LU, Isletme Fakiiltesi Dergisi, C: 25, S: 2/Kasum 1996, 5.171-186

MISAFIR MAEKALE

A REVIEW OF INDUCTIVE LEARNING
ALGORITHMS

M. Sabih AKSOY
Sakarya University

Engineering Faculty Ind. Eng. Dept.
Esentepe, Adapazari

ABSTRACT

In recent years, there has been a growing amount of research on inductive
learning. Out of this research a number of promising algorithms have
surfaced. In the paper knowledge acquisition, induction, inductive learning
and the categories of inductive algorithms are discussed, CLS and its family,
ID3 and its derivatives, AQ and its family, and recently developed RULES
family of inductive learning algorithms, their strengths as well as weaknesses
are explained and discussed respectively. Finally the applications of inductive
learning are overviewed.

1. Knowledge Acquisition

Knowledge-based expert systems consist of two main components: a
knowledge base and an inference mechanism, Collecting knowledge to
form the knowledge base is the main task in the process of building an
expert system{1,2,3].

The process of acquiring knowledge through interaction with an
expert consists of a prolonged series of intense, systematic interviews,
usually extending over a long period {4]. Human experts are capable of
using their knowledge in their daily work, but they usually cannot
gummarige and generalise their knowledge explicitly in a form which
ig sufficiently systematic, correct and complete for machine
representation and application [1]. Expert systems require large
amounts of knowledge to achieve high levels of performance, yet the




172

acquisition of knowledge is slow and expensive [5]. The shortage of
trained knowledge engineers to interview experts and capture their
knowledge is another problem of knowledge acquisition [6].

The aforementioned problems are not just difficulties of the early
days of the technology, but are stili acknowledged today as paramount
problems. Knowledge aequisition (and in particular machine learning})
has become a major area of concern for expert systems research [5,7].

An alternative method of knowledge acquisition exists in which
knowledge is learned, or induced, from examples. While it is very
difficult for an expert to articulate his knowledge, it is relatively easy, to
document case studies of the expert's skills at work [56]. Instead of
asking an expert to summarise and articulate his knowledge, the main
idea of automatic induction is to have him provide a basic structure of
his discipline. The knowledge itself will be induced from examples
expressed in this structure. Recent developments have proved that this
method of knowledge acquisition is entirely possible, Indeed, the main
feature of the second generation expert systems is that the knowledge
acquisition process is highly automated 18].

2. Induction and Inductive Learnlng

In recent years, there has been a growing amount of research on
inductive learning [9]. In its broadest sense, induction (or inductive
inference) is a method of moving from the particular to the general —
from spesific examples to general rules [5, 10,11]. Induction can be
considered the process of generalising a procedural description from
presented or observed examples [12,13,14].

The. purpose of inductive learning is to perform a synthesis of new
knowledge, and this is independent of the form given to the input
information [15]. In order to form a knowledge base using inductive
learning, the first task is to collect a set of represantative examples of
expert decisions. Each example belongs to a known class and is
described in terms of a number of attributes. These examples may be
specified by an expert as a good tutorial set, or may come from some
neutral source such as an archive. The induction process will attempt -
to find a method of classifying an example, again expressed as a
function of the attributes, that explains the training examples and that
may also be used to classify previously unseen cases [5]. The outcome of
an induction algorithm is either a decision tree or a set of rules,
Production rules can easily be extracted from decision trees [16, 17].
Ealch path of a decision tree can be regarded as an IF-THEN production
rule. . .




173
3. Categories of inductive Learning Methods

Quinlan [18] states that there are two categories of induction
methods: (1) Divide-and-conquer methods and {2} Covering methods.
This classification depends on the strategy that the algorithms employ
during the search for generalised descriptions.

Divide-and-conquer methods have received considerable attention
among researches in the area of applied Al [19]. With a divide-and
conquer method, the outcome is a decision tree. CLS [20] and ID3 [21]
are two divide-and-conquer algorithms. In general, a divide-and-
conquer algorithm constructs decision trees from a training set of
objects according to the following simplified procedure:

* If ali training ohjects belong to a single class, the tree is a leaf
labelled with that class.

* Otherwise,
— apply a test based on one attribute

— divide the training set into subsets, each corresponding to one of
the possible (mutually exclusive) outcomes of the test, and

— repeat the procedure for each subset.

