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A B S T R A C T 

I n recent years, there has been a growing amount of research on inductive 
learning. Out of this research a number of promising algorithms have 
surfaced. I n the paper knowledge acquisition, induction, inductive learning 
and the categories of inductive algorithms are discussed, C L S and its family, 
ID3 and its derivatives, AQ and its family, and recently developed R U L E S 
family of inductive learning algorithms, their strengths as well as weaknesses 
are explained and discussed respectively. Final ly the applications of inductive 
learning are overviewed. 

1. K n o v v l e d g e A c q u i s i t i o n 

Knowledge-based expert sys tems consist of two m a i n components: a 
knowledge b a s e a n d a n inference m e c h a n i s m . Col lect ing knowledge to 
form the knovvledge base is the m a i n t a s k i n the process of bui ld ing a n 
expert systemf 1,2,3]. 

T h e process of a c q u i r i n g knovvledge through i n t e r a c t i o n vvith a n 
expert consis ts of a prolonged series of intense , sys temat ic intervievvs, 
u s u a l l y extending ö v e r a long period [41. H u m a n experts are capable of 
u s i n g t h e i r knovvledge i n t h e i r da i ly work , but they u s u a l l y cannot 
s u m m a r i s e a n d general i se the i r knovvledge expl ic i t ly i n a form w h i c h 
i s s u f f i c i e n t l y s y s t e m a t i c , c o r r e c t a n d comple te for m a c h i n e 
r e p r e s e n t a t i o n a n d a p p l i c a t i o n [1], E x p e r t s y s t e m s r e q u i r e l a r g e 
amounts of knovvledge to achieve h i g h levels of performance, yet the 
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a c q u i s i t i o r ı of knovvledge i s s low a n d expens ive [5]. T h e shortage of 
t r a i n e d knowledge engineers to i n t e r v i e w experts a n d capture t h e i r 
knowledge i s another problem of knowledge acquis i t ion [61. 

T h e aforementioned problems are not j u s t difficulties of the e a r l y 
days of the technology, but are s t i l i acknowledged today as p a r a m o u n t 
problems. Knovvledge aequis i t ion ( a n d i n p a r t i c u l a r m a c h i n e l earn ing) 
h a s become a m a j ö r area of concern for expert systems r e s e a r c h [5,7]. 

A n a l t e r n a t i v e method of knowledge acqui s i t ion exists i n w h i c h 
knovvledge i s l e a r n e d , or induced , from examples . W h i l e i t i s v e r y 
d i f f î cu l t for a n expert to art iculate h i s knovvledge, i t is re lat ive ly easy, to 
document case s tud ies of the expert's s k i l l s at w o r k [5], I n s t e a d of 
a s k i n g a n expert to s u m m a r i s e a n d art iculate h is knovvledge, the m a i n 
i d e a of automatic induct ion i s to have h i m provide a bas ic s tructure of 
h i s d i sc ip l ine . T h e knovvledge i t s e l f w i l l be induced from examples 
expressed i n th i s s tructure . Recent developments h a v e proved that th i s 
method of knovvledge acquis i t ion is ent ire ly possible. Indeed , the m a i n 
feature of the second generat ion expert sys tems i s t h a t the knovvledge 
acquis i t ion process i s h ighly automated 18]. 

2. induction and inductive Learning 

I n recent y e a r s , there h a s been a grovving amount of r e s e a r c h on 
i n d u c t i v e l e a r n i n g [9]. I n i t s broadest sense, induct ion (or induct ive 
inference) is a method of moving from the particular to the general -
from spesific examples to general rules [5, 10,11]. i n d u c t i o n c a n be 
cons idered the process of genera l i s ing a procedura l descr ipt ion from 
presented or observed examples [12,13,14]. 

T h e purpose of induct ive l e a r n i n g is to perform a synthes i s of nevv 
knovvledge, a n d t h i s i s independent of the form given to the i n p u t 
in format ion [15], I n order to form a knowledge base us ing induct ive 
l earn ing , the first t a s k is to collect a set of represantat ive examples of 
e x p e r t dec i s ions . E a c h e x a m p l e be longs to a k n o w n c la s s a n d i s 
descr ibed i n t erms of a n u m b e r of at tr ibutes . T h e s e examples m a y be 
specif ied by a n expert as a good tu tor ia l set, or m a y come from some 
n e u t r a l source s u c h as a n archive . T h e induct ion process w i l l at tempt 
to f ind a method of c la s s i fy ing a n example , a g a i n expressed as a 
function of the attr ibutes , tha t explains the t ra in ing examples a n d that 
m a y also be used to classify previously unseen cases [5], T h e outcome of 
a n i n d u c t i o n a l g o r i t h m is e i ther a decis ion tree or a set of r u l e s . 
P r o d u c t i o n r u l e s c a n eas i ly be extracted from decision trees [16, 17]. 
E a c h p a t h of a decision tree c a n be regarded as a n I F - T H E N production 
r u l e . 



