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Abstract. In this paper, the third boundary-value problem for parabolic differential-

difference equation is considered in Lipschitz spatial domain Q. It is proved that the

space of initial data (i.e., the space of initial functions for which the strong solution

exists) coincides with Sobolev space H1(Q).
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1 Introduction

The space of initial data, i.e., the space of initial functions for which the strong solution exists,

for the second boundary-value problem for parabolic differential-difference equation in the case

of smooth spatial domain Q was described in terms of the Sobolev spaces in [7]. For the history

of the problem and its connection with the Kato square root problem see [7] and literature

therein.

In this paper, we spread this result to the Robin boundary conditions and we use the method

developed in [1] to cover the case of Lipschitz spatial domain Q.

2 Statement of the problem

Let Q ⊂ Rn, n ≥ 2, be a bounded domain with Lipschitz boundary ∂Q, i.e., locally it is a

graph of function xn = ϕ(x′), satisfying the Lipschitz condition |ϕ(x′)−ϕ(y′)| ≤ K|x′−y′| with
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K > 0.

Introduce bounded difference operators Rij , Ri : L2(Rn) → L2(Rn) by the formulas

(Riju)(x) =
∑
h∈M

aijhu(x+ h) (i, j = 1, 2, · · · , n),

(Riu)(x) =
∑
h∈M

aihu(x+ h) (i = 0, 1, 2, · · · , n).
(2.1)

Here, aijh, aih are complex numbers, the set M consists of a finite number of vectors h ∈ Rn

with integer coordinates.

We introduce the following linear operators: IQ : L2(Q) → L2(Rn) is the operator of ex-

tension of a function by zero outside Q; PQ : L2(Rn) → L2(Q) is the projection operator of

a function onto Q; and the operators RijQ, RiQ : L2(Q) → L2(Q) defined by the formulas

RijQ = PQRijIQ, RiQ = PQRiIQ.

We consider the following differential-difference equation

ut −
n∑

i,j=1

(
RijQuxj

)
xi

+

n∑
i=1

RiQuxi +R0Qu = f(x, t) ((x, t) ∈ QT ) (2.2)

with the boundary condition

n∑
i,j=1

RijQuxj cos(ν, xi) + σ(x)u = 0 ((x, t) ∈ ΓT ) , (2.3)

and the initial condition

u|t=0 = φ(x) (x ∈ Q) , (2.4)

where QT = Q× (0, T ), 0 < T <∞, ΓT = ∂Q× (0, T ), ν is the external unit normal to ΓT (it

exists at almost every point of ΓT ), σ ∈ L2(∂Q) and σ ≥ 0 on ∂Q, f ∈ L2(QT ), and φ ∈ L2(Q).

Let Hk(Q) be the Sobolev space of complex-valued functions from L2(Q) having all gener-

alized derivatives up to the k-order from L2(Q).

Introduce the sesquilinear form a[v, w] in L2(Q) with domain H1(Q) by the formula

a[v, w] =
n∑

i,j=1

(
RijQvxj , wxi

)
L2(Q)

+

n∑
i=1

(RiQvxi , w)L2(Q) + (R0Qv, w)L2(Q) + (σv,w)L2(∂Q). (2.5)

The difference operators RijQ, RiQ, R0Q : L2(Q) → L2(Q) are bounded. Therefore, it follows

that there exists a constant c0 > 0 such that

|a[v, w]| ≤ c0∥v∥H1(Q)∥w∥H1(Q), (v, w ∈ H1(Q)). (2.6)
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Since the sesquilinear form a[v, w] is continuous with respect to w in H1(Q), there exists a

linear bounded operator A : H1(Q) →
[
H1(Q)

]′
such that

⟨Av, w⟩ = a[v, w] (v, w ∈ H1(Q)), (2.7)

where
[
H1(Q)

]′
is a dual space to H1(Q).

Definition 2.1 The form a[v, w] is said to be coercive if there exist numbers c1 > 0 and c2 ≥ 0

such that

Re a[v, v] ≥ c1∥v∥2H1(Q) − c2∥v∥2L2(Q) (v ∈ H1(Q)). (2.8)

For the necessary and sufficient conditions of coercivity in algebraic form see [8, Lemma 2.2

and Lemma 2.3] (they are true also in case ∂Q is Lipschitz and σ ∈ L2(Q)). Further we shall

assume that the form a[v, w] is coercive.