Algorithms of the covering type, in particular the AQ family of
algorithms [22], represent classification knowledge as a disjunctive
logical expression defining each class. These algorithms search for a
set of possible generalisations in an attempt to find "good" hypotheses
that satisfy certain requirements. The search proceeds by choosing as
the initial working hypotheses some elements from the partially-
ordered set of all possible descriptions. If the working hypotheses
satisfy certain criteria then the search ends. Otherwise, the current
hypotheses are modified by slightly generalising or specialising them.
These new hypotheses are then checked to see if they satisfy the
termination criteria [23]. The process of modifying and checking
continues until the assumed criteria are met. The core of the covering
method can be summarised as follows [18]:

* Find a conjunction of conditions that is satisfied by some objects in
the target class, but not by objects from other classes.

* Append this conjuction as one disjunct of the logical expression
being developed.

* Remove ali objects that satisfy this conjunction and, if there are
still some remaining objects of the target class, repeat the procedure.




174
4. Divide-and-Conquer Induction Algorithms
4.1. CLS: Concept Learning System

One of the pioneers of concept learning using computer programs
was Hunt who developed a series of learning algorithms called Concept
Learning Systems, CLS~1 to CL3-9 [20]. All CLS versions except CLS-9
can deal only with binary classification problems. These algorithms are
heuristic in the sense that they contain "rules of thumb" which usully
produce a concept in the form of a structurally simple tree with a
minimum of computation. The CLS-1 algorithm, which is the basis of
all later versions, is described in {20] as follows:;

1. A sample of objects to be classified is randomly chosen from the
given training set. It is assumed that these objects can belong to one of
two classes, the Positive and Negative classes.

2. A search is made for some characteristics (values of attributes) or -
a set of characteristics which appear in objects in the Positive class and
not in cbjects in the Negative class. If such characteristics are found,
they are made the test associated with the root of the concept tree and
the problem is solved (The information is stored in matrix form; ali that
CLS5-1 needs to do is compare successive rows representing positive or
negative objects, column by column).

3. If step (2) cannot be carrid out, it is reversed. A search is made for
a set of characteristics which appear in objects in the Negative class
and not in any object in the Positive class. If such a set can be found,
then the problem is solved as before.

4. If steps (2) and (3) fail, the relative frequehcies of characteistics
that appear in the objects in the Positive class are counted. The
characteristic with the highest frequency of occurrence is chosen as the
test at the current node. The training set is split into two subsets, one
containing all objects having the characteristic just chosen, and the
other containing ali objects that do not. .

5. The same procedure is reapplied to the subsests until no further
divisions are required (which means ali ohjects in training set are
correctly classified).

This procedure assumes that there are both positive and negative
instances in the original set of examples. If, at any point in solving
either the original problem or a subproblem CLS-1 encounters a sample .
containing only positive (negative) instances, the current node is
immediately made a positive (negative) endpoint and the next sub-
problem is attacked. In steps 2 and 3, if more than one characteristic
qualify for selection as a test a random choice is made between them.

-




175

As mentioned above, Hunt et al, have developed nine versions of
CLS. CLS-2 and CLS-3 are similar to CLS-1 except that an additional
control parameter is inserted to indicate the maximum memory size of
the computer (CLS-2 and CLS-3 differ from each other in the way that
the set of examples is stored). CLS-4 and CLS-5 differ from CLS-1 only
in the manner of choosing a sample. They were developed to improve
the performance of CLS-1 by introducing some control over the order in
which objects are added to the working set, following the orwrence of
classification errors. CLS-6 is akin to CLS-1 except that sub samples are
selected using relative freqnency. CLS-7 differs from CLS-1 only by
redefining the Positive set. In this algorithm, the set of positive
instances 18 defmed at each node as the largest of the two sets, CLS-8 is
similar to CLS-7 except that the smaller, rather than the larger set, is
considered as the Positive set. CLS-9 has the advantages of many of the
earlier algorithms and allows multi-branch trees to be generated. More
details of these algorithms can be found in [20].

4.2, ID3 Inductive Learning Algorithm

ID3, a descendant of Hunt's CLS, is a simple algorithm for
discovering a set of classification rules from a collection of objects
belonging to different classes [21]. ID3 uses a multi-branch rather than
a binary decision tree. It differs from CLS-9 in the way it chooses the
test node (attribute) to divide the original set of examples or subsets. The
attribute selection part of ID3 is based on the assumption that the
complexity of the decision tree is strongly related to the amount of
information contained in the tree. ID3 uses an information-theoretic
approach aimed at minimising the expected number of tests to classify
an object [21]. The method can be summarised as follows:

1. Select at random a subset (or window) of the given instances.
2. Form a rule to explain the current window.
3. Find the exceptions to this rule in the remaining instances.