173 

3. Categories of inductive Learning Methods 

Q u i n l a n [18] s ta te s t h a t t h e r e a r e two categories of i n d u c t i o n 
methods: (1) D iv ide -and-conquer methods a n d (2) C o v e r i n g methods . 
T h i s c lass i f icat ion depends on the s trategy that. the a lgori thms employ 
d u r i n g the s e a r c h for g e n e r a î i s e d descriptions. 

D iv ide -and-conquer methods h a v e rece ived considerable a t tent ion 
a m o n g r e s e a r c h e s i n the a r e a of appl ied A l [19]. W i t h a d iv ide -and 
conquer method, the outcome i s a decision tree. C L S [20] a n d I D 3 [21] 
a r e tvvo d i v i d e - a n d - c o n q u e r a l g o r i t h m s . I n genera l , a d i v i d e - a n d -
conquer a l g o r i t h m cons tructs dec i s ion trees from a t r a i n i n g set of 
objects according to the follovving s implif ied procedure: 

* I f a l i t r a i n i n g objects belong to a s ingle c lass , the tree i s a l e a f 
label led w i t h that c lass . 

* Otherwise , 

- apply a test based on one attribute 

- divide the t r a i n i n g set into subsets , each corresponding to one of 
the possible (mutua l ly exclusive) outcomes of the test, a n d 

- repeat the procedure for each subset. 

A l g o r i t h m s of the cover ing type, i n p a r t i c u l a r the A Q f a m i l y of 
a l g o r i t h m s [22] , r e p r e s e n t c las s i f i ca t ion knovvledge as a d i s junc t ive 
logical express ion def ining e a c h c lass . T h e s e a lgor i thms s e a r c h for a 
set of possible general i sat ions i n a n attempt to f ind "good" hypotheses 
t h a t sat is fy c e r t a i n requ irements . T h e s earch proceeds by choosing as 
t h e i n i t i a l vvorking hypotheses some e l ements from the p a r t i a l l y -
o r d e r e d set of a l i poss ible descr ipt ions . I f the vvorking hypotheses 
sat is fy c e r t a i n c r i t e r i a t h e n the s e a r c h ends . Q t h e r w i s e , the c u r r e n t 
hypotheses are modif ied by s l ight ly genera l i s ing or spec ia l i s ing t h e m . 
T h e s e nevv hypotheses are t h e n c h e c k e d to see i f they sat i s fy the 
t e r m i n a t i o n c r i t e r i a [23] . T h e process of modi fy ing a n d c h e c k i n g 
cont inues u n t i l the a s s u m e d c r i t e r i a are met. T h e core of the covering 
method c a n be s u m m a r i s e d as follovvs [18]: 

* F i n d a conjunct ion of conditions t h a t i s satisf ied by some objects i n 
the target c lass , but not by objects from other classes. 

* A p p e n d t h i s conjuct ion as one d i s junct of the logical express ion 
being developed. 

* R e m o v e a l i objects t h a t sat isfy th i s conjunct ion and, i f there are 
s t i l i some r e m a i n i n g objects of the target c lass , repeat the procedure. 
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4. D i v i d e - a n d - C o n q u e r i n d u c t i o n A l g o r i t h m s 

4.1. CLS: Concept Learning System 

O n e of the pioneers of concept l e a r n i n g u s i n g computer programs 
w a s H u n t who developed a ser ies of l e a r n i n g algorithms cal led Concept 
L e a r n i n g Sys tems , C L S - 1 to C L S - 9 [20]. A l i C L S vers ions except C L S - 9 
c a n deal only vvith b i n a r y class i f icat ion problems. T h e s e a lgori thms are 
h e u r i s t i c i n the sense that they conta in "rules of thumb" vvhich u s u l l y 
produce a concept i n the form of a s t r u c t u r a l l y s imple tree vvith a 
m i n i m u m of computat ion. T h e C L S - 1 a lgor i thm, vvhich i s the bas i s of 
a l i la ter vers ions , i s described i n [20] as follovvs; 

1. A sample of objects to be c lass i f ied i s r a n d o m l y chosen from the 
g iven t r a i n i n g set. I t is a s s u m e d that these objects c a n belong to one of 
tvvo c lasses , the Pos i t ive and Negat ive classes. 