3 Strong solutions and the spaces of initial data

1. The sesquilinear form a[v, w] is continuous with respect to w in L2(Q), therefore it defines

an operator A : D(A) ⊂ L2(Q) → L2(Q) such that

Av = Av (v ∈ D(A)). (3.1)

Here ∥v∥D(A) = ∥Av∥L2(Q) + ∥v∥L2(Q). Since the operator A is closed, the space D(A) is

a Hilbert space, moreover D(A) is dense in H1(Q). It is well known that operator −A is a

generator of an analytic contractive semigroup (cf. [4, Chapter IX, Section 1, Theorem 1.24]).

Introduce the Hilbert space

W = {w ∈ L2(0, T ; D(A)) : wt ∈ L2(QT )}

with the norm

∥u∥2W =

T∫
0

∥Au∥2L2(Q) dt+

T∫
0

∥u∥2L2(Q) dt+

T∫
0

∥ut∥2L2(Q) dt.

Here, the derivatives are considered in the sense of distributions on QT .

Define the bounded operator L : W → L2 (0, T ; L2(Q)) by the formula Lv(·, t) = Av(·, t)

for almost all t ∈ (0, T ).
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Definition 3.1 A function u ∈ W is called a strong solution of problem (2.2)–(2.4) if it satisfies

the equation
du

dt
+ Lu = f for almost all t ∈ (0, T ) (3.2)

and the initial condition

u|t=0 = φ. (3.3)

We can assume that c2 = 0 in inequality (2.8). In opposite case, we set u = z ec2t. Then,

problem (3.2)-(3.3) will be equivalent to the problem
dz

dt
+ (L+ c2I)z = e−c2tf , z|t=0 = φ.

Theorem 3.1 Let the form a[v, w] be coercive and c2 = 0. Then, problem (2.2)–(2.4) for any

f ∈ L2(QT ) and φ ∈ [L2(Q), D(A)]1/2 has a unique strong solution given by the formula

u(x, t) = Ttφ(x) +

t∫
0

Tt−sf(x, s) ds, (3.4)

where {Tt} (t ≥ 0) is the analytic semigroup generated by the operator −A.

For the proof see, e.g., the proof of [8, Theorem 4.2].

2. Theorem 3.1 is connected with the problem on the space of initial data. In [2], it was proved

that condition φ ∈ [L2(Q), D(A)]1/2 is necessary and sufficient for existence of strong solutions

of problem (2.2)–(2.4). Thus, there arises the problem of description of the interpolational space

[L2(Q), D(A)]1/2.

Theorem 3.2 Let the form a[v, w] be coercive with c2 = 0. Then,

[L2(Q), D(A)]1/2 = H1(Q). (3.5)

Proof. By [5, Theorem 3.1], [L2(Q), D(A)]1/2 = D(A1/2). Therefore, we can use [1, Theorem

3.2] to prove equality (3.5).

It is enough to show that operator A : H1+s(Q) → H̃−1+s(Q) is bounded, when |s| < 1/2.

But for convenience of the reader we give the complete proof. For s ≥ 0 we denote by Hs(Q)

the Sobolev—Slobodetsky space W s
2 (Q), and for s < 0 we denote by H̃s(Q) the dual space.

I. Consider the form a[v, w] on H1+s(Q)×H1−s(Q):

a[v, w] =
n∑

i,j=1

⟨
Rij,Qvxj , wxi

⟩
+

n∑
i=1

⟨
Ri,Qvxi , w

⟩
+ (R0,Qv, w)L2(Q) + (σv,w)L2(∂Q).
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If v ∈ H1+s(Q) and w ∈ H1−s(Q), then vxj
∈ Hs(Q) and wxi ∈ H−s(Q). Recall that for

−1/2 < s < 0, Hs coincides with H̃s. The operators Rij,Q, Ri,Q are bounded in Hs(Q),

when |s| < 1/2, because the extension of a function by zero outside Q is a bounded operator

from Hs(Q) to Hs(Rn) (cf. [6, Theorem 3.33] for s ≥ 0. For s < 0 it follows from equality

(χQφ,ψ)L2(Rn) = (φ, χQψ)L2(Rn), where χQ(x) = 1 if x ∈ Q and χQ(x) = 0 otherwise and

φ, ψ ∈ C∞
0 (Rn)). Thereby, for a fixed |s| < 1/2 there exists a constant Cs > 0 such that

|a[v, w]| ≤ Cs∥v∥H1+s(Q)∥w∥H1−s(Q).