4. Form a new window from the current window and the exceptions
to the rule generated from it.

5. If there are no exceptions to the rule then stop. Otherwise, repeat
steps 2 to 5 until no exceptions remain.

The core procedure of the algorithm is the recursive process to form
a decision tree from the current window. Let § be a set of objects. If all
objects in S belong to the same class, then the decision tree is a leaf
bearing that class name, Otherwise, § contains representatives of more
than one class. An attribute is selected to partition S into subsets Sy, S»,

..., 8, where S; contains those members of § that have the i*» value of the
selected attribute. An object is classified by starting at the root of the




176

decision tree. To find the root of the tree, the information gain of each
attribute is computed. Let A be a set of m attributes {A;, A5, ..., 4.} and
C a set of p classes [Cy, Cy, ..., Cp/. The set of possible values for an
attribute Aj is referred to as Range (Aj). Each example in S is an m+1
tuple of the form: (V; Vy, ..., Vy,,, Cz) where V; Range (A, j=1, ... m and
Cp. C is the class of the example.

Define the probability of occurrence of examples of class Cy in a set
531, to be the proportion of examples in Sjthat 8 in class Cy As a
measure of the randomness of example distribution in S; over the
possible classen in C, the information measure is defined thus [24, 25,

D
I(S1) = —kél Psl,ckLngPsl,Ck

ID3 aims to partition S to produce subsets 3; in which the examples
are distributed less randomly over the possible classes. To choose the
attribute that would best achieve this, for each attribute Aj having more
than one value in the examples in S, ID3 partitions S into subsets S
consisting of ali examples in S having value V; for attribute Aj. If the
number of examples containing value V] in S is n{(S) and the number of
examples containing value V) in subset S; is n(S; ), the information
entropy of the resulting partition is given by:

n(s))
n(S)

E(A;,8) = 2 Y
V} € Range(Aj)

ID3 chooses as a node the attribute Aj which maximises the
following quantity: }

Gain (4], 8) = I(S) -E(A), 5)

If Gain (Aj, 8) is the same for more than one attribute Aj, then one of
them is randomly chosen.

ID3 is a non-incremental algorithm and is a good choice for
building a classification rule set for problems in which a database of
instances is available and is not likely to change. However, for problems
in which new instances are expected to become available on a regular
basis, it is preferable to accept instances incremantally, without
needing to build a new decision tree from the beginning each time.

Since ID3 was developed, it has been improved several times by
Quinlan and other researchers. Schlimmer and Fisher have proposed




177

ID4 [27], which incremantally builds a decision tree similar to that
which ID3 would build. Instead of forming a decision tree from a
window of instances, ID4 updates a tree based on each individually
observed instance.

Utgoff [28] has described ID5 which builds on ID4 but differs from
ID4 in its method of replacing the test attribute. When 1D4 replaces a
test attribute, it discards the subtrees below the old test attribute, ID5
reshapes the tree by pulling the best attribute up from below. An
experimental comparison of ID3, ID4 and ID5 is given in [28].

A problem with ID3 is that the decision tree produced might not be
as general as it could be. This is caused by the fact that decision rules
can sometimes involve unnecessary or irrelevant conditions. When the
algorithm chooses an attribute for branching out of a node, it produces
a branch for each value of the attribute. However, some of those values
may be irrelevant to the classification. Those irrelevant values will
result in overspecialized classification rules. Cheng et al. [25] have
developed GID3 (Genaral version of ID3) to overcome this problem.
Essentially, the algorithm is similar to ID3 except that not every value
of the attribute i1s chosen to produce a branch. In order to avoid
branching on irrelevant values of the attribute, only values that appear
to be relevant, according to their information measure (a quantity
similar to the information measure used in ID3), may potentially be
branched on. A user-defined tolerance level is adopted to specify tha
degree of tolerance for the deviation of the entropy measure of an
attribute-value pair from the minimal entropy measure over all pairs.
Cheng et al. have not decribed how to set the tolerance level
systematically.

