w∆(t) =
ρ∆(t)f(x(t))− ρ(t)f∆(x(t))

f(x(t))f(xσ(t))
(r(t)ψ(x∆(t))σ

+
ρ(t)

f(x(t)
[−p(t)x∆(t)− q(t)f(xσ(t))]

=
ρ∆(t)

f(xσ(t))
(r(t)Ψ(x∆(t)))σ − ρ(t)f∆(x(t))

f(x(t))f(xσ(t))
(r(t)Ψ(x∆(t)))σ

−ρ(t)p(t)Ψ(x∆(t))

f(x(t))
− ρ(t)q(t)

f(xσ(t))

f(x(t))
.

Since f is nondecreasing, we have f(xσ) ≥ f(x). Using chain rule [4]

f∆(x(t)) = f ′(x(τ))x∆(t) ≥ υx∆(t), τ ∈ [t, σ(t)],

we have

w∆(t) ≤ −ρ(t)q(t) + ρ∆(t)

ρσ(t)
wσ(t) − ρ(t)υx∆(t)

f2(xσ(t))
(r(t)Ψ(x∆(t)))σ

− ρ(t)
p(t)r(t)Ψ(x∆(t))

r(t)f(xσ(t))

≤ −ρ(t)q(t) + ρ∆(t)

ρσ(t)
wσ(t) − ρ(t)υx∆(t)(wσ(t))2

(ρσ(t))2(r(t)(Ψ(x∆(t)))σ

− ρ(t)
p(t)(r(t)Ψ(x∆(t)))σ

r(t)f(xσ(t))

≤ −ρ(t)q(t) + ρ∆(t)

ρσ(t)
wσ(t) − ρ(t)υx∆(t)(wσ(t))2

(ρσ(t))2(r(t)Ψ(x∆(t)))

− ρ(t)
p(t)wσ(t)

r(t)ρσ(t)
.

From (H2) it follows that

w∆(t) ≤ −ρ(t)q(t) +
[
ρ∆(t)− ρ(t)p(t)

r(t)

]
wσ(t)

ρσ(t)
− ρ(t)υ

κ(ρσ(t))2r(t)
(wσ(t))2

≤ −ρ(t)q(t) + ξ(t)
wσ(t)

ρσ(t)
− ρ(t)υ

κ(ρσ(t))2r(t)
(wσ(t))2,

where

ξ(t) = ρ∆(t)− ρ(t)p(t)

r(t)
.

Then, we obtain

w∆(t) ≤ −ρ(t)q(t) + κr(t)ξ2(t)

4υρ(t)
−

[√
υρ(t)

κr(t)

wσ(t)

ρσ(t)
− 1

2

√
κr(t)

υρ(t)
ξ(t)

]2
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≤ −ρ(t)q(t) + δ(t)ξ2(t)

υ
.

Integrating from T2 to t, we get contradiction for all large t. The proof is complete.

Corollary 4.2 Assume that (H1)− (H4) hold. If

lim sup
t→∞

∫ t

t0

[
q(s)− κp2(s)

4υr(s)

]
∆s = ∞,

then every solution of (1.1) is oscillatory.

Theorem 4.3 Assume that (H1) − (H4) hold. Let ρ(t) be positive real differentiable function

and let H : D → R be an rd-continuous function such that H belongs to the class R and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)ρ(s)q(s)− δ(s)

υH(t, s)
B2(t, s)

]
∆(s) = ∞,

where

B(t, s) = H(t, s)ξ(t) +H∆
s (t, s)

and δ(t), ξ(t) are same as Theorem 4.1. Then, (1.1) is oscillatory.

The proof is similar to that of Theorem 2.5 and hence is omitted.

As an immediate consequence of Theorem 4.3 using ρ(t) = 1,H(t, s) = (t−s)m andm = n−1,

we get the following results respectively.

Corollary 4.4 Assume that (H1)− (H5) hold. If for n > 2

lim sup
t→∞

1

tn−1

∫ t

t0

(t− s)n−1q(s)∆s = ∞,

and

lim sup
t→∞

1

tn−1

∫ t

t0

κr(s)C2(t, s)

4υ(t− s)n−1
∆s <∞,

where

C(t, s) = (t− s)n−1

(
p(s)

r(s)

)
+ (n− 1)(t− σ(s))n−2, t ≥ s ≥ t0,

then (1.1) is oscillatory on [t0,∞).

Corollary 4.5 Suppose that (H1) − (H4) hold. Let be ρ(t) = 1 . If the condition in Theorem

4.3 is replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)q(s)∆s = ∞,
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and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(r(s)H∆
s (t, s)−H(t, s)p(s))2

H(t, s)r(s)
∆s <∞,

then every solution of (1.1) is oscillatory on [t0,∞).
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