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Abstract. In this paper, we introduce the sets of bounded, convergent and null

series and the set of sequences of bounded variation of fuzzy numbers with the level

sets. We investigate the relationships between these sets and their classical forms

and give some properties including definitions, lemmas and various kind of fuzzy

metric spaces. Furthermore, we study some of their properties like completeness,

duality and present some illustrative examples related to these sets. Finally, we

obtain the alpha-, beta- and gamma-duals of the sets of sequences of fuzzy numbers

with respect to the level sets.
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1 Introduction

By ω(F ) and E1, we denote the set of all sequences of fuzzy numbers and the set of all fuzzy

numbers on R, respectively. We define the classical sets bs(F ), cs(F ), cs0(F ) and bv(F ) consist-

ing of the sets of all bounded, convergent, null series and the set of bounded variation sequences

of fuzzy numbers, respectively, that is

bs(F ) :=

{
u = (uk) ∈ ω(F ) : sup

n∈N
D

(
n∑

k=0

uk, 0

)
< ∞

}
,

cs(F ) :=

{
u = (uk) ∈ ω(F ) : ∃l ∈ E1 ∋ lim

n→∞
D

(
n∑

k=0

uk, l

)
= 0

}
,
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cs0(F ) :=

{
u = (uk) ∈ ω(F ) : lim

n→∞
D

(
n∑

k=0

uk, 0

)
= 0

}
,

bv(F ) :=

{
u = (uk) ∈ ω(F ) :

∞∑
k=0

D
[
(∆u)k, 0

]
< ∞

}
,

where (∆u)k = uk−uk+1 for all k ∈ N. We can show that bs(F ), cs(F ) and cs0(F ) are complete

metric spaces with the metric D∞ on E1 defined by means of the Hausdorff metric d as

D∞(u, v) := sup
n∈N

n∑
k=0

D (uk, vk) = sup
n∈N

n∑
k=0

sup
λ∈[0,1]

d
(
[uk]λ, [vk]λ

)
,

where u = (uk) and v = (vk) are the elements of the sets bs(F ), cs(F ) or cs0(F ). The space

bv(F ) of sequences of bounded variation is complete metric space with the metric D∆ defined

by

D∆(u, v) :=
∞∑
k=0

D [(∆u)k, (∆v)k] =
∞∑
k=0

sup
λ∈[0,1]

{d ([(∆u)k]λ, [(∆v)k]λ)}, (∆u)k = uk − uk+1

where u = (uk), v = (vk) are the elements of the set bv(F ).

Many authors have extensively developed the theory of the different cases of sequence sets

with fuzzy metric. Mursaleen and Başarır [6] have recently introduced some new sets of sequences

of fuzzy numbers generated by a non-negative regular matrix A some of which reduced to the

Maddox’s spaces ℓ∞(p;F ), c(p;F ), c0(p;F ) and ℓ(p;F ) of sequences of fuzzy numbers for the

special cases of that matrix A. Altın, Et and Çolak [23] have recently defined the concepts

of lacunary statistical convergence and lacunary strongly convergence of generalized difference

sequences of fuzzy numbers. Quite recently; Talo and Başar [12] have extended the main results

of Başar and Altay [2] to fuzzy numbers and defined the alpha-, beta- and gamma-duals of a

set of sequences of fuzzy numbers, and gave the duals of the classical sets of sequences of fuzzy

numbers together with the characterization of the classes of infinite matrices of fuzzy numbers

transforming one of the classical set into another one. Also, Kadak and Başar [16–19] have

recently studied the power series of fuzzy numbers and examined the alternating and binomial

series of fuzzy numbers. Furthermore, Kadak determine some sets of sequences and fuzzy valued

functions via fuzzy metric with some inclusion relations, in [20,21]. Finally, Talo and Başar [11]

have introduced the sets ℓ∞(F ; f), c(F ; f), c0(F ; f) and ℓ(F ; f) of sequences of fuzzy numbers

defined by a modulus function and the spaces ℓ∞(F ), c(F ), c0(F ) and ℓp(F ) of sequences of

fuzzy numbers consisting of the bounded, convergent, null and absolutely p-summable sequences

of fuzzy numbers with the level sets.
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The main purpose of the present paper is to study the corresponding sets bs(F ), cs(F ),

cs0(F ) and bv(F ) of sequences of fuzzy numbers. We essentially proceed with some classes

between the classical sets of sequences of fuzzy numbers.

The rest of this paper is organized as follows:

In Section 2, some required definitions and consequences related with the fuzzy numbers,

sequences and series of fuzzy numbers are given. Section 3 is devoted to the completeness

of the sets of sequences bs(F ), cs(F ), cs0(F ) and bv(F ) of fuzzy numbers and some related

examples. In the final section of the paper, the alpha-, beta- and gamma-duals of the sets of

bs(F ), cs(F ), cs0(F ) and bv(F ) of fuzzy numbers are determined and given some properties

including definitions, lemmas and theorems. At the end of Section 4, an example on alpha-,

beta- and gamma-duals of cs(F ) is given.

2 Preliminaries, background, and notation

A fuzzy number is a fuzzy set on the real axis, i.e., a mapping u : R → [0, 1] which satisfies the

following four conditions:

(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1.

(ii) u is fuzzy convex, i.e., u[λx + (1 − λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R and for all

λ ∈ [0, 1].

(iii) u is upper semi-continuous.

(iv) The set [u]0 = {x ∈ R : u(x) > 0} is compact, (cf. Zadeh [5]), where {x ∈ R : u(x) > 0}

denotes the closure of the set {x ∈ R : u(x) > 0} in the usual topology of R.

We denote the set of all fuzzy numbers on R by E1 and called it as the space of fuzzy numbers.

λ-level set [u]λ of u ∈ E1 is defined by

[u]λ :=

 {t ∈ R : u(t) ≥ λ} , 0 < λ ≤ 1,

{t ∈ R : u(t) > λ} , λ = 0.

The set [u]λ is closed, bounded and non-empty interval for each λ ∈ [0, 1] which is defined by

[u]λ := [u−(λ), u+(λ)]. R can be embedded in E1, since each r ∈ R can be regarded as a fuzzy

number r defined by

r(x) :=

 1 , x = r,

0 , x ̸= r.
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Theorem 2.1 (Representation Theorem) ( [14]) Let [u]λ = [u−(λ), u+(λ)] for u ∈ E1 and

for each λ ∈ [0, 1]. Then the following statements hold:

(i) u− is a bounded and non-decreasing left continuous function on ]0, 1].