5. Induction Algorithms Based on Covering:

51. AQ and iis family

Unlike decision-tree based algorithms, AQ produces IF-THEN rules
directly. AQ is an algorithm for developing Variable-Valued Logic (VL)

rules from a given set of examples {training set) [29, 30]. VL rules are
equivalent to decision rules. For example, the following VL rule:

[x#6] [x=3,5] V [x>7] = [decision = B]
can be interpreted as:

IF x ISNOT 6 AND x IS 3 or 5, OR x IS LARGER THAN 7 THEN
decision is B.

Before describing the AQ family of algorithms, the terminology used
by Michalski will be introduced.




178

Selectors are predicates over attribute subranges. For example, the
selector [hair = dark, red] is a predicate over the attribute hair. It
indicates that dark and red are the allowed values of hair.

Conjunctive Concepts are groups of selectors where no two
selectors refer to the same atrribute.

Rules are of the form
Conjunctive concepts —> concept class.

A complete description is a concept description (a group of
atiribute-value pairs) that correctly describes ali the positive examples
(The class which an example belongs to is considered the Positive class.
Ali other classes form the Negative class).

A consistent description is a concept description that fits none of
the negative examples.

A star is a set of ali possible alternative, nonredundant descriptions
of a chosen unclassified example (the "seed") which cover that example
and do not cover any of the examples in the Negative class.

The "extend against" process is a process used in AQ to extend
the value of an attribute that appears in the seed, against the set of
values for the same attribute for examples in the negative set. The
algorithm determines the most general consistent value which does not
intersect the negative set on that attribute. The results of extending the
seed against each negative event are then combined by intersecting the
values for each of the previous tests for each attribute. The system then
selects these combined values to give a conjunctive description that
covers the seed, but none of the negative events.

The algorithm is provided with two preclassified sets of events.
Events are observations from the problem domain, where each event is
a list of attribute-value pairs. The basic algorithm is performed once for
each class, generating a single VL rule per class [31]. AQ begins with
an unclassified example {a seed) from the Positive class and generates
a star using the "extend against” process. In that star, a description is
chosen according to a consistency measure and a completeness
measure. If the description is consistent (covers no negative events) it is
saved in the concept set C (by disjoining it with the previous conjunctive
concepts in C). If ali the positive examples and no negative examples
are covered by the obtained description then a new positive class .
censtructed and the same procedure is repated. If there are some
examples that are not is covered by the description, then a new seed is
selected from the remaining uncovered examples in the Positive class
and the procedure is repeated until ali éxamples in the Positive class
fare covered. The Process continues until all examples in the training




179

set are correctly classified. A general and simplified version of AQ can
be summarised as follows:

1. Select an unclassified example. Consider the class of the example
as the Positive class, and ali other classes as the Negative class.

2. Apply the extend against process to generate a star for the
example,

3. From the star obtained in step (2), select a description D according
to the consistency and completeness values.

4. If description D covers ali positive examples then go to step (6).

5. Otherwise, reduce the set of positive examples to contain only
events not covered by D, and repeat the process from step (1). .

6. Convert ali generated descriptions to the form of a VL rule which
can cover ali examples in the Positive class, and remove those
examples from the set of unclassified examples. If there are no more
unclassified examples then stop, else go to step (1).

Since Michalski first developed AQ in 1969, it has been improved
several times. Michalski and Larson have described AQ11 [32] which
uses the same search strategy as AQ [33] but can work incremantally.
That is, when new examples become available, AQ11 can modify a
previously obtained set of rules to make them consistent with those
examples. Hong, Mozetic and Michalski have proposed AQ15 [34] which
is similar to AQ11l. An important feature of AQ15 is the ahility to deal
with noisy or overlapping examples, Bloedorn and Michalski [35] have
reported the AQ17--DCI (Data-driven contructive induction) algorithm.
AQ17-DCI is an algorithm for constructive induction (an induction
process that produces new attributes not present in the training
events). The algorithm generates a number of new attributes and
selects as test attributes those with a "quality"” value exceeding a given
threshold. Thrun et al have described the AQ17-FL.CS (flexible concept
learning) algorithm that combines both symbolic and numeric
representations in generating a concept description [36]. Wnek and
Michalski have proposed AQ17-HCI (Hypothesis driven constructive
induction) which implements an iterative constructive induction
procedure in which the generation of new attributes is based on the
analysis of the hypotheses produced in the previous iteration [37].
Pachowicz and Bala have reported AQ14-NT (Noise tolerant). The
algorithm is specially designed for learning from noisy engineering
data [38, 39]. Thrun et al. have described AQ15-GA which combines
AQ15 and a genetic algorithm (GA) for attribute selection. The GA is
used to explore the space of all subsets of a given attribute set. Each of
the selected attribute subsets is evaluated (its fitness measured) by




180

invoking AQl15 and determining the recognition rate of the rules
produced [36].