2. A s e a r c h is m a d e for some character i s t i cs (values of at tr ibutes) or 
a set of character i s t i c s vvhich appear i n objects i n the Posit ive class a n d 
not i n objects i n the Negat ive c lass . I f s u c h character i s t i c s are found, 
they are m a d e the test associated vvith the root of the concept tree a n d 
the problem is solved ( T h e information i s stored i n m a t r i x form; a l i tha t 
C L S - 1 needs to do i s compare success ive rows represent ing posit ive or 
negat ive objects, co lumn by column). 

3. I f step (2) cannot be c a r r i d out, i t i s reversed. A search i s made for 
a set of c h a r a c t e r i s t i c s vvhich appear i n objects i n the Negat ive c lass 
a n d not i n a n y object i n the Posit ive c lass . I f s u c h a set c a n be found, 
t h e n the problem is solved as before. 

4. I f steps (2) a n d (3) fai l , the re la t ive frequehcies of characte i s t i c s 
t h a t a p p e a r i n the objects i n the Pos i t i ve c la s s are counted. T h e 
charac ter i s t i c vvith the highest frequency of occurrence i s chosen as the 
tes t a t the c u r r e n t node. T h e t r a i n i n g set is spl i t into tvvo subsets , one 
c o n t a i n i n g a l i objects h a v i n g the charac ter i s t i c j u s t chosen, a n d the 
other containing a l i objects that do not. 

5. T h e s a m e procedure i s reappl i ed to the subsests u n t i l no further 
d iv i s ions are r e q u i r e d (vvhich m e a n s a l i objects i n t r a i n i n g se t are 
correctly classif ied) . 

T h i s procedure a s s u m e s t h a t there are both posit ive a n d negat ive 
ins tances i n the or ig ina l set of examples . If, at a n y point i n so lv ing 
e i ther the or ig ina l problem or a subproblem C L S - 1 encounters a sample 
c o n t a i n i n g on ly pos i t ive (negat ive) i n s t a n c e s , the c u r r e n t node i s 
i m m e d i a t e l y m a d e a posit ive (negat ive) endpoint a n d the next sub­
problem is a t tacked . I n steps 2 a n d 3, i f more t h a n one charac ter i s t i c 
qualify for select ion as a test a r a n d o m choice i s made betvveen them. 
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A s ment ioned above, H u n t et a l , h a v e developed n i n e vers ions of 
C L S . C L S - 2 a n d C L S - 3 are s i m i l a r to C L S - 1 except t h a t a n addit ional 
control p a r a m e t e r i s inser ted to indicate the m a x i m u m memory size of 
the computer ( C L S - 2 and C L S - 3 differ from each other i n the w a y that 
the set of examples is stored). C L S - 4 a n d C L S - 5 differ from C L S - 1 only 
i n the m a n n e r of choosing a sample . T h e y vvere developed to improve 
the performance of C L S - 1 by introducing some control ö v e r the order i n 
vvhich objects are added to the vvorking set, fo î lovving the orvvrence of 
classif ication errors . C L S - 6 is a k i n to C L S - 1 except that sub samples are 
se lected u s i n g re la t ive freqnency. C L S - 7 differs from C L S - 1 only by 
r e d e f i n i n g the Pos i t i ve set. I n t h i s a l g o r i t h m , the se t of pos i t ive 
ins tances is defmed at each node as the largest of the tvvo sets. C L S - 8 i s 
s i m i l a r to C L S - 7 except that the s m a î l e r , r a t h e r t h a n the larger set, i s 
considered as the Positive set. C L S - 9 h a s the advantages of m a n y of the 
ear l ier a lgor i thms a n d allovvs m u l t i - b r a n c h trees to be generated. More 
detai ls of these algorithms c a n be found i n [20]. 

4.2. ID3 inductive Learning Algorithm 

I D 3 , a d e s c e n d a n t of H u n t ' s C L S , i s a s i m p l e a l g o r i t h m for 
d i s c o v e r i n g a set of c lass i f i ca t ion r u l e s from a collection of objects 
belonging to different c lasses [21]. I D 3 uses a mul t i -branch r a t h e r t h a n 
a b i n a r y decis ion tree. I t differs from C L S - 9 i n the w a y it chooses the 
test node (attribute) to divide the original set of examples or subsets. T h e 
a t t r ibute se lect ion p a r t of I D 3 i s based on the a s s u m p t i o n t h a t the 
complex i ty of the decis ion tree i s s trongly re la ted to the a m o u n t of 
in format ion conta ined i n the tree. I D 3 uses a n information-theoret ic 
approach a i m e d at m i n i m i s i n g the expected n u m b e r of tests to classify 
a n object [21]. T h e method can be s u m m a r i s e d as follovvs: 

1. Select at r a n d o m a subset (or window) of the given instances . 

2. F o r m a r u l e to expla in the c u r r e n t window. 

3. F i n d the exceptions to th i s r u l e in the r e m a i n i n g instances . 

4. F o r m a nevv window from the c u r r e n t vvindovv a n d the exceptions 
to the r u l e generated from it. 

5. I f there are no exceptions to the ru le then stop. Othervvise, repeat 
steps 2 to 5 unt i l no exceptions r e m a i n . 