(ii) u+ is a bounded and non-increasing left continuous function on ]0, 1].

(iii) The functions u− and u+ are right continuous at the point λ = 0.

(iv) u−(1) ≤ u+(1).

Conversely, if the pair of functions u− and u+ satisfies the conditions (i)-(iv), then there exists

a unique u ∈ E1 such that [u]λ := [u−(λ), u+(λ)] for each λ ∈ [0, 1]. The fuzzy number u

corresponding to the pair of functions u− and u+ is defined by u : R → [0, 1], u(x) := sup{λ :

u−(λ) ≤ x ≤ u+(λ)}.

Now we give the definitions of the well-known two types of fuzzy numbers with the λ-level set.

Definition 2.1 (Triangular Fuzzy Number) ( [4, Definition, p. 137]) We can define the

triangular fuzzy number u as u = (u1, u2, u3) whose membership function µ(u) is interpreted as

follows;

µ(u)(x) =


x−u1

u2−u1
, u1 ≤ x ≤ u2,

u3−x
u3−u2

, u2 ≤ x ≤ u3,

0 , x < u1, x > u3.

Then, the result [u]λ := [u−(λ), u+(λ)] = [(u2 − u1)λ + u1,−(u3 − u2)λ + u3] holds for each

λ ∈ [0, 1].

Definition 2.2 (Trapezoidal Fuzzy Number) ( [4, Definition, p. 145]) We can define the

trapezoidal fuzzy number u as u = (u1, u2, u3, u4) whose membership function µ(u) is interpreted

as follows:

µ(u)(x) =



x−u1

u2−u1
, u1 ≤ x ≤ u2,

1 , u2 ≤ x ≤ u3,

u4−x
u4−u3

, u3 ≤ x ≤ u4,

0 , x < u1, x > u4.

Then, the result [u]λ := [u−(λ), u+(λ)] = [(u2 − u1)λ + u1,−(u4 − u3)λ + u4] holds for each

λ ∈ [0, 1].
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Let u, v, w ∈ E1 and α ∈ R. Then the operations addition, scalar multiplication and product

defined on E1 by

u+ v = w ⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]

⇔ w−(λ) = u−(λ) + v−(λ) and w+(λ) = u+(λ) + v+(λ) for all λ ∈ [0, 1],

[αu]λ = α[u]λ for all λ ∈ [0, 1],

uv = w ⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1],

where it is immediate that

w−(λ) = min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)},

w+(λ) = max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}

for all λ ∈ [0, 1]. Let W be the set of all closed bounded intervals A of real numbers with

endpoints A and A, i.e., A := [A,A]. Define the relation d on W by

d(A,B) := max{|A−B|, |A−B|}.

Then it can easily be observed that d is a metric on W (cf. Diamond and Kloeden [13]) and

(W,d) is a complete metric space, (cf. Nanda [15]). Now, we can define the metric D on E1 by

means of the Hausdorff metric d as

D(u, v) := sup
λ∈[0,1]

d([u]λ, [v]λ) := sup
λ∈[0,1]

max{|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|}.

Definition 2.3 ( [10, Definition 2.1]) u ∈ E1 is said to be a non-negative fuzzy number if and

only if u(x) = 0 for all x < 0. It is immediate that u ≽ 0 if u is a non-negative fuzzy number.

One can see that

D(u, 0) = sup
λ∈[0,1]

max{|u−(λ)|, |u+(λ)|} = max{|u−(0)|, |u+(0)|}.

Proposition 2.2 ( [1]) Let u, v, w, z ∈ E1 and α ∈ R. Then, the following statements hold:

(i) (E1, D) is a complete metric space, (cf. Puri and Ralescu [9]).

(ii) D(αu, αv) = |α|D(u, v).

(iii) D(u+ v, w + v) = D(u,w).

(iv) D(u+ v, w + z) ≤ D(u,w) +D(v, z).
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(v) |D(u, 0)−D(v, 0)| ≤ D(u, v) ≤ D(u, 0) +D(v, 0).

Definition 2.4 ( [10, Definition 2.7]) A sequence u = (uk) of fuzzy numbers is a function u

from the set N into the set E1. The fuzzy number uk denotes the value of the function at k ∈ N

and is called as the general term of the sequence.

Definition 2.5 ( [10, Definition 2.9]) A sequence (un) ∈ ω(F ) is called convergent with limit

u ∈ E1, if and only if for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(un, u) < ε for all n ≥ n0.

Obviously the sequence (un) ∈ ω(F ) converges to a fuzzy number u if and only if {u−
n (λ)}

and {u+
n (λ)} converge uniformly to u−(λ) and u+(λ) on [0, 1], respectively.

Definition 2.6 ( [10, Definition 2.11]) A sequence (un) ∈ ω(F ) is called bounded if and only if

the set of fuzzy numbers consisting of the terms of the sequence (un) is a bounded set. That is to

say that a sequence (un) ∈ ω(F ) is said to be bounded if and only if there exist two fuzzy numbers

m and M such that m ≼ un ≼ M for all n ∈ N. This means that m−(λ) ≤ u−
n (λ) ≤ M−(λ)

and m+(λ) ≤ u+
n (λ) ≤ M+(λ) for all λ ∈ [0, 1].

The boundedness of the sequence (un) ∈ ω(F ) is equivalent to the fact that

sup
n∈N

D(un, 0) = sup
n∈N

sup
λ∈[0,1]

max{|u−
n (λ)|, |u+

n (λ)|} < ∞.

If the sequence (uk) ∈ ω(F ) is bounded then the sequences of functions {u−
k (λ)} and {u+

k (λ)}

are uniformly bounded in [0, 1].

Theorem 2.3 ( [7, Theorem 4.1]) Let (uk), (vk) ∈ ω(F ) with uk → a, vk → b, as k → ∞.

Then, the following statements hold:

(i) uk + vk → a+ b, as k → ∞.

(ii) uk − vk → a− b, as k → ∞.

(iii) ukvk → ab, as k → ∞.

(iv) uk/vk → a/b, as k → ∞; where 0 /∈ [vk]0 for all k ∈ N and 0 /∈ [b]0.