5.2, RULES and Its Family

Pham and Aksoy have developed RULES (RULe Extraction System)
[40], a simple algorithm for extracting a set of classification rules for a
collection of objects belonging to a given zet of claszes. An object must be
described in terms of a fixed zet of attributes, each with its own set of
possible values. For example "Weather" and "Temperature” might be
attributes with sets of possible values {rainy, sunny, snowy} and {low,
average, high} respectively.

In RULES, an attribute-value pair constitutes a condition. If the
number of attributes is ng, a rule may contain between one and n,,
conditions, each of which must be a different arttribute-value pair. The
conjunction of conditions only iz permitted in a rule and therefore the
attributes must ali be different if the rule comprises more than one
condition. The attributes and the values associated with them in a
collection of objects form an array of attiributes and values. The total
number of elements of the array is the total number of all possible
values. For example if there are four attributes with, 3, 4, 2 and a b
values respectively, the total number of elements is 14,

The rule forming procedure may require at most n, iterations. The
first iteration produces rules with one condition and the second
iteration results in rules with two conditions, etc. In the first iteration,
each element of the array attributes and values is examined to decide
whether it can forma rule with that element as the condition. For the
whole set of examples if a given element applies to only one class, then
it ig a candidate for forming a rule. If it pertaing to more than one class,
it is passed over and the next element is examined. When ali elements
of the array have been looked at, the whole set of examples is checked
for any example that cannot be classified by the candidate rules. If
there are no unclasgified examples the procedure terminates.
Otherwise, a new array is constructed which comprises attributes and
values contained in ali the unclassified examples. In the second
iteration elements of the array are examined in pairs to determine
whether they apply to only one class in the whole set of examples. As
before, for those pairs of elements that pertain to unique :lasses,
candidate rules are obtained. If there are stili unclassified examples at
the end of this iteration, a new array is formed and the next iteration is
initiated. This procedure continues until all examples are correctly
classified or the number of iterations (the number of conditions) 1s’
equal to ng. In the latter case, ali remaining unclassified examples are
taken as rules. For each iteration after the first, candidate rules
extracted in the current iteration are checked against previously
obtained rules. Candidate rules that do not contain irrelevant
conditions are added to the rule set and the others are ignored. This




181

check is not required for the first iteration as each rule can only have
one condition. The procedure can be summarised as follows:

1.n=0
2.If n, < n, then n;=n.+1.
3. Find all values contained in unclassified examples.

4. Form objects which are combinations of n. values taken from the
values obtained in Step (3).

5. If at least one of the objects belongs to a unique class then form
rules with those objects ELSE go to Step (2).

6. Check for irrelevant conditions.
7. Check all unclassified examples using the extracted rules.

8. Remove ali classified examples.

9. If ali examples are classified using extracted rules then STOP;
ELSE go to Step (2). ‘

Pham and Aksoy have improved RULES and produced RULES-2
[41]. The rule forming strategy of RULES-2 is almost the same as that
of RULES. The difference is that instead of considering the values of all
unclassified examples, in each iteration, only the values of one
unclassified example are used to produce rules for clasgifying that
example. Compared to RULES, RULES-2 is generally faster as it
requires fewer rule searching operations in its induction process.
Furthermore, it allows the user to specify the number of rules to be
extracted, is able to deal with incomplete examples and can handle
attributes with numerical as well ag nominal values.

The latest version of RULES family of automatic rule extraction
systems is RULES-3 {42]. RULES-3 inherits ali advantageous features
of its predecessors, In addition it has two new features: it generates a
compact set of more general rules and provides the user with the option
of adjusting the precision of the extracted rules.