T h e core procedure of the a lgor i thm is the recurs ive process to form 
a decis ion tree from the current vvindovv. L e t S b e a set of objects. I f a l i 
objects i n S belong to the same c lass , t h e n the decis ion tree i s a l e a f 
bear ing that c lass name . Othervvise, S contains representat ives of more 
t h a n one class . A n attribute i s selected to partit ion S into subsets Sx, S2, 

Sn vvhere S , contains those members of S that have the i t h value of the 
se lected at tr ibute . A n object is c lass i f ied by s tar t ing at the root of the 
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decis ion tree. T o f ind the root of the tree, the informat ion ga in of each 
attr ibute is computed. L e t A be a set of m attributes {Aı, Ag, AjJ a n d 
C a set of p c lasses (Cı, C2, Cpj. T h e set of possible va lues for a n 
at tr ibute A j i s referred to as R a n g e (Aj) . E a c h example i n S i s a n m+1 
t ü p l e of the form: (Vıt V2, Vm, CjJ where Vj Range (Aj), j=l, ... m and 
Ck C i s the class of the example. 

Def ine the p r o b a b ü i t y of occurrence of examples of c lass i n a set 
Sı, to be the proportion of examples i n S] t h a t Sı i n c lass C ] t - A s a 
m e a s u r e of the r a n d o m n e s s of example d i s tr ibut ion i n Sı ö v e r the 
possible c l a s s e n i n C , the informat ion m e a s u r e is d e f ı n e d t h u s [24, 25, 
26]. 

I ( S ı ) = - I P S ı , c k L o g 2 P S l , C k 

I D 3 a ims to part i t ion S to produce subsets Sı i n vvhich the examples 
are d i s tr ibuted less r a n d o m l y ö v e r the possible c lasses . T o choose the 
attr ibute t h a t would best achieve th is , for each attribute A j h a v i n g more 
t h a n one v a l u e i n the examples i n S, I D 3 part i t ions S into subsets Sı 
cons i s t ing of a l i examples i n S h a v i n g va lue Vı for attribute A j . I f the 
n u m b e r of examples containing va lue Vı i n S i s n(S) a n d the n u m b e r of 
e x a m p l e s c o n t a i n i n g v a l u e Vı i n subset S] is n(S] ), the informat ion 
entropy of the resu l t ing part i t ion is given by: 

E ( A İ ( S ) = I I ( S ı ) ™ ^ 
V , e R a n g e ( A j ) ; 

I D 3 chooses as a node the a t t r i b u t e A j vvhich m a x i m i s e s the 
follovving quantity: 

G a i n (Aj ,S) = I(S)-E (Aj ,S) 

I f G a i n (Aj , S) is the same for more t h a n one attribute A j , t h e n one of 
t h e m is r a n d o m l y chosen. 

I D 3 i s a n o n - i n c r e m e n t a l a l g o r i t h m a n d i s a good choice for 
b u i l d i n g a c lass i f i cat ion r u l e set for problems i n vvhich a database of 
ins tances is avai lable a n d i s not l ike ly to change. Hovvever, for problems 
i n vvhich nevv ins tances are expected to become avai lab le on a r e g u l a r 
b a s i s , i t i s pre ferab le to accept i n s t a n c e s i n c r e m a n t a l l y , vvithout 
needing to b u i l d a nevv decision tree from the beginning each t ime. 

S i n c e I D 3 vvas developed, i t h a s been i m p r o v e d s e v e r a l t imes by 
Q u i n l a n a n d other r e s e a r c h e r s . S c h l i m m e r a n d F i s h e r have proposed 
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I D 4 [27] , w h i c h i n c r e m a n t a l l y bu i lds a decis ion tree s i m i l a r to t h a t 
vvhich I D 3 w o u l d bu i ld . I n s t e a d of forming a decision tree from a 
vvindovv of in s tances , I D 4 updates a tree based on each i n d i v i d u a l l y 
observed instance . 

Utgoff [28] h a s described I D 5 vvhich bui lds on I D 4 but differs from 
I D 4 i n i ts method of rep lac ing the test attribute. W h e n I D 4 replaces a 
test attr ibute , i t d i scards the subtrees below the old test attribute. I D 5 
r e s h a p e s the tree by p u l l i n g the best a t tr ibute up from belovv. A n 
exper imenta l comparison of I D 3 , I D 4 and I D 5 is given i n [28]. 