Definition 2.7 ( [22]) Let (uk) ∈ ω(F ). Then the expression
∞∑
k=0

uk is called a series of fuzzy

numbers. Define the sequence (sn) via nth partial sum of the series by sn = u0+u1+u2+· · ·+un

75



On some sets of fuzzy-valued sequences with the level sets

for all n ∈ N. If the sequence (sn) converges to a fuzzy number u then we say that the series
∞∑
k=0

uk of fuzzy numbers converges to u and write
∞∑
k=0

uk = u which implies that

lim
n→∞

n∑
k=0

u−
k (λ) = u−(λ) and lim

n→∞

n∑
k=0

u+
k (λ) = u+(λ),

uniformly in λ ∈ [0, 1]. Conversely, if the fuzzy numbers

uk =
{
(u−

k (λ), u
+
k (λ)) : λ ∈ [0, 1]

}
,

∞∑
k=0

u−
k (λ) = u−(λ) and

∞∑
k=0

u+
k (λ) = u+(λ)

converge uniformly in λ, then u = {(u−(λ), u+(λ)) : λ ∈ [0, 1]} defines a fuzzy number such that

u =
∞∑
k=0

uk.

We say otherwise the series of fuzzy numbers diverges. As this, if the sequence (sn) is

bounded then we say that the series
∞∑
k=0

uk of fuzzy numbers is bounded.

Definition 2.8 ( [10, Definition 2.14]) Let {fk(λ)} be a sequence of functions defined on [a, b]

and λ0 ∈]a, b]. Then, {fk(λ)} is said to be eventually equi-left-continuous at λ0 if for any ε > 0

there exist n0 ∈ N and δ > 0 such that |fk(λ)−fk(λ0)| < ε whenever λ ∈]λ0− δ, λ0] and k ≥ n0.

Similarly, eventually equi-right-continuity at λ0 ∈ [a, b[ of {fk(λ)} can be defined.

Theorem 2.4 ( [10, Theorem 2.15]) Let (uk) be a sequence of fuzzy numbers such that lim
k→∞

u−
k (λ) =

u−(λ) and lim
k→∞

u+
k (λ) = u+(λ) for each λ ∈ [0, 1]. Then the pair of functions u− and u+ de-

termine a fuzzy number if and only if the sequences of functions {u−
k (λ)} and {u+

k (λ)} are

eventually equi-left-continuous at each λ ∈]0, 1] and eventually equi-right-continuous at λ = 0.

Thus, it is deduced that the series
∞∑
k=0

u−
k (λ) = u−(λ) and

∞∑
k=0

u+
k (λ) = u+(λ) define a fuzzy

number if the sequences

{s−n (λ)} =

{
n∑

k=0

u−
k (λ)

}
and {s+n (λ)} =

{
n∑

k=0

u+
k (λ)

}
satisfy the conditions of Theorem 2.4.

Definition 2.9 ( [8]) A sequence {un(x)} of fuzzy valued functions converges uniformly to u(x)

on a set I if for each ε > 0 there exists a number n0 such that D(un(x), u(x)) < ε for all x ∈ I

and n > n0.

It is clear that if (un) is uniformly convergent to u, then the sequence is pointwise convergent

to u on I. But pointwise convergence of (un) to u on I does not imply uniform convergence of

the sequence (un) on I.
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Theorem 2.5 ( [8, Theorem 2.1]) Let {un(x)} ∈ ω(F ) be a sequence of continuous functions

on interval I. If {un(x)} converges uniformly to a function u(x) on I, then u is continuous on

I.

Theorem 2.6 ( [8, Theorem 3.2]) If the series
∞∑
k=1

uk(x) converges uniformly on the set I and

each of the terms uk(x) is continuous on I, then the sum of the series is continuous on I.

Theorem 2.7 (Cauchy Criterion) ( [8]) A fuzzy series of functions
∞∑
k=1

uk(x) converges uni-

formly on a set I if and only if for every ε > 0 there exists an n0 = n0(ε) ∈ N1 such that

D

(
m∑

k=n+1

uk(x), 0

)
< ε for all x ∈ I and for all m > n > n0.

3 Completeness of the classical sets of fuzzy numbers with

the level sets

Proposition 3.1 Define D∞ on the space X(F ) by

D∞ : X(F )×X(F ) −→ R

(u, v) −→ D∞(u, v) := sup
n∈N

n∑
k=0

D (uk, vk) = sup
n∈N

n∑
k=0

sup
λ∈[0,1]

d
(
[uk]λ, [vk]λ

)
;

where u = (uk), v = (vk) ∈ X(F ) and here and after X denotes any of the sets bs(F ), cs(F ) or

cs0(F ). Then, (X(F ), D∞) is a metric space.

Proof. Let u = (uk), v = (vk) ∈ X(F ).

(M1) It is immediate that

D∞(u, v) = 0 ⇔ sup
n∈N

n∑
k=0

sup
λ∈[0,1]

{
d
(
[uk]λ, [vk]λ

)}
= 0

⇔ sup
n∈N

sup
λ∈[0,1]

max

{∣∣∣∣∣
n∑

k=0

(uk)
−
λ −

n∑
k=0

(vk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
k=0

(uk)
+
λ −

n∑
k=0

(vk)
+
λ

∣∣∣∣∣
}

= 0

⇔
n∑

k=0

(uk)
−
λ =

n∑
k=0

(vk)
−
λ and

n∑
k=0

(uk)
+
λ =

n∑
k=0

(vk)
+
λ

⇔
n∑

k=0

[uk]λ =

n∑
k=0

[vk]λ ⇔ uk = vk ⇔ u = v

for all λ ∈ [0, 1].
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(M2) One can easily see that

D∞(u, v) = sup
n∈N

n∑
k=0

D (uk, vk) = sup
n∈N

n∑
k=0

D (vk, uk) = D∞(v, u).

