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Abstract 

This paper applies the algorithm proposed by Özdemir and Giresunlu [1] to the foreign 

stock markets as well as Istanbul Stock Exchange National-100 index and its constituent 

stocks in order to address the risk perceptions of investors from different markets. 

An optimal value of the risk aversion constant, which corresponds to the minimum risky 

portfolio for each market is obtained by using fractional programming and the risk level 

of different markets are compared based on the risk aversion constant calculated. Stock 

markets are ordered according to the investors’ risk-bearing attitude. The question of 

why the hot capital flows prefer Turkish market is answered in this context.  
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Özet 

Bu çalışmada Özdemir ve Giresunlu [1] tarafından önerilen algoritma, farklı piyasalardan 

yatırımcıların riske karşı tutumlarının karşılaştırılması amacıyla, yabancı hisse senetleri 

piyasaları ile birlikte İstanbul Menkul Kıymetler Borsası Ulusal-100 endeksine ait hisse 

senetlerine uygulanmıştır. 

Kesirli programlama ile riskten kaçınma katsayısı için bir minimum değer elde edilmiş, bu 

değere karşılık gelen portföylerin minimum riskli portföyler olduğu gösterilerek farklı 

piyasalar için riskten kaçınma katsayısının minimum değeri hesaplanmıştır. Farklı 

piyasalardaki yatırımcıların riske karşı tutumları, riskten kaçınma katsayısı baz alınarak 

piyasalar riskliliklerine göre sıralanmıştır. Sıcak para akımlarının neden Türk piyasalarını 

tercih ettiği sorusu bu bağlamda cevaplandırılmıştır. 

Anahtar Kelimeler: Dinkelbach yöntemi, Kesirli programlama, Markowitz modeli, Riskten kaçınma 

katsayısı 

 

1. Introduction and alternative portfolio selection models 

Markowitz mean-variance portfolio theory is one of the most widely used approaches in 

portfolio selection and is based on the idea that the investors seek higher investment 

returns and wish to minimize their risk. Markowitz [2] describes how rational investors 

can construct optimal portfolios under conditions of uncertainty. He associates the return 

and the risk of an investment with the expected return and variance of the portfolio 

respectively. Since high investment returns and low level of risk is contradictory, 

investors face the problem of balancing a trade off between risk and return. 
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 Markowitz in his seminal work [2], which brings him a share of 1990 Nobel Prize 

in Economics, determined the way of finding the optimum allocation of wealth of an 

investor among different investment alternatives so called diversification by minimizing 

the risk at a certain level of expected return or alternatively maximizing the return at a 

certain level of risk. But the main idea Markowitz [2] put into action is to use the risk of 

an investment as standard deviation. 

 The diversification depends on the mean, variance and the interrelationship 

between the assets so called covariance parameters obtained from the historical data. In 

the world of Markowitz, return and risk of a portfolio consisting of security combinations 

are calculated as follows where μp is the return; σp
2 is the variance on the portfolio. 
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Also note that, i stands for the expected return of asset i, i denotes the standard 

deviation of the return of the asset i, and ij symbolizes the correlation between assets i 

and j. The objective is to minimize the risk of the portfolio for a given level of return, or 

alternatively maximize the expected level of return of the portfolio for a given level of 

risk. Both approaches lead to a quadratic programming model and are modelled below as 

QP1 and QP2. 
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These models necessarily will not provide the efficient frontier. Varying the desired level 

of return (0) in QP1 or alternatively, varying the acceptable level of risk (0) in QP2, 

each quadratic program identifies the minimum variance portfolio for each 0 in QP1 and 

the maximum return portfolio for each 0 in QP2. These are the efficient portfolios 

composing the efficient set. By plotting the variance and the return respectively efficient 

frontier can be obtained in the mean-variance plane. 

 As an alternative approach, the return and risk in the objective function at the 

same time can be combined. Kallberg and Ziemba [3] explicitly trade risk against return 

in the objective function using the Arrow [4] - Pratt [5] absolute risk aversion constant 

(). The risk aversion constant is defined as follows, 



M. Horasanlı / İstanbul Üniversitesi İşletme Fakültesi Dergisi 37, 1, (2008) 39-48 © 2008 

 

41 
 

 

λ





)w(U

)w(U

      (3) 

where w is portfolio wealth and u  and u  are the first and second order derivatives of a 

von-Neumann-Morgenstern utility function u. Utility function describes the relationship 

between risk and return for an investor. Each investor bares a different level of risk for 

an additional level of wealth. As the total return goes up, the investor is less and less 

willing to risk for an additional wealth. This requires the utility function given below to be 

non-decreasing, continuously differentiable and concave.   

0,e1)z(U z   λλ
    (4)  

Since every investor desires to maximize his total wealth, the expected value of the 

utility can be computed as follows [6] .  
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As the utility function described above is strictly increasing in z, it is equivalent to 

maximize the following quadratic model. 