A problem vvith I D 3 i s tha t the decision tree produced might not be 
as genera l as i t could be. T h i s i s caused by the fact that decision r u l e s 
c a n sometimes involve unneces sary or i rre l evant conditions. W h e n the 
a lgor i thm chooses an attr ibute for b r a n c h i n g out of a node, i t produces 
a b r a n c h for e a c h va lue of the attribute. Hovvever, some of those va lues 
m a y be i r r e l e v a n t to the c lass i f icat ion. T h o s e i r r e l e v a n t v a l u e s w i l l 
r e s u l t i n overspec ia l i zed c lass i f icat ion r u l e s . C h e n g et a l . [25] h a v e 
developed G I D 3 ( G e n a r a l v e r s i o n of I D 3 ) to overcome this problem. 
E s s e n t i a l l y , the a lgor i thm is s i m i l a r to I D 3 except that not every v a l u e 
of the a t t r i b u t e i s chosen to produce a b r a n c h . I n order to avoid 
b r a n c h i n g on i r r e l e v a n t va lues of the attribute, only values that appear 
to be r e l e v a n t , according to t h e i r in format ion m e a s u r e (a q u a n t i t y 
s i m i l a r to the in format ion m e a s u r e used i n I D 3 ) , m a y potent ia l ly be 
b r a n c h e d on. A user-def ined to lerance leve l is adopted to specify tha 
degree of to lerance for the dev iat ion of the entropy m e a s u r e of a n 
at tr ibute-va lue pa ir from the m i n i m a l entropy measure ö v e r a l i pa i r s . 
C h e n g et a l . h a v e not d e c r i b e d hovv to set the t o l e r a n c e l e v e l 
sys tem ati cally. 

5. induction Algorithms Based on Covering: 

5.1. AQ and its family 

U n l i k e decision-tree based a lgori thms, A Q produces I F - T H E N r u l e s 
directly. A Q is a n a lgor i thm for developing V a r i a b l e - V a l u e d Logic ( V L ) 
r u l e s from a g iven set of examples ( t ra in ing set) [29, 30]. V L ru les are 
equivalent to decision ru les . F o r example, the follovving V L rule; 

[x*6] [x=3,5J V[x>7] [decision = BJ 

c a n be interpreted as: 

IF x IS NOT 6 AND x IS 3 or 5, OR x IS LARGER THAN 7 THEN 
decision is B. 

Before descr ib ing the A Q fami ly of a lgori thms, the terminology u s e d 
by M i c h a l s k i w i l l be introduced. 
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Selectors are predicates ö v e r attribute subranges. F o r example, the 
selector [hair - dark, red] i s a predicate ö v e r the a t tr ibute h a i r . I t 
indicates t h a t dark a n d red are the al lowed va lues of ha i r . 

Conjunctive Concepts a re groups of selectors w h e r e no two 
selectors refer to the same atrribute . 

Rules are of the form 

Conjunct ive concepts => concept class . 

A complete description i s a concept descr ipt ion ( a group of 
a t tr ibute -va lue p a i r s ) t h a t correctly describes a l i the positive examples 
( T h e c lass vvhich a n example belongs to is considered the Posit ive c lass . 
A l i other c lasses form the Negat ive c lass) . 

A consistent description i s a concept description that fİts none of 
the negative examples . 

A star i s a set of a l i possible a l ternat ive , nonredundant descriptions 
of a chosen unclass i f i ed example (the "seed") w h i c h cover t h a t example 
a n d do not cover a n y of the examples i n the Negative class . 

T h e "extend against" process i s a process u s e d i n A Q to extend 
the v a l u e of a n a t tr ibute t h a t appears i n the seed, aga inst the set of 
v a l u e s for the s a m e a t tr ibute for examples i n the negat ive set. T h e 
a lgor i thm determines the most general consistent va lue vvhich does not 
intersect the negative set on that attribute. T h e resul ts of extending the 
seed against e a c h negat ive event are t h e n combined by intersect ing the 
va lues for each of the previous tests for each attribute. T h e s y s t e m t h e n 
se lects these combined v a l u e s to give a conjunct ive descr ipt ion t h a t 
covers the seed, but none of the negative events. 