(M3) Let u = (uk), v = (vk), w = (wk) ∈ X(F ) and by taking into account the triangle

inequality and the condition max{a+c, b+d} ≤ max{a, b}+max{c, d} for all a, b, c, d > 0,

we observe that

D∞(u,w) = sup
n∈N

n∑
k=0

sup
λ∈[0,1]

{
d
(
[uk]λ, [wk]λ

)}

≤ sup
n∈N

sup
λ∈[0,1]

max

{∣∣∣∣∣
n∑

k=0

(uk)
−
λ −

n∑
k=0

(wk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
k=0

(uk)
+
λ −

n∑
k=0

(wk)
+
λ

∣∣∣∣∣
}

≤ sup
n∈N

sup
λ∈[0,1]

max

{∣∣∣∣∣
n∑

k=0

(uk)
−
λ −

n∑
k=0

(vk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
k=0

(uk)
+
λ −

n∑
k=0

(vk)
+
λ

∣∣∣∣∣
}

+ sup
n∈N

sup
λ∈[0,1]

max

{∣∣∣∣∣
n∑

k=0

(vk)
−
λ −

n∑
k=0

(wk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
k=0

(vk)
+
λ −

n∑
k=0

(wk)
+
λ

∣∣∣∣∣
}

= D∞(u, v) +D∞(v, w),

where

a =

∣∣∣∣∣
n∑

k=0

(uk)
−
λ −

n∑
k=0

(vk)
−
λ

∣∣∣∣∣ , b =

∣∣∣∣∣
n∑

k=0

(uk)
+
λ −

n∑
k=0

(vk)
+
λ

∣∣∣∣∣ ,
c =

∣∣∣∣∣
n∑

k=0

(vk)
−
λ −

n∑
k=0

(wk)
−
λ

∣∣∣∣∣ , d =

∣∣∣∣∣
n∑

k=0

(vk)
+
λ −

n∑
k=0

(wk)
+
λ

∣∣∣∣∣
for all λ ∈ [0, 1].

Since (M1)-(M3) are satisfied, (X(F ), D∞) is a metric space.

By following examples, we calculate the distance function for the spaces bs(F ) and cs(F )

with respect to the level sets.

Example 3.1 Consider the membership functions uk(t) and vk(t) defined by the triangular

fuzzy numbers as

uk(t) =


k(k + 1)t− 1 , 1

k(k+1) ≤ t ≤ 2
k(k+1) ,

3− k(k + 1)t , 2
k(k+1) < t ≤ 3

k(k+1) ,

0 , otherwise,

vk(t) =


(k + 1)2t− 1 , 1

(k+1)2 ≤ t ≤ 2
(k+1)2 ,

3− (k + 1)2t , 2
(k+1)2 < t ≤ 3

(k+1)2 ,

0 , otherwise

78
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for all k ∈ N. It is trivial that u−
k (λ) =

λ+1
k(k+1) and u+

k (λ) =
3−λ

k(k+1) for all λ ∈ [0, 1]. Therefore

we see that
∞∑
k=0

(uk)
−
λ = λ + 1 and

∞∑
k=0

(uk)
+
λ = 3 − λ. Then, it is conclude that (uk) ∈ bs(F ).

Similarly, v−k (λ) = λ+1
(k+1)2 and v+k (λ) = 3−λ

(k+1)2 for all λ ∈ [0, 1]. It is clear that
∞∑
k=0

(vk)
−
λ =

(λ+1)π2

6 and
∞∑
k=0

(vk)
+
λ = (3−λ)π2

6 . Then, (vk) ∈ bs(F ). Now we can calculate the distance

between the sequences u = (uk) and v = (vk) in bs(F ) that

D∞(u, v) = sup
n∈N

n∑
k=0

sup
λ∈[0,1]

d
(
[uk]λ, [vk]λ

)
= sup

λ∈[0,1]

max

{
sup
n∈N

∣∣∣∣∣
n∑

k=0

(uk)
−
λ −

n∑
k=0

(vk)
−
λ

∣∣∣∣∣ , supn∈N

∣∣∣∣∣
n∑

k=0

(uk)
+
λ −

n∑
k=0

(vk)
+
λ

∣∣∣∣∣
}

= sup
λ∈[0,1]

max

{∣∣∣∣λ+ 1− (λ+ 1)π2

6

∣∣∣∣ , ∣∣∣∣3− λ− (3− λ)π2

6

∣∣∣∣}
= sup

λ∈[0,1]

∣∣∣∣(3− λ)(1− π2

6
)

∣∣∣∣ ∼= 3/2.

Example 3.2 Consider the membership functions uk(t) and vk(t) defined by the trapezoidal

fuzzy numbers as

uk(t) =



2kt− 1 , 1
2k

≤ t ≤ 2
2k
,

1, , 2
2k

< t ≤ 4
2k
,

2− 2k−2t , 4
2k

< t ≤ 8
2k
,

0 , otherwise,

vk(t) =



6k(k + 1)t− 3 , 1
2k(k+1) ≤ t ≤ 2

3k(k+1) ,

1, , 2
3k(k+1) < t ≤ 3

4k(k+1) ,

4− 4k(k + 1)t , 3
4k(k+1) < t ≤ 1

k(k+1) ,

0 , otherwise

for all k ∈ N. It is obvious that u−
k (λ) = λ+1

2k
and u+

k (λ) = 4(2−λ)
2k

for all λ ∈ [0, 1]. Then,
∞∑
k=0

(uk)
−
λ = 2(λ+1) and

∞∑
k=0

(uk)
+
λ = 8(2− λ). Similarly, v−k (λ) =

λ+3
6k(k+1) and v+k (λ) =

4−λ
4k(k+1)

for all λ ∈ [0, 1]. Then,
∞∑
k=0

(vk)
−
λ = λ+3

6 and
∞∑
k=0

(vk)
+
λ = 4−λ

4 . Now, we can calculate the

distance between the sequences u = (uk) and v = (vk) in cs(F ) that

D∞(u, v) = sup
n∈N

sup
λ∈[0,1]

d

(
n∑

k=0

[uk]λ,
n∑

k=0

[vk]λ

)

= sup
λ∈[0,1]

max

{
sup
n∈N

∣∣∣∣∣
n∑

k=0

(uk)
−
λ −

n∑
k=0

(vk)
−
λ

∣∣∣∣∣ , supn∈N

∣∣∣∣∣
n∑

k=0

(uk)
+
λ −

n∑
k=0

(vk)
+
λ

∣∣∣∣∣
}

= sup
λ∈[0,1]

max

{∣∣∣∣11λ+ 9

6

∣∣∣∣ , ∣∣∣∣60− 31λ

4

∣∣∣∣} = sup
λ∈[0,1]

∣∣∣∣60− 31λ

4

∣∣∣∣ = 15.
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Theorem 3.2 The space (X(F ), D∞) is complete.

Proof. Since the proof is similar for the spaces cs(F ) or cs0(F ), we prove the theorem only

for the space bs(F ). Let (xm) be any Cauchy sequence in the space bs(F ), where xm =(
x
(m)
0 , x

(m)
1 , x

(m)
2 , . . .