QP3: 
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The efficient frontier is obtained by solving different instances of quadratic programs by 

varying the risk aversion constant (). Kallberg and Ziemba [3] suggest that,   6 leads 

to risk-averse portfolios, 2    4 represents moderate absolute risk aversion and 0    

2 leads to risky portfolios. There are dramatic changes in the optimal portfolio 

composition for even small changes in  in risky portfolios.  = 4 correspond 

approximately to pension fund management, typically, 60% stocks and 40%bonds. 

Kallberg and Ziemba [3] states that the most important problem is the selection of , risk 

aversion constant, in the mean-variance model. The importance of the risk aversion 

constant comes from the calculation of it. Since,  is multiplied by the risk parameter, the 

weight of risk in the function F() becomes greater as  becomes greater.  

 In Refs. [3,7,8] as well as many other researchers use randomly selected risk 

aversion constant to plot the efficient frontier. Naturally, it is important to solve the 

problem given by QP3 to obtain the different instances corresponding to different 

investor but Özdemir and Giresunlu [1] developed an algorithm for computing the 

optimum value for the risk aversion constant by using fractional programming or 
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Dinkelbach’s method [9] alternatively. The algorithm they have proposed corresponds to 

the minimum risky portfolio as well. 

 

2. Fractional programming for calculating the optimum risk aversion constant 

 

Fiven two continuous functions f: n    and g: n   defined on a polyhedral set          

S  n such that g(x) > 0 for all x  S,  the fractional programming problem  is defined 

to find some point x* which satisfies the following equality. 
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An interesting result can be achieved if the maximum value of the program given by QP3 

is assumed to be zero. Using E(x*) = 
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simplicity and equalling the objective function in the QP3 program, following equation is 

obtained which is only valid at the optimum point (x*). 
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This intuitive approach proposed in Ref. [1] is practical in sense because it provides 

solving the fractional programming model iteratively to obtain the optimal investment 

strategy. Or more crucially, it provides an optimum value for the risk aversion constant 

while solving the quadratic programming model given by QP3. A well-known approach for 

solving this problem is to convert the given model to a global optimization model 

described as follows. 

F() = Max { f(x) – g(x) xS , R}                            (7) 

 

A parametric approach is proposed in Ref. [9] to solve the fractional program given by 

equation (6) which generates a sequence of values, i's, that converge to the global 

optimum value of the function. The relationship between the optimization problem given 

by QP3 and the fractional program given by equation (7) can be stated with the following 

theorem: 
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Theorem:  x* solves the fractional programming problem given by equation (6) if and 

only if x* solves the global optimization problem given by equation (7) with constant *=f 

(x*) /g(x*). 

 Dinkelbach’s original iterative algorithm is based on the result of this theorem. 

The algorithm can be described as follows. 

 

1. Select some xo S. Set o = f (xo) / g(xo) and k = 0 

2. Solve the constrained global optimization problem given by equation (7) to get 

the optimal solution point x k + 1. 

3. If  f (x k + 1) – k g(x k + 1)  = 0 , then set x*  = x k + 1 and * = k and 

stop. 

4. If  f (x k + 1) – k g(x k + 1)  > 0, then set k+1 = f (x k + 1) / g(x k + 1)  , k = k +1 

and go to step 2. 

Also note that a test of the form f (x k + 1) – k g(x k + 1)  < 0  is not necessary since, for 

any fixed k, 

f (x k + 1) – k g(x k + 1)  = Max { f(x) – kg(x) xS }  f (x k ) – k g(x k) = 0    (8) 

 

3. Data and Results 

The algorithm described above is applied to weekly data between January, 2003 and 

December 2007, which makes 261 observations. In order to compare the risk-bearing 

attitudes of different investors, the algorithm is applied to data from various markets 

such as DowJones Industrial Index (DJI), EuroStoxx-50 (EuroStoxx) index, Hang-Seng 

index (Hang-Seng) and Istanbul Stock Exchange National-100 index (XU100). A limited 

number of stocks are chosen for simplicity thus, 20 stocks from each indexes are 

selected randomly. The symbols of the corresponding stocks as well as optimal portfolios 

at each iteration are given in Appendix A, Table 1 and Table 2. The algorithm started by 

assigning an equal weight (1/20=0.05) to each stock and at the end of iteration 4 the 

stability of weights is enhanced. Therefore, the weights given in the last column of Table 

1 and Table 2 can be regarded as the optimal investment strategies. The portfolios in this 

column are the most well diversified portfolios according to Ref. [2].  