T h e a l g o r i t h m is prov ided vvith tvvo prec lass i f i ed sets of events . 
E v e n t s . are observations from the problem domain, vvhere each event is 
a l i s t of at tr ibute-value pa irs . T h e bas ic a lgori thm is performed once for 
e a c h c lass , genera t ing a s ingle V L r u l e per c lass [31], A Q begins vvith 
a n unc lass i f i ed example (a seed) from the Posit ive c lass and generates 
a s t a r u s i n g the "extend against" process. I n that s tar , a descript ion i s 
c h o s e n a c c o r d i n g to a c o n s i s t e n c y m e a s u r e a n d a comple t enes s 
measure . I f the descript ion is consistent (covers no negative events) i t i s 
s a v e d i n the concept set C (by disjoining i t vvith the previous conjunctive 
concepts i n C ) . I f a l i the posit ive examples a n d no negat ive examples 
a r e covered by the obta ined descr ip t ion t h e n a nevv posit ive c la s s 
c'enstructed a n d the s a m e procedure i s repated . I f t h e r e are some 
examples t h a t are not i s covered by the description, t h e n a nevv seed is 
se lected from the r e m a i n i n g uncovered examples i n the Pos i t ive c lass 
a n d the procedure is repeated u n t i l a l i examples i n the Pos i t ive c lass 

fare covered. T h e Proces s cont inues u n t i l a l i examples i n the t r a i n i n g 



179 

set are correctly classif ied. A general a n d simplif ied version- of A Q c a n 
be s u m m a r i s e d as follovvs: 

1. Se lect a n unclass i f ied example. Cons ider the c lass of the example 
as the Pos i t ive c lass , and a l i other classes as the Negative class . 

2. A p p l y the extend aga ins t process to generate a s t a r for the 
example . 

3. F r o m the s t a r obtained i n step (2), select a description D according 
to the consistency a n d completeness va lues . 

4. I f descript ion D covers a l i positive examples then go to step (6). 

5. Othervvise , reduce the set of posit ive examples to conta in only 
events not covered by D , and repeat the process from step (1). / 

6. C o n v e r t a l i generated descriptions to the form of a V L r u l e vvhich 
c a n cover a l i e x a m p l e s i n the P o s i t i v e c la s s , a n d r e m o v e those 
example s from the set of unclass i f ied examples . I f there are no more 
unclass i f i ed examples t h e n stop, else go to step (1). 

S i n c e M i c h a l s k i first developed A Q i n 1969, i t h a s been improved 
s e v e r a l t imes . M i c h a l s k i a n d L a r s o n have described A Q 1 1 [32] vvhich 
uses the same s e a r c h strategy as A Q [33] but can vvork incremanta l l y . 
T h a t i s , vvhen nevv examples become ava i lab le , A Q 1 1 c a n modify a 
p r e v i o u s l y obta ined set of r u l e s to m a k e t h e m consis tent vvith those 
examples . Hong, Mozetic and M i c h a l s k i have proposed A Q 1 5 [34] vvhich 
i s s i m i l a r to A Q 1 1 . A n important feature of A Q 1 5 is the abi l i ty to deal 
vvith noisy or over lapping examples . B loedorn a n d M i c h a l s k i [35] h a v e 
reported the A Q 1 7 - D C I ( D a t a - d r i v e n contructive induct ion) a lgori thm. 
A Q 1 7 - D C I i s a n a lgor i thm for construct ive induct ion (an induct ion 
process t h a t produces nevv a t t r ibute s not present i n the t r a i n i n g 
event s ) . T h e a l g o r i t h m generates a n u m b e r of nevv a t t r ibute s a n d 
selects as test attr ibutes those vvith a "quality" va lue exceeding a given 
threshold . T h r u n et a l have described the A Q 1 7 - F L C S (flexible concept 
l e a r n i n g ) a l g o r i t h m t h a t c o m b i n e s both s y m b o l i c a n d n u m e r i c 
r e p r e s e n t a t i o n s i n g e n e r a t i n g a concept descr ipt ion [36]. W n e k a n d 
M i c h a l s k i h a v e proposed A Q 1 7 - H C I (Hypothes i s d ı i v e n construct ive 
i n d u c t i o n ) vvhich i m p l e m e n t s a n i t e r a t i v e c o n s t r u c t i v e i n d u c t i o n 
procedure i n vvhich the generat ion of nevv at tr ibutes i s based on the 
a n a l y s i s of the hypotheses produced i n the previous i t e r a t i o n [37]. 
Pachovvicz a n d B a l a h a v e reported A Q 1 4 - N T (Noise to l erant ) . T h e 
a l g o r i t h m is spec ia l ly des igned for l e a r n i n g from no i sy eng ineer ing 
d a t a [38, 39] . T h r u n et a l . have descr ibed A Q 1 5 - G A vvhich combines 
A Q 1 5 a n d a genetic a lgor i thm ( G A ) for at tr ibute selection. T h e G A i s 
u s e d to explore the space of a l i subsets of a given attr ibute set. E a c h of 
the se lected a t tr ibute subsets is e v a l u a t e d (its f i tness m e a s u r e d ) by 
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i n v o k i n g A Q 1 5 a n d d e t e r n ı i n i n g the recognit ion r a t e of the r u l e s 
produced [36]. 