)
. Then, for every ϵ > 0, there exists n0 ∈ N such that for all m, r > n0,

D∞(xm, xr) = sup
n∈N

D

(
n∑

k=0

x
(m)
k ,

n∑
k=0

x
(r)
k

)
< ϵ.

A fortiori, for every fixed k ∈ N and for m, r > n0

D

(
n∑

k=0

x
(m)
k ,

n∑
k=0

x
(r)
k

)
< ϵ. (3.1)

Hence for every fixed k ∈ N, by taking into account the completeness of the space (E1, D), the

sequence (x
(m)
k ) is a Cauchy sequence and it converges. Now, we suppose that lim

m→∞
x
(m)
k = xk

and x = (x1, x2, . . . ). We must show that

lim
m→∞

D∞(xm, x) = 0 and x ∈ bs(F ).

Letting r → ∞ in (3.1), we get for all m,n ∈ N with m > n0 that

D

(
n∑

k=0

x
(m)
k ,

n∑
k=0

xk

)
< ϵ. (3.2)

Since the sequence (x
(m)
k ) in bs(F ), there exists a non-negative fuzzy number M such that

D
[∑n

k=0 x
(m)
k , 0

]
< M for all k ∈ N, where

M = max

{
sup
n∈N

sup
λ∈[0,1]

∣∣∣∣∣
n∑

k=0

(x
(m)
k )−λ

∣∣∣∣∣ , supn∈N
sup

λ∈[0,1]

∣∣∣∣∣
n∑

k=0

(x
(m)
k )+λ

∣∣∣∣∣
}
.

Thus, (3.2) gives together with the triangle inequality for m > n0 that

D

(
n∑

k=0

xk, 0

)
≤ D

(
n∑

k=0

xk,

n∑
k=0

x
(m)
k

)
+D

(
n∑

k=0

x
(m)
k , 0

)
≤ ϵ+M. (3.3)

It is clear that (3.3) holds for every fixed k ∈ N whose right-hand side does not involve k. Hence

x ∈ bs(F ). Also from (3.2) we obtain for m > n0 that

D∞(xm, x) = sup
n∈N

D

(
n∑

k=0

x
(m)
k ,

n∑
k=0

xk

)
≤ ϵ.

This shows that lim
m→∞

D∞(xm, x) = 0. Therefore, the space (bs(F ), D∞) is complete.

Proposition 3.3 (bv(F ), D∆) is a metric space.
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Proof. Since the metric axioms (M1) and (M2) are easily satisfied, we omit the detail. Let

u = (uk), v = (vk), w = (wk) ∈ bv(F ) and by taking into account the triangle inequality with

the condition max{a+ c, b+ d} ≤ max{a, b}+max{c, d} for all a, b, c, d > 0, we see that

D∆(u,w) ≤ sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

(∆uk)
−
λ −

∞∑
k=0

(∆wk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

(∆uk)
+
λ −

∞∑
k=0

(∆wk)
+
λ

∣∣∣∣∣
}

≤ sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

(∆uk)
−
λ −

∞∑
k=0

(∆vk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

(∆uk)
+
λ −

∞∑
k=0

(∆vk)
+
λ

∣∣∣∣∣
}

+ sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

(∆vk)
−
λ −

∞∑
k=0

(∆wk)
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

(∆vk)
+
λ −

∞∑
k=0

(∆wk)
+
λ

∣∣∣∣∣
}

= D∆(u, v) +D∆(v, w),

where

a =

∣∣∣∣∣
∞∑
k=0

(∆uk)
−
λ −

∞∑
k=0

(∆vk)
−
λ

∣∣∣∣∣ , b =

∣∣∣∣∣
∞∑
k=0

(∆uk)
+
λ −

∞∑
k=0

(∆vk)
+
λ

∣∣∣∣∣ ,
c =

∣∣∣∣∣
∞∑
k=0

(∆vk)
−
λ −

∞∑
k=0

(∆wk)
−
λ

∣∣∣∣∣ , d =

∣∣∣∣∣
∞∑
k=0

(∆vk)
+
λ −

∞∑
k=0

(∆wk)
+
λ

∣∣∣∣∣ .
Hence, triangle inequality holds. Since the metric axioms (M1)-(M3) are satisfied, (bv(F ), D∆)

is a metric space.

Example 3.3 Consider the membership functions uk(t) and vk(t) defined by the triangular

fuzzy numbers as

uk(t) =


kt− 1 , 1

k ≤ t ≤ 2
k ,

3− kt , 2
k < t ≤ 3

k ,

0 , otherwise,

vk(t) =


12kt−3k

4k−3k
, 1

4k
≤ t ≤ 1

3k
,

3k−6kt
3k−2k

, 1
3k

< t ≤ 1
2k
,

0 , otherwise

for all k ∈ N. Then, u−
k (λ) =

λ+1
k and u+

k (λ) =
3−λ
k . Additionally, since

[(∆u)k]λ = [(uk)
−
λ − (uk+1)

−
λ , (uk)

+
λ − (uk+1)

+
λ ] =

[
λ+ 1

k(k + 1)
,

3− λ

k(k + 1)

]
,

(uk) ∈ bv(F ). Similarly, v−k (λ) =
λ
3k

− λ−1
4k

and v+k (λ) =
λ
3k

+ 1−λ
2k

then,

[(∆v)k]λ = [(vk)
−
λ − (vk+1)

−
λ , (vk)

+
λ − (vk+1)

+
λ ] =

[
2λ

3k+1
− 3(λ− 1)

4k+1
,

2λ

3k+1
+

1− λ

2k+1

]
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and (vk) ∈ bv(F ). Now we can calculate that

D(u, v) =
∞∑
k=0

D [(∆u)k, (∆v)k] = sup
λ∈[0,1]

∞∑
k=0

d {[(∆u)k]λ, [(∆v)k]λ}

= sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

[(∆u)k]
−
λ −

∞∑
k=0

[(∆v)k]
−
λ

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

[(∆u)k]
+
λ −

∞∑
k=0

[(∆v)k]
+
λ

∣∣∣∣∣
}

= sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

λ+ 1

k(k + 1)
−

∞∑
k=0

[
2λ

3k+1
− 3(λ− 1)

4k+1

]∣∣∣∣∣ ,∣∣∣∣∣
∞∑
k=0

3− λ

k(k + 1)
−

∞∑
k=0

(
2λ

3k+1
+

1− λ

2k+1

)∣∣∣∣∣
}

= sup
λ∈[0,1]

max {|λ|, |2− λ|} = sup
λ∈[0,1]

{
2− λ

}
= 2.