Then the operator A is defined by the form:

⟨Av,w⟩ = a[v, w], v ∈ H1+s(Q), w ∈ H1−s(Q),

where f = Av is from H̃−1+s(Q).

II. The form a[w, v] defines operators A∗ and A∗. From [10, Theorem 2.8], it follows that

there exists 0 < ε < 1/2 such that operators A and A∗ on H1+s(Q) have bounded inverse, when

|s| < ε. Let 0 < s < ε, then by [3, Theorem 1.1] and reiteration theorem (cf. [9])

D(A(1−s)/2) = D(A∗(1−s)/2) = D(S(1−s)/2) = [L2(Q), D(S1/2)]1−s = H1−s(Q). (3.6)

Here operators S and S are defined by the form
1

2

(
a[v, w] + a[w, v]

)
. Therefore, operator

A∗−(1−s)/2 is bounded from L2(Q) to H1−s(Q) and there exists C1 > 0 such that

∥S1/2A∗−(1−s)/2w∥H−s(Q) ≤ C1∥w∥L2(Q) (w ∈ L2(Q)). (3.7)

III. Set

B = S−1/2AS−1/2. (3.8)

Operator B is a bounded operator in H±s(Q). Then

A = S1/2BS1/2 (3.9)

and there exists C2 > 0 such that

∥BS1/2v∥Hs(Q) = ∥S−1/2Av∥Hs(Q) ≤ C2∥v∥H1+s(Q) (v ∈ H1+s(Q)). (3.10)

IV. Operator A is one-to-one and bounded fromD(A) andH1+s(Q) to L2(Q) and H̃−1+s(Q),

respectively. Since L2(Q) ⊂ H̃−1+s(Q) densely and continuously, thenD(A) ⊂ H1+s(Q) densely

and continuously.
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For functions v ∈ D(A) and w ∈ D(A∗), we have

(v,A∗(1+s)/2w)L2(Q) = (v,A∗A∗−(1−s)/2w)L2(Q) = (Av,A∗−(1−s)/2w)L2(Q) (3.11)

or

(A(1+s)/2v, w)L2(Q) = (Av,A∗−(1−s)/2w)L2(Q) = (BS1/2v, S1/2A∗−(1−s)/2w)L2(Q). (3.12)

From equations (3.7), (3.10), and Schwarz inequality, it follows that∣∣∣(A(1+s)/2v, w)L2(Q)

∣∣∣ ≤ C3∥BS1/2v∥Hs(Q)∥S1/2A∗−(1−s)/2w∥H−s(Q) (3.13)

≤ C4∥v∥H1+s(Q)∥w∥L2(Q). (3.14)

Since D(A∗) is dense in L2(Q),

∥A(1+s)/2v∥L2(Q) ≤ C4∥v∥H1+s(Q). (3.15)

The last inequality is true for v ∈ H1+s(Q), because D(A) is dense in H1+s(Q). Therefore,

H1+s(Q) ⊂ D(A(1+s)/2).

V. By reiteration theorem (cf. [9])

H1(Q) = [L2(Q),H1+s(Q)]1/(1+s) ⊂ [L2(Q), D(A(1+s)/2)]1/(1+s) = D(A1/2). (3.16)

The same is true for A∗. Then equality (3.5) follows from [5, Corollary 5.1].

Corollary 3.3 If the form a[v, w] is coercive, then D(A1/2) = D(A∗1/2) = H1(Q).

Remark 3.4 The boundary condition (2.3) satisfies under additional smoothness conditions

(see [8, Corollary 5.1]). In general case it must be understood in the sense of the Green inequality.
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