 Risk aversion constant at each iteration and parameters of the corresponding 

iterations are given in Appendix A, Table 3. It is evident from Table 3 that,  the risk 

aversion constant monotonly increases and converges to its optimum value while F() 

converges to zero. According to Table 3, the optimm value for the risk aversion constant 

is calculated as 32.211778, 24.250188, 36.427928 and 17.472965 for DJI, EuroStoxx, 

Hang-Seng and XU100 respectively. As stated by Ref. [3] each market leads to risk-

averse portfolios since the optimum value for the risk aversion constant is greater than 6 

for each market.  

Stock markets are drawn up relatively to their riskiness as XU100, EuroStoxx, DJI and 

Hang-Seng where XU030 is the most risky market and Hang-Seng is the most risk-

averse. In other words, it can be stated as XU030 offers the greatest return for a unit of 

wealth. This conclusion may be the answer of why the hot capital flows prefer Turkish 

market.  

Additionally, by using the risk and return parameters given in Table 3, efficient frontier 

can be obtained. For portfolios on the efficient frontier, seen in Figure 1 in the Appendix 

B, the balance between risk and return is constructed by the risk aversion constant. For 
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this reason, using  constants picked from E(x) / V(x) ratio in the model, various portfolio 

compositions are selected. Since each portfolio composition in Table 1 and Table 2 on 

Appendix A belongs to different investors, utility functions related to various risk aversion 

constant in these portfolios are shown in Figure 2 in Appendix B. It is evident from Figure 

2 that, increasing the  parameter, concavity of the utility function strenghtens, therefore 

investors are ranged from aggressive to conservative up to the bottom. In the figure, it 

can be seen that as the expected returns of the utility functions increase marginal utility 

becomes smaller, because, the slopes of the indifference curves are negative. This 

situation is clear from Figure 3 on Appendix B that F() function is decreasing and it 

approaches to zero asymptotically as  gets higher values.  

 

4. Conclusion 

In this study, the algorithm proposed by Ref. [1] is applied to the foreign stock markets 

as well as Istanbul Stock Exchange National-100 index and its constituent stocks. The 

optimal value of the risk aversion constant, which corresponds to the minimum risky 

portfolio for each market is obtained by using fractional programming and the risk level 

of different markets are compared based on the risk aversion constant calculated. 

Results show that Turkish stock market seems to offer the highest return for a unit of 

wealth and this is the answer why hot capital flows prefer Turkish market. 
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Appendix A 

 

Table 1: Optimal portfolios for DJI  EuroStoxx stocks respectively 

Optimal 

portfolios 

Iterations 

0 1 2 3 4 

AA 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

AXP 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

BA 0.0500000 0.1222652 0.0686321 0.0632797 0.0632238 

CAT 0.0500000 0.0494128 0.0077766 0.0036901 0.0036465 

CVX 0.0500000 0.3153341 0.2245317 0.2152890 0.2151929 

DIS 0.0500000 0.0000000 0.0179442 0.0196111 0.0196293 

GE 0.0500000 0.0000000 0.0508755 0.0541875 0.0542221 

GM 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

HPQ 0.0500000 0.0558880 0.0254563 0.0221385 0.0221027 

INTC 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

JNJ 0.0500000 0.0000000 0.0668273 0.0737714 0.0738453 

JPM 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

KO 0.0500000 0.0000000 0.0100176 0.0151523 0.0152061 

MMM 0.0500000 0.0000000 0.0610124 0.0664285 0.0664871 

MSFT 0.0500000 0.0000000 0.0070206 0.0098052 0.0098343 

PFE 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

PG 0.0500000 0.4271816 0.4065085 0.4013301 0.4012749 

T 0.0500000 0.0039395 0.0204788 0.0214592 0.0214700 

WMT 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

XOM 0.0500000 0.0259787 0.0329184 0.0338574 0.0338652 

AEGON 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

ALCTL-LUCENT 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

ALLIANZ 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

BASF 0.0500000 0.0915482 0.0919356 0.0900589 0.0900401 

BAYER 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

CARREFOUR 0.0500000 0.0000000 0.0885489 0.0955195 0.0955893 

DANONE 0.0500000 0.1005468 0.0953698 0.0941341 0.0941218 

DEUTSCHE BNK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

DAIMLER 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

VINCI 0.0500000 0.1329706 0.1013847 0.0981530 0.0981207 

E.ON AG 0.0500000 0.3245072 0.2670591 0.2614230 0.2613666 

GEN. ASS 0.0500000 0.0000000 0.0976665 0.1062693 0.0063555 

SAINT GOBAIN  0.0500000 0.0475046 0.0397523 0.0386307 0.0386195 

ING GROEP 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

ARC. REG 0.0500000 0.1560317 0.1112303 0.1064049 0.1063566 

ROY.PHILIPS  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

SAP 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

SIEMENS N 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

SCHN.ELECTRIC 0.0500000 0.0000000 0.0091063 0.0164236 0.0164968 

VOLKSWAGEN 0.0500000 0.1468909 0.0979467 0.0929828 0.0929332 
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Table 2: Optimal portfolios for Hang-Seng and  XU100 stocks respectively 