6. Applications of inductive Learning

Inductjve learning algorithms are domain independent. In
principle, they can be used in any task involving classification or
pattern recognition [1]. There have been several succesful applications
of inductive learning systems. Medical applications such as
lymphography, prognoesis of breast cancer recurrence, location of

T T T T T T T T T T T e




182

primary tumour and thyroid problem diagnosis have been reported [5,
43, 44]. Other applications include investment appraisal [45], forensic
classification of glass fragment evidence [46], extraction of decision
rules for analysis of test data for the space shuttle main engine [47],
experimental generation of decision rules for the conceptual design of
steel members under bending [10], soil classification [48], stock control
[49], software resource analysis [50], assessing credit card applications
[51], military decision making [52], dynamic system identification [53,
54], engine fault diagnosis [565] and identification of the mass-spectra of
complex materials [56, 57, 58]. )

7. Conclusion

The induction of decision trees and rules from empirical data is a
useful technique for automatic knowledge acquisition, It offers a
modularised, clearly explained format for decision making which is
compatible with human reasoning procedures. Also, the resulting
rules are suitable for use in expert systems. Two of the largest expert
systems developed prior to 1987 (BMT and GASOIL) were built using
automatic induction [1]. Also it is reported that the decision tree based
algorithms have been incorporated into a number of commercial
gystems including Expert-Ease, RuleMaster and ACLS [59]. In recent
years, more task-oriented inductive learning systems have been
developed that have demonstrated, impressive performance in their
specific domain of application. However, some problems still remain.
Most systems lack generality and extensibility. The theoretical
principles upon which they are built are often not well explained. Lack
of common terminology and an adequate formal theory makes it
difficult to compare diferent learning methods [60].

REFERENCES

1] Liu W.Z. and White A.P, (1991) "A review of inductive learning”, in proc.
Research and Development in Expert Systems VIII, Cambridge, pp. 112-126.

[2] Mrozek, A. (1992) “A new method for discovering rules from examples in
expert systems”, Int. J. Man-Machine Studies, 36. pp. 127-143.

(3] Hart A. (1989) "Knowledge acquisition for expert systems", Chapman
and Hail, London.

4] Waterman D.A. (1986) "A guide to expert systems”, Addison-Wesley,
California.

[6] Quinlan J.R. (1988) "Induction, knowledge and expert systems',in
Artificial Intelligence Developments and Applications, Eds J.S. Gero and R.
Stanton, Amsterdam, North-Holland, pp. 263-271.

[6] Weiss 8. M. and Kulikowski C A. (1991) "Computer systems that learn”,
Morgan Kaufmann, San Mateo, California.




183

[7] Williams G.J. (1988) "Combining decision trees, initial results from MIL
algorithm", in Artificial Intelligence Developments and Applications, Eds: J.S.
Gero and R. Stanton, pp. 273-289.

[81 Devedzic, V. and Velasevic D. (1990) "Features of second generation
expert systems, an extended overview”, Eng. Appl. of AI, Vol. 3, December, pp.
255-2170. '

[9] Nakakuki Y., Koseki Y. and Tanaka M. (1990) "Inductive learning in
probabilistic domain", in proc. Eighth National Conf. on Al, Boston, July 29,
August 3, pp. 809-814,

[10]1 Forsyth R. (1989} "Machine Learning principles and tecniques”, Ed: R.
Forsyth, Chapman and Hall, London.

[11] Hancox P.J., Mills W.J. and Reid B.J. (1990) "Artificial intelligence /
expert systems", Ergosyst Associates, Lawrence, Kansas.

"[12] Charniak, E. and McDermott, D). (1985) "Introduction to artifical
intelligence”, Addison-Wesley, California.

[13} Tanimoto S.L. (1987), "The elements of artifical intelligence”, Computer
Science Press, Maryland, USA.

f14] Rubin S.H. (1991) "Expert systems for knowledge aecquisition” in proc.
First World Congress on Expert Systems, Vol. 3 Orlando, Florida, December 16-
19, pp. 1793-1799.

[15] Kodratoff ¥. (1988) "Introduction to machine learning”, Pitman
Publishing, London.

[16] Al-Attar A. (1991) "Rule induction from mythology to methodology”,
Research and Developments in Expert Systems VIII, London, September, pp.
85-103. )

[17] Quinlan J.R. (1987a) “Gienerating production rules from decision trees”,
in proc. Tenth IJCAI-87, Milan, Italy, pp. 304-307.

[18] Quinlan J.R (1990) "Learning logical definitions from relations”, in
Machine Learning, 5, Kluwer Publishers, Boston, pp. 239-266.

[19] Shapiro 3.C. et. al. (1991) "Encyclopedia of artifical inteligence", Second
edition.

[20] Hunt E.B, Marin dJ., and Stone P.J. (1966} "Experiments in iduction”,
Academic Press, New York.