Theorem 3.4 (bv(F ), D∆) is a complete metric space.

Proof. Let (um) be any Cauchy sequence in the space bv(F ), where um =
{
u
(m)
0 , u

(m)
1 , u

(m)
2 , · · ·

}
for all m ∈ N. Then, for every ε > 0, there exists N(ε) ∈ N such that for all m, r > N(ε),

D∆(um, ur) =
∞∑
k=0

D
[
(∆u)

(m)
k , (∆u)

(r)
k

]
< ε.

A fortiori, for every fixed k ∈ N and for m, r > N(ε)

D
[
(∆u)

(m)
k , (∆u)

(r)
k

]
< ε. (3.4)

Hence for every fixed k ∈ N, by taking into account the completeness of the space (E1, D), the se-

quence {(∆u)
(m)
k } is a Cauchy sequence and it converges. Now, we suppose that lim

m→∞
(∆uk)

(m) =

(∆u)k, ∆u = {(∆u)0, (∆u)1, · · · , (∆u)k, · · · }. We must show that

lim
m→∞

D∆(um, u) = 0 and u = (uk) ∈ bv(F ).

We have from (3.4) for each j ∈ N and m, r > N(ε) that

j∑
k=0

D
[
(∆u)

(m)
k , (∆u)

(r)
k

]
≤ D∆(um, ur) < ε. (3.5)

Take any m > N(ε). Let us pass to limit firstly r → ∞ and next j → ∞ in (3.5) to obtain

D∆(um, u) ≤ ε. Since the sequence (um) is in bv(F ), there exists a non-negative fuzzy number

M such that D∆(um, 0) < M for all m ∈ N, where

M = sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

((∆u)
(m)
k )−λ

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

((∆u)
(m)
k )+λ

∣∣∣∣∣
}
.
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By using inclusion (3.5) and Minkowski’s inequality for each j ∈ N that

j∑
k=0

D[(∆u)k, 0] ≤ D∆(um, u) +D∆(um, 0) ≤ ε+M

which implies that u ∈ bv(F ). SinceD∆(um, u) ≤ ϵ for allm > N(ε) it follows that lim
m→∞

D∆(um, u) =

0. Since (um) is an arbitrary Cauchy sequence, the space (bv(F ), D∆) is complete.

This step completes the proof.

Theorem 3.5 ( [12]) Define the relation Dp on the space bvp(F ) by

Dp : bvp(F )× bvp(F ) −→ R

(u, v) −→ Dp(u, v) =

{ ∞∑
k=0

D [(∆u)k, (∆v)k]
p

}1/p

, (1 ≤ p < ∞),

where u = (uk) and v = (vk) ∈ bvp(F ) and the difference sequence (∆u)k = uk−uk−1, (u−1 = 0)

for all k ∈ N. Then, (bvp(F ), Dp) is a metric space.

Theorem 3.6 ( [12, Theorem 7]) (bvp(F ), D∆) is a complete metric space.

4 The duals of the classical sets of sequences of fuzzy num-

bers with the level sets

Following Başar [3], first we define the alpha-, beta- and gamma-duals of a set µ(F ) ⊂ ω(F )

which are respectively denoted by {µ(F )}α, {µ(F )}β and {µ(F )}γ , as follows:

{µ(F )}α :=

{
u = (uk) ∈ ω(F ) : (ukvk) ∈ ℓ1(F ) for all (vk) ∈ µ(F )

}
,

{µ(F )}β :=

{
u = (uk) ∈ ω(F ) : (ukvk) ∈ cs(F ) for all (vk) ∈ µ(F )

}
,

{µ(F )}γ :=

{
u = (uk) ∈ ω(F ) : (ukvk) ∈ bs(F ) for all (vk) ∈ µ(F )

}
.

Following Talo and Başar [10], we give the classical sets ℓ∞(F ), c(F ), c0(F ), ℓp(F ), bvp(F )

and bv∞(F ) consisting of the bounded, convergent, null, absolutely p-summable, p-bounded
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variation and bounded difference sequences of fuzzy numbers, i.e.,

ℓ∞(F ) :=

{
(uk) ∈ ω(F ) : sup

k∈N
D(uk, 0) < ∞

}
,

c(F ) :=

{
(uk) ∈ ω(F ) : ∃l ∈ E1 ∋ lim

k→∞
D(uk, l) = 0

}
,

c0(F ) :=

{
(uk) ∈ ω(F ) : lim

k→∞
D(uk, 0) = 0

}
,

ℓp(F ) :=

{
(uk) ∈ ω(F ) :

∞∑
k=0

D(uk, 0)
p < ∞

}
,

bvp(F ) :=

{
u = (uk) ∈ ω(F ) :

∞∑
k=0

{
D
(
∆uk, 0

)}p

< ∞

}
,

bv∞(F ) :=

{
u = (uk) ∈ ω(F ) : sup

k∈N
D
(
∆uk, 0

)
< ∞

}
,

where the difference sequence ∆u = (∆uk) by ∆uk = uk − uk−1, (u−1 = 0) for all k ∈ N and

1 ≤ p < ∞. Additionally, the space bv0(F ) is the intersection of the spaces bv(F ) and c0(F ).

Lemma 4.1 ( [10, Lemma 3.1]) Let d denotes the set of all absolutely convergent series of fuzzy

numbers, i.e.,

d :=

{
u = (uk) ∈ ω(F ) :

∞∑
k=0

D(uk, 0) < ∞
}
.

Then, the set d is identical to the set ℓ1(F ).

Theorem 4.2 ( [10, Theorem 3.2]) The α−dual of the sets c(F ), c0(F ) and ℓ∞(F ) of sequences

of fuzzy numbers is the set ℓ1(F ).

Definition 4.1 ( [10, Definition 3.3]) A set µ(F ) ⊂ ω(F ) is said to be solid if (vk) ∈ µ(F )

whenever D(vk, 0) ≤ D(uk, 0) for all k ∈ N for some (uk) ∈ µ(F ). It is known that the alpha-

and gamma-duals of a set of sequences of fuzzy numbers are identical if it is solid.

Lemma 4.3 The following statements hold:

(a) ( [10, Theorem 3.4]) The sets c0(F ), ℓp(F ) and ℓ∞(F ) are solid.