5.2. RULES and its Family 

P h a m a n d A k s o y have developed R U L E S ( R U L e E x t r a c t i o n Sys t em) 
[40], a s imple a lgor i thm for extract ing a set of c lass i f icat ion ru les for a 
collection of objects belonging to a given set of classes. A n object m u s t be 
descr ibed i n t erms of a fixed set of attr ibutes , each vvith i ts ovvn set of 
possible va lues . F o r example "Weather" a n d "Temperature" might be 
at tr ibutes vvith sets of possible va lues {rainy, sunny , snovvy) a n d {low, 
average, high) respectively. 

I n R U L E S , a n a t tr ibute -va lue pa ir constitutes a condition. I f the 
n u m b e r of a t tr ibutes is n a , a r u l e m a y conta in betvveen one a n d n a , 
conditions, each of vvhich m u s t be a different art tr ibute-value pair . T h e 
conjunct ion of conditions only i s permit ted i n a ru le a n d therefore the 
a t tr ibutes m u s t a l i be different i f the r u l e comprises more t h a n one 
condit ion. T h e a t tr ibutes a n d the v a l u e s assoc iated vvith t h e m i n a 
collection of objects form a n a r r a y of at t ir ibutes a n d va lues . T h e total 
n u m b e r of e lements of the a r r a y i s the total n u m b e r of a l i possible 
va lues . F o r example i f there are four at tr ibutes vvith, 3, 4, 2 a n d a 5 
va lues respectively, the total n u m b e r of elements is 14. 

T h e r u l e forming procedure m a y require at most n a i terat ions . T h e 
f i r s t i t e r a t i o n produces r u l e s vvith one condit ion a n d the second 
i terat ion resu l t s i n ru les vvith tvvo conditions, ete. I n the first i terat ion, 
e a c h e lement of the a r r a y at tr ibutes a n d va lues i s examined to decide 
vvhether i t c a n forma ru le vvith t h a t e lement as the condition. F o r the 
vvhole set of examples i f a g iven e lement applies to only one c lass , then 
it i s a candidate for forming a rule . I f i t perta ins to more t h a n one c lass , 
it i s pas sed ö v e r a n d the next e lement is examined. W h e n a l i e lements 
of the a r r a y have been looked at, the vvhole set of examples is checked 
for a n y example t h a t cannot be c lass i f ied by the candidate ru le s . I f 
t h e r e a r e no u n c l a s s i f i e d e x a m p l e s the p r o c e d u r e t e r m i n a t e s . 
Othervvise, a nevv a r r a y i s constructed vvhich comprises at tr ibutes a n d 
v a l u e s conta ined i n a l i the u n c l a s s i f i e d example s . I n the second 
i t e r a t i o n e lements of the a r r a y are e x a m i n e d i n p a i r s to de termine 
vvhether they apply to only one c lass i n the vvhole set of examples . A s 
before, for those p a i r s of e l ements t h a t p e r t a i n to u n i q u e c las ses , 
candidate ru les are obtained. I f there are s t i l i unclass i f ied examples at 
the end of this i teration, a nevv a r r a y is formed a n d the next i terat ion is 
i n i t i a t e d . T h i s procedure cont inues u n t i l a l i examples are correct ly 
c lass i f i ed or the n u m b e r of i t erat ions (the n u m b e r of condit ions) i s ' 
equal to n a . I n the lat ter case, a l i r e m a i n i n g unclass i f ied examples are 
t a k e n as r u l e s . F o r e a c h i t e r a t i o n after the f i rs t , c a n d i d a t e r u l e s 
e x t r a c t e d i n the c u r r e n t i t e r a t i o n a r e checked a g a i n s t p r e v i o u s l y 
o b t a i n e d r u l e s . C a n d i d a t e r u l e s t h a t do not c o n t a i n i r r e l e v a n t 
conditions are added to the r u l e set a n d the others are ignored. T h i s 
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check is not r e q u i r e d for the f irst i t erat ion as each ru le c a n only have 
one condition. T h e procedure c a n be s u m m a r i s e d as follovvs: 

1. D r O 

2. I f n c < n a then n c = n c + l . 

3. F i n d a l i va lues contained i n unclass i f ied examples. 

4. F o r m objects vvhich are combinations of n c va lues t a k e n from the 
values obtained i n Step (3). 

5. I f at l eas t one of the objects belongs to a unique c lass t h e n form 
ru les vvith those objects E L S E go to Step (2). 

