


H. Bozdogan / İstanbul Üniversitesi İşletme Fakültesi Dergisi 39, 2, (2010) 370-398 © 2010 

371 

 

Anahtar Sözcükler: Yeni ICOMP sınıfı kriterler, kovaryans karmaşıklığı, tahminlenmiş Fisher bilgi 
matrisi (FIM) tersi, model seçme, çok sınıflı destek vektör makineleri – yinelemeli özellikli eleme, 
müşteri profili ve segmantasyonu.   

1. Introduction and Purpose 

In this paper, we shall introduce several forms of a new class information-theoretic 
measure of complexity criterion called ICOMP of Bozdogan [1-6] as a decision rule for 
model selection in statistical modeling to help provide new approaches relevant to 
statistical inference. In ICOMP, I is for information and COMP for complexity to 
distinguish it from other non-information theoretic complexity measures. 

In general statistical modeling and model evaluation problems, the concept of model 
complexity plays an important role. At the philosophical level, complexity involves 
notions such as connectivity patterns, and the interactions of model components. Without 
a measure of overall model complexity, prediction of model behavior and assessing 
model quality is difficult. This requires detailed statistical analysis and computation to 
choose the best fitting model among a portfolio of competing models for a given finite 
sample.  

The development of ICOMP has been motivated in part by Akaike’s [7] classic information 
criterion (AIC) given by 

 ˆ( ) 2 log ( ) 2 ( ),kAIC k L m kθ= − +  (1) 

where ˆ( )kL θ  is the maximized likelihood function, k̂θ is the maximum likelihood estimate 

of the parameter vector kθ  under the model kM , and ( )m k is the number of independent  

parameters estimated when kM is the model, and in part by information complexity 

concepts and indices.  

In contrast to AIC, we base the new procedure ICOMP on the structural complexityof an 
element or set of random vectors via a generalization of the information-based 
covariance complexity index of van Emden [8].  

For a general multivariate linear or nonlinear model defined by 

Statistical Model=Signal+Noise, 

ICOMP is designed to estimate a loss function 

Lack of fit
AIC

Loss ICOMPLack of Parsimony

Profusion of Complexity


⇒ 

= ⇒+ 
+ 

 

in several ways using the additivity properties of information theory. We further base our 
developments on similar considerations to Rissanen [9] in his final estimation criterion 
(FEC) in estimation and model identification problems, as well as Akaike’s [7] AIC, and 
its analytical extensions in Bozdogan [10]. 

In AIC, the compromise takes place between the maximized log likelihood, i.e., 
ˆ2 log ( )kL θ− (the lack of fit component) and m(k), the number of free parameters 

estimated within the model (the penalty component) which is a measure of complexity 
that compensates for the bias in the lack of fit when the maximum likelihood estimators 
(MLEs) are used. On the other hand, in ICOMP, we have a third term in the loss function 
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which is called the “Profusion of Complexity” which measures how the parameter 
estimates are correlated with one another in the model fitting process.  

Therefore, instead of penalizing the number of free parameters directly, ICOMP penalizes 
the covariance complexity of the model. It is defined by 

ˆ ˆ2 log ( ) 2 ( ),k ModelICOMP L Cθ= − + Σ  (2) 

where ˆ( )kL θ  is the maximized likelihood function, k̂θ is the maximum likelihood estimate 

of the parameter vector kθ  under the model kM , and C represents a real-valued 

complexity measure and ˆˆˆ ( )Model kCov θΣ =  represents the estimated covariance matrix of 

the parameter vector of the model. This covariance matrix in ICOMP is estimated several 
ways. One of the ways to estimate this covariance matrix is to use the celebrated 
Cramer-Rao lower bound (CRLB) matrix through its inverse. That is, the estimated 

inverse Fisher information