(b) ( [10, Theorem 3.5]) The beta-dual of the sets c(F ), c0(F ) and ℓ∞(F ) is the set ℓ1(F ).

(c) ( [10, Theorem 3.6]) The alpha- and beta-duals of the set ℓp(F ) are the set ℓq(F ), where

1 ≤ p < ∞.
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(d) ( [10, Corollary 3.7]) The gamma-dual of the sets ℓp(F ), c0(F ) and ℓ∞(F ) is the set ℓ1(F ),

where 0 < p < 1.

(e) ( [10, Lemma 2.6]) We have

(i) D(uv, 0) ≤ D(u, 0)D(v, 0) for all u, v ∈ E1,

(ii) If uk → u, as k → ∞ then D(uk, 0) → D(u, 0), as k → ∞ ; where (uk) ∈ ω(F ).

Theorem 4.4 (Weierstrass M test) ( [10]) Let uk : [a, b] → R be given. If there exists an

Mk > 0 such that |uk(x)| ≤ Mk for all k ∈ N and
∑
k

Mk converges, then
∑
k

uk(x) is uniformly

and absolutely convergent in [a, b].

Lemma 4.5 ( [10, Theorem 2.18]) If the series
∑
k

uk and
∑
k

vk converge, then D
(∑

k

uk,
∑
k

vk
)
≤∑

k

D(uk, vk).

Lemma 4.6 (The Comparison test) ( [18, Theorem 4.4]) Let (uk) and (vk) be the sequences

of non-negative fuzzy numbers and uk ≼ vk for all k ∈ N. Then, the following statements hold:

(i) If
∞∑
k=0

vk converges, then
∞∑
k=0

uk converges.

(ii) If
∞∑
k=0

uk diverges, then
∞∑
k=0

vk diverges.

(iii) The absolute convergence of a series of fuzzy numbers implies the convergence of the series.

Now, we give the alpha-, beta- and gamma-duals of the sets bs(F ), cs(F ), cs0(F ) and bv(F ).

Theorem 4.7 The alpha-dual of the sets cs(F ), bs(F ), bv1(F ) and bv0(F ) is the set ℓ1(F ).

Proof. We prove the case {cs(F )}α = ℓ1(F ) and the rest can be obtained similarly.

Let u = (uk) ∈ ℓ1(F ). Then,
∞∑
k=0

D(uk, 0) converges. Therefore, we derive by using the fact

given in Part (i) of Lemma 4.6 that

∞∑
k=0

D(ukvk, 0) ≤
∞∑
k=0

D(uk, 0)D(vk, 0) ≤ M
∞∑
k=0

D(uk, 0).

If we take v = (vk) ∈ cs0(F ) ⊂ cs(F ), then we have
∞∑
k=0

D(ukvk, 0) < ∞ which gives that

ℓ1(F ) ⊆ {cs(F )}α.
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Conversely, suppose that u = (uk) ∈ {cs(F )}α and v = (vk) ∈ cs0(F ). Then, the series∑∞
k=0 D(vk, 0) converges. Since

|(ukvk)
−
λ | ≤

∞∑
k=0

D(ukvk, 0) ≤
∞∑
k=0

D(uk, 0)D(vk, 0)

|(ukvk)
+
λ | ≤

∞∑
k=0

D(ukvk, 0) ≤
∞∑
k=0

D(uk, 0)D(vk, 0),

Weierstrass’ M Test yields that
∞∑
k=0

(ukvk)
−
λ and

∞∑
k=0

(ukvk)
+
λ converge uniformly and hence

∞∑
k=0

ukvk converges whenever
∞∑
k=0

D(uk, 0) converges. Therefore, we have {cs(F )}α ⊆ ℓ1(F ).

This step concludes the proof.

Theorem 4.8 The following statements hold:

(i) {cs(F )}β = bv1(F ).

(ii) {bv(F )}β = cs(F ).

(iii) {bv0(F )}β = bs(F ).

(iv) {bs(F )}β = bv0(F ).

Proof. Since the other parts can be similarly proved, we consider only Part (i).

Let u = (uk) ∈ {cs(F )}β and w = (wk) ∈ c0(F ). Define the sequence v = (vk) ∈ cs(F ) by

vk = wk − wk+1 for all k ∈ N. Therefore,
∞∑
k=0

ukvk converges, but

n∑
k=0

(wk − wk+1)uk =

n−1∑
k=0

wk(uk − uk−1)− wn+1un (4.1)

and the inclusion ℓ1(F ) ⊂ cs(F ) yields that (uk) ∈ {cs(F )}β ⊂ {ℓ1(F )}β = ℓ∞(F ). Then we

derive by passing to limit in (4.1) as n → ∞ which implies that

∞∑
k=0

(wk − wk+1)uk =

∞∑
k=0

wk(uk − uk−1)

for every k ∈ N. Hence (uk−uk−1) ∈ {c0(F )}β = {c0(F )}α = ℓ1(F ), i.e., u ∈ bv1(F ). Therefore,

{cs(F )}β ⊆ bv1(F ).

Conversely, suppose that u = (uk) ∈ bv1(F ). Then, (uk − uk−1) ∈ ℓ1(F ). Further, if

v = (vk) ∈ cs(F ), the sequence (wn) defined by wn =
n∑

k=0

vk for all n ∈ N, is an element of the
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space c(F ). Since {c(F )}α = ℓ1(F ), the series
∞∑
k=0

wk(uk −uk+1) is absolutely convergent. Also,

we have ∣∣∣∣ n∑
k=m

(wk − wk−1)uk

∣∣∣∣ ≤ ∣∣∣∣ n−1∑
k=m

wk(uk − uk+1)

∣∣∣∣+ ∣∣wnun − wm−1um

∣∣. (4.2)

Since (wn) ∈ c(F ) and (uk) ∈ bv1(F ) ⊂ c(F ), the right-hand side of inequality (4.2) converges

to zero as m,n → ∞. Hence, the series
∞∑
k=0

(wk − wk−1)uk or
∞∑
k=0

ukvk converges and so,

bv1(F ) ⊆ {cs(F )}β . Thus, {cs(F )}β = bv1(F ).

Theorem 4.9 The following statements hold:

(i) {cs(F )}γ = {bs(F )}γ = bv1(F ).

(ii) {bv0(F )}γ = {bv1(F )}γ = bs(F ).

Proof. We prove only Part (i) for {cs(F )}γ , the rest can be proved in a similar way.