[21] Quinlan J.R. (1983) "Learning efficient classification procedures and
their applications to chess end games"” in Machine Learning, An Artificial
Intelligence Approach, Eds: R.S. Michalski, J.G. Carbonell and T.M. Mltchell
Morgan Kaufmann, Tiago, Palo Alto, CA, pp. 463-482,

{22] Michalski R.8. (1990) "A theory and methodology of inductive learning”,
in Readings in Machine Learning, Eds: JW. Shavlik and T.G. Dietterich,
Morgan Kaufinann, San Mateo, California, pp. 70-95.

[23] Dietterich, T.G. and Michalski R.3. (1983) "A comparative review of
selected methods for learning from examples”, in Machine Learring, an




184

Artificial Intelligence Approach, Vol 1, Eds: R.S. Michalski, J.G. Carbonell and
T.M. Mitchell, Morgan Kaufmann, pp. 41-81.

[24] Evangelos, LP., et. al (1992) "A minimum entropy approach to rule

learning from examples”, IEEE Trans. Systems Man and Cybernetics, 22(4),
_ July/August, pp. 621-635.

[25] Cheng J. et. al. {1988) "Improved decision trees: a generalised version of
ID3", in proc. Fifth Int. Conf. on Machine Learning, The University of
Michigan, Ann Arbor, M1 June, 12-14, pp. 100-106.

[26] Mace R. (1974) "Management information and the computer",
Haymarket, London.

[27] Schlimmer J.C and Fisher D. (1986) "A case study of incremental
concept induction” in proc. Fifth National Conf. on Al, Morgan Kaufmann, San
Mateo, CA, pp. 496-501,

[28] Utgeff P.E., (1988) "ID5; an incremental ID3"In proc. Fifth Int
Conference on Machine Learning, The University of Michigan Ann Arbor, MI,
June 12-14, pp. 107-120.

[29] Michalski R.S. (1973) “Discovering classification rules using variable—
valued logic system VL1", in Artificial Intelligence Proceedings ofi the Third
Int. Joint Confi Stanford, pp. 162-172.

[30] Michalski R.S. (1975) "Synhesis of optimal and quasi-optimal variable-
valued logic formulas”, in proc. 1975 Int. Symposium on Multiple-Valued
Logic, Bloomington, May, pp. 76-87.

[31] Chan K.C.C., Ching J.Y. and Wong A K.C. {(1992) "Learning fault
diagnostic rules: a probabilistic inductive inference approach”, in Applications
of Al in Engineering VII, Eds: D.E. Grierson, G. Rzevski and R.A. Adey,
Elsevier Applied Science, New York, pp. 125-142,

"[32] Michalski R.S. and Larson J.BR, (1978) "Selection of most represantative
training examples and incremental generation of VL1 hypothesis: the
underlying methodology and the descriptions of programs ESEL and AQ11",
Report No. 867, Department of Computer Science, University of Illinois, Urbana,
Illinois. '

[33]1Cohen P.R. and Feigenbaum E.A. (1982) "The handbook of artificial
intelligence”, Vol. 3, William Kaufmann, California.

[34]Hong J., Mozetic I. and Michalski R.S. (1986) "AQ15: incremental
learning of attribute-based descriptions from examples, the method and user's
gnide", Report ISG 86-5, UTUCDCS-F-86-949, Dept. of Computer Science, Univ of
IMlinois, Urbana, Illinois.

[35] Bloedorn E. and Michalski R.S. (1991) "Data-driven constructive
induction in AQ17-DCI; a method and experiments”, Reporfs ofi Machine
Learning and Inference Laboratory, Center for Artificial Intelligence, George
Mason University. ’




185

[36] Thrun S.B. et al. (1991) "The MONK's problems- a performance
comparison of different learning algorithms", School of Computer Science,
Carnegie Mellon University, Research Report, CMU-CS-91-197, December,
Pittsburg, Pennsylvania.

[37] Wnek J. and Michalski R.S. (1991) "Hypothesis-driven constructive
induction in AQ17: a methed and experiments”, in proc. Twelfth Int. Joint
Conf. on Al, August, Sydney Australia.

[38] Pachowicz P.W. and Bala J. {(1991a) "Improving recognition
effectiveness of noisy texture concepts through optimization of their
descriptions”, in proc. 8 th Ini. Workshop on Machine Learning, Evanston, pp.
625-629.