Optimal 

portfolios 

Iterations 

0 1 2 3 4 

0001.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0003.HK 0.0500000 0.1847348 0.1824548 0.1817395 0.1817324 

0006.HK 0.0500000 0.3203032 0.4115086 0.4222270 0.4223293 

0011.HK 0.0500000 0.0000000 0.0874400 0.0999770 0.1000939 

0013.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0023.HK 0.0500000 0.0969962 0.0756556 0.0727677 0.0727400 

0066.HK 0.0500000 0.0705648 0.0450016 0.0411224 0.0410832 

0101.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0267.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0293.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0330.HK 0.0500000 0.1051317 0.0644452 0.0592112 0.0591612 

0386.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0494.HK 0.0500000 0.0190755 0.0335118 0.0350855 0.0350995 

0688.HK 0.0500000 0.0782057 0.0342052 0.0285880 0.0285347 

0762.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

0857.HK 0.0500000 0.1081916 0.0650662 0.0592817 0.0592258 

0941.HK 0.0500000 0.0167966 0.0007109 0.0000000 0.0000000 

1038.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

1199.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

2388.HK 0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

AEFES  0.0500000 0.1054494 0.1085612 0.1085955 0.1085944 

ALARK  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

BEKO   0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

BOYNR  0.0500000 0.0163482 0.0247480 0.0248641 0.0248526 

CLEBI  0.0500000 0.0858874 0.0890520 0.0891456 0.0891348 

DOHOL  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

ENKAI  0.0500000 0.284558 0.2689720 0.2682741 0.2683446 

EREGL  0.0500000 0.1159483 0.0834864 0.0823890 0.0825011 

GARAN  0.0500000 0.0218964 0.0000000 0.0000000 0.0000000 

HURGZ  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

MIGRS  0.0500000 0.0073118 0.0356894 0.0361318 0.0360864 

NTHOL  0.0500000 0.0707437 0.0604523 0.0601153 0.0601498 

PTOFS  0.0500000 0.0000000 0.0388903 0.0399804 0.0398690 

SAHOL  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

TCELL  0.0500000 0.0985086 0.1018319 0.1016581 0.1016768 

TRKCM  0.0500000 0.0000000 0.0012884 0.0023570 0.0022476 

TUPRS  0.0500000 0.1044502 0.1139314 0.1138972 0.1138998 

ULKER  0.0500000 0.0888982 0.0730967 0.0725918 0.0726431 

YKBNK  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 

ZOREN  0.0500000 0.0000000 0.0000000 0.0000000 0.0000000 
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Table 3: Parameters of the corresponding iterations of optimal portfolios 

Parameters 
Iterations 

0 1 2 3 4 

DJI 

 16.664086 29.927351 32.185997 32.211778 32.211778 

F() 0.0016917 0.0002239 0.249E-05 0.146E-07 0.147E-07 

E(x) 0.0026206 0.0038172 0.0031906 0.0031244 0.0031237 

V(x) 0.0003145 0.0002551 0.0019830 0.0001940 0.0001939 

U(x) 0.0427304 0.0957427 0.0975965 0.1079551 0.1079554 

EuroStoxx 

 14.504990 23.029853 24.237457 24.250187 24.250188 

F() 0.0027203 0.0003083 0.319E-05 0.118E-08 0.955E-09 

E(x) 0.0046580 0.0073488 0.0061887 0.0060673 0.0060661 

V(x) 0.0006421 0.0006382 0.0005107 0.0005004 0.0005003 

U(x) 0.0653272 0.1367956 0.1368210 0.1392909 0.1556956 

Hang-

Seng 

 19.007695 33.003916 36.367034 36.401601 36.427928 

F() 0.0026080 0.0004491 0.791E-05 0.341E-05 0.171E-07 

E(x) 0.0064588 0.0061499 0.0048998 0.0047493 0.0047416 

V(x) 0.0067960 0.0037267 0.0002695 0.0002609 0.0002603 

U(x) 0.1155299 0.1586311 0.1587627 0.1632167 0.1836969 

XU100 

 11.907398 17.257496 17.450699 17.450701 17.472965 

F() 0.0029676 0.0001009 0.0000116 0.308E-09 0.155E-10 

E(x) 0.0074445 0.0095726 0.0091174 0.0091121 0.0091134 

V(x) 0.0012504 0.0011094 0.0010436 0.0010420 0.0010444 

U(x) 0.0848290 0.1470135 0.1470334 0.1472662 0.1522751 

 

Appendix B 

 

Figure 1: Efficient frontier 
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Figure 2: Utility functions for different investors 
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Figure 3: F() function for various  values 
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