By Theorem 4.8, we have bv1(F ) ⊆ {cs(F )}β and since {cs(F )}β ⊂ {cs(F )}γ , so bv1(F ) ⊂

{cs(F )}γ . We need to show that {cs(F )}γ ⊂ bv1(F ). Let u = (un) ∈ {cs(F )}γ and v = (vn) ∈

c0(F ). Then, for the sequence (wn) ∈ cs(F ) defined by wn = vn − vn+1 for all n ∈ N, we can

find a fuzzy constant K ≻ 0 such that
∣∣ n∑
k=0

ukwk

∣∣ ≤ K for all n ∈ N. Since (vn) ∈ c0(F ) and

(un) ∈ {cs(F )}γ ⊂ ℓ∞(F ), there exists a fuzzy constant M ≻ 0 such that |unvn| ≤ M for all

n ∈ N. Therefore,∣∣∣∣ n∑
k=0

(uk − uk−1)vk

∣∣∣∣ ≤ ∣∣∣∣ n+1∑
k=0

uk(vk − vk+1)

∣∣∣∣+ ∣∣vn+2un+1

∣∣ ≤ K +M.

Hence (uk − uk−1) ∈ {c0(F )}γ = {c0(F )}α = ℓ1(F ) from Part (d) of Lemma 4.3, i.e., (un) ∈

bv1(F ). Therefore, since the inclusion {cs(F )}γ ⊂ bv1(F ) holds, we conclude that {cs(F )}γ =

bv1(F ), as desired.

Now, we give an example related to the alpha-, beta- and gamma- duals of the set cs(F ).

Example 4.1 Consider the triangular fuzzy numbers with the membership functions uk and vk

defined by

uk(t) =


k(k + 1)t− 1 , 1

k(k+1) ≤ t ≤ 2
k(k+1) ,

3− k(k + 1)t , 2
k(k+1) < t ≤ 3

k(k+1) ,

0 , otherwise,

vk(t) =


(2k − 1)(2k + 1)t− 1 , 1

(2k−1)(2k+1) ≤ t ≤ 2
(2k−1)(2k+1) ,

8− 2t(2k − 1)(2k + 1) , 2
(2k−1)(2k+1) < t ≤ 4

(2k−1)(2k+1) ,

0 , otherwise
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for all k ∈ N. Since u−
k (λ) = λ+1

k(k+1) and u+
k (λ) = 3−λ

k(k+1) , (uk) ∈ ℓ1(F ). Similarly, v−k (λ) =

λ+1
(2k−1)(2k+1) and v+k (λ) = 8−λ

2(2k−1)(2k+1) then,
∞∑
k=0

vk =
[
λ+1
2 , 8−λ

4

]
∈ cs(F ). Therefore, a

straightforward calculation yields that

∞∑
k=0

(ukvk)
−
λ =

∞∑
k=0

min

{
(uk)

−
λ (vk)

−
λ , (uk)

−
λ (vk)

+
λ , (uk)

+
λ (vk)

−
λ , (uk)

+
λ (vk)

+
λ

}

=
∞∑
k=0

min

{
(λ+ 1)2

k(k + 1)(2k − 1)(2k + 1)
,

(λ+ 1)(8− λ)

2k(k + 1)(2k − 1)(2k + 1)
,

(3− λ)(λ+ 1)

2k(k + 1)(2k − 1)(2k + 1)
,

(3− λ)(8− λ)

2k(k + 1)(2k − 1)(2k + 1)

}
=

∞∑
k=0

(λ+ 1)2

k(k + 1)(4k2 − 1)
. (4.3)

Then, we see for the sequences (uk) =
{ (λ+1)2

k(k+1)(2k−1)(2k+1)

}
and (vk) =

{ (λ+1)2

(2k−1)(2k+1)

}
of fuzzy

numbers that uk ≼ vk for all k ∈ N. Since the series
∞∑
k=0

vk converges, then the series (4.3) also

converges by using Comparison Test in Part (i) of Lemma 4.6. Similarly,

∞∑
k=0

(ukvk)
+
λ =

∞∑
k=0

(3− λ)(8− λ)

2k(k + 1)(4k2 − 1)
. (4.4)

Taking the sequences (uk) =
{ (3−λ)(8−λ)

2k(k+1)(2k−1)(2k+1)

}
and (vk) =

{ (3−λ)(8−λ)
(2k−1)(2k+1)

}
of fuzzy numbers,

we have uk ≼ vk for all k ∈ N. Since the series
∞∑
k=0

vk converges, then series (4.4) also converges.

Therefore,

∞∑
k=0

D(ukvk, 0) = sup
λ∈[0,1]

max

{∣∣∣∣ ∞∑
k=0

(ukvk)
−
λ

∣∣∣∣, ∣∣∣∣ ∞∑
k=0

(ukvk)
+
λ

∣∣∣∣}

= sup
λ∈[0,1]

max

{∣∣∣∣ ∞∑
k=0

(λ+ 1)2

k(k + 1)(4k2 − 1)

∣∣∣∣, ∣∣∣∣ ∞∑
k=0

(3− λ)(8− λ)

2k(k + 1)(4k2 − 1)

∣∣∣∣} < ∞.

Hence, (ukvk) ∈ ℓ1(F ) = {cs(F )}α. Additionally, by using lim
n

∑n
k=0 D

(
ukvk, l

)
= 0 for some

l ∈ E1, one can see that (ukvk) ∈ cs(F ). It is obvious that (uk) ∈ bv1(F ) = {cs(F )}β =

{cs(F )}γ . Indeed

∞∑
k=0

D
[
∆(uk), 0

]
= sup

λ∈[0,1]

∞∑
k=0

d
(
[uk − uk−1]λ, 0

)
= sup

λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

(uk)
−
λ − (uk−1)

−
λ

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

(uk)
+
λ − (uk−1)

+
λ

∣∣∣∣∣
}

= sup
λ∈[0,1]

max

{∣∣∣∣∣
∞∑
k=0

[
λ+ 1

k(k + 1)
− λ+ 1

k(k − 1)

]∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=0

(
3− λ

k(k + 1)
− 3− λ

k(k − 1)

)∣∣∣∣∣
}

= sup
λ∈[0,1]

max

{ ∞∑
k=0

[
2(λ+ 1)

k(k + 1)(k − 1)

]
,

∞∑
k=0

[
2(3− λ)

k(k + 1)(k − 1)

]}
< ∞.
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Therefore, (uk) ∈ bv1(F ).
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