[39] Pachowicz P.W. and Bala J. (1991b) "Advancing texture recognition
through machine learning and concept optimisation", Reports of Machine
Learning and Inference Laboratory, MLI-6, Arlificial Intelligence Center,
George Mason University.

{40] Pham, D.T. and Aksoy M.S. (19956a) "RULES: A simple rule extraction
system", Expert Systems with Applications, Vol. 8, No.1, pp. 59-65, USA.

[41] Pham, D.T. and Aksoy M.S. (1993) "An algorithm for automatic rule
induction”, Artificial Intelligence In Engineering, No: 8, pp. 277-282, UK.

[42] Pham D. T. And Aksoy M.S. (1995b), "A new algorithm for inductive
learning", Journal of Systems Eng., No: 5, pp. 115-122, UK.

[43] Michalski R.S. et al {1986) "The multi-purpose incremental learning
system AQ15 and its testing application te three medical domains”, in proc.
National Conf on Al, Philadelphia, PA., August, pp. 1041-1044.

[44] Quinlan J.R. (1987h), "Inductive knowledge acquisition: a case study”, in
Applications of Expert Systems, Ed: J.R. Quinlan, Turing Institute Press, pp.
157-173.

[45] Race P.R and Thomas R.C. {(1988), "Rule induction in investment
appraisal", Journal of the Operational Research Society, 38, pp. 1113-1123.

[46] Spiehler E.J. (1987), "Application of machine learning to classification
of glass fragment evidence in forensic science", Seminar Materials, Machine

Learning Seminar, Learned Information Ltd., Oxford, and Machine Learning .

Research Ltd., Nottingham, London.

[47] Modesitt K.L. (1987) "Space shuttle main engine anomaly data and
inductive knowledge-based systems: automated corporate expertise”, in proc.
Conf Artificial Intelligence for Space Appliceiions, Huntsville, Alabama,
November, pp. 1-8.

[48] Dale M.B. McBratney A.B. and Russell J.S. (1989), "On the role of expert
systems and numerical taxonomy in soil classification”, Journal of Soil
Science, 40 pp. 223-234.




186

[49] Thorpe J.C., Marr A and Slack R.S, (1989), "Using an expert system to
monitor an automatic stock control system”, Journal of the Operational
Research Society, 40, pp. 945-952.

[50] Selby R.W. and Porter A A. (1988) "Learning from examples: generation
and evaluation of decision trees for software resource analysis', IEEE
Transactions on Software Engineering, 14, pp. 1743-1756.

[61] Carter C and Catlett J. (1987) "Assesing credit card applications using
machine learning”, IEEE Expert Intelligent Systems and Their Applications,
FALL, pp. 71-79.

[62] Lirov Y., Rodin E.Y. and Ghosh B.K. (1989) "Automated learning by
tactical decision systems in air combat"’, Computer and Mathematics with
Application, 18, pp. 151-160. '

[63] Batur C., Srinivasan A. and Chan C.C. (1991) "Automated rule-based
model generation for uncertain complex dynamic systems”, Eng. Appl. of, Al
4{5), pp. 369-366.

[54] Pham D.T. and Aksoy M.S. (1993b), ' Dynamic system modelling using a
new induction algorithm", (to be published).

(651 Ke M. and Ali M. (1989), "A learning representation and diagnostic
methodology for engine fault diagnosis”, in proc. Second Int. Conf. on
Industrial and Engineering Applications of. AI and Expert Systems, Vol. 2,
June, 6-9, pp. 824-830.

[66] Harrington P.D. Street T.E. and Voorhees K.J. (1989),"Rule building
expert systems for classification of mass spectra”, Analytical Chemistry, 61, pp.
715-719,

[67] Harrington P.D. and Voorhees K.J. (1990) "Multivariate rule-building
expert system", Analytical Chemistry, 62, pp. 729-734.

[68] Scott D.R. (1989) "Classification and identification of mass spectra of
toxic compounds with an inductive rule building expert system and
information theory", Analytical Chimica Acta, 223, pp. 106-121,

(69] Wu X. (1993) "Inductive learning: Algorithms and Frontiers”, Artificial
Intelligence Review, 7, pp. 93-108.

(60] Michalski, R.S. and Stepp R.E. (1983), "Learning from observation:
conceptual clustering”, in Machine Learning and Arlificial Intelligence
Approach, Vol 1, Eds: R.S. Michalski, J.G. Carbonell, and T .M. Mitchell,
Morgan Kaufman, pp. 331-363. )