6. C h e c k for i r r e l e v a n t conditions. 

7. C h e c k a l i unclass i f ied examples u s i n g the extracted ru les . 

8. Remove a l i c lass i f ied examples . 

9. I f a l i examples are c lass i f ied u s i n g extracted r u l e s t h e n S T O P ; 
E L S E go to Step (2). 

P h a m a n d A k s o y h a v e improved R U L E S a n d produced R U L E S - 2 
[41]. T h e ru le forming strategy of R U L E S - 2 is almost the same as that 
of R U L E S . T h e difference is tha t ins tead of considering the va lues of a l i 
u n c l a s s i f i e d e x a m p l e s , i n e a c h i t e r a t i o n , only the v a l u e s of one 
u n c l a s s i f i e d e x a m p l e are u s e d to produce r u l e s for c la s s i fy ing t h a t 
example . C o m p a r e d to R U L E S , R U L E S - 2 is genera l ly fas ter as i t 
r e q u i r e s fewer r u l e s e a r c h i n g operat ions i n i t s i n d u c t i o n process . 
F u r t h e r m o r e , i t allovvs the user to specify the n u m b e r of r u l e s to be 
extracted , i s able to dea l vvith incomplete examples a n d c a n h a n d l e 
at tr ibutes vvith n u m e r i c a l as we l l as n o m i n a l va lues . 

T h e la te s t v e r s i o n of R U L E S fami ly of automat ic r u l e ex trac t ion 
sys tems i s R U L E S - 3 [42]. R U L E S - 3 inher i t s a l i advantageous features 
of i ts predecessors. I n addit ion i t h a s tvvo nevv features: it generates a 
compact set of more general ru les a n d provides the user vvith the option 
of adjust ing the precis ion of the extracted ru les . 

6. Applications of inductive Learning 

I n d u c t j v e l e a r n i n g a l g o r i t h m s a r e d o m a i n i n d e p e n d e n t . I n 
pr inc ip l e , t h e y c a n be u s e d i n a n y t a s k i n v o l v i n g c las s i f i ca t ion or 
pa t t ern recognit ion [1]. T h e r e h a v e been severa l succesful appl icat ions 
of i n d u c t i v e l e a r n i n g s y s t e m s . M e d i c a l a p p l i c a t i o n s s u c h as 
l y m p h o g r a p h y , prognos i s of b r e a s t c a n c e r r e c u r r e n c e , l oca t ion of 



182 

p r i m a r y t u m o u r a n d thyroid problem diagnosis have been reported [5, 
43, 44] . O t h e r appl icat ions inc lude inves tment a p p r a i s a l [45], forensic 
c lass i f i ca t ion of g lass f ragment evidence [46], ex trac t ion of decis ion 
r u l e s for a n a l y s i s of test data for the space shutt le m a i n engine [47], 
e x p e r i m e n t a l generat ion of decision ru les for the conceptual des ign of 
steel m e m b e r s u n d e r bending [10], soil classif ication [48], s tock control 
[49], software resource ana lys i s [50], assess ing credit c a r d appl icat ions 
[51], m i l i t a r y decision m a k i n g [52], dynamic s y s t e m i d e n t i f ı c a t i o n [53, 
54], engine faul t diagnosis [55] a n d i d e n t i f ı c a t i o n of the mass - spec tra of 
complex mater ia l s [56, 57, 58]. 

7. Conclusion 

T h e i n d u c t i o n of decis ion trees a n d ru les from e m p i r i c a l d a t a is a 
u s e f u l t e c h n i q u e for a u t o m a t i c knowledge acqu i s i t i on . I t offers a 
m o d u l a r i s e d , c l e a r l y exp la ined format for decis ion m a k i n g w h i c h is 
compat ib le w i t h h u m a n r e a s o n i n g procedures . A l s o , the r e s u l t i n g 
r u l e s are su i table for use i n expert systems. Tvvo of the larges t expert 
sys tems developed prior to 1987 ( B M T and G A S O I L ) vvere bui l t u s i n g 
automatic induct ion [1]. Also i t i s reported that the decis ion tree based 
a l g o r i t h m s h a v e been i n c o r p o r a t e d into a n u m b e r of c o m m e r c i a l 
s y s t e m s i n c l u d i n g E x p e r t - E a s e , R u l e M a s t e r a n d A C L S [59], I n recent 
y e a r s , m o r e t a s k - o r i e n t e d i n d u c t i v e l e a r n i n g s y s t e m s h a v e been 
developed t h a t h a v e demonstrated , impres s ive per formance i n the i r 
specific d o m a i n of appl icat ion. Hovvever, some problems s t i l i r e m a i n . 
M o s t s y s t e m s l a c k g e n e r a l i t y a n d ex tens ib i l i t y . T h e t h e o r e t i c a l 
principles upon vvhich they are bui l t are often not we l l explained. L a c k 
of c o m m o n t ermino logy a n d a n adecjuate formal theory m a k e s it 
d i f f î cu l t to compare diferent l e a r n i n g methods [60]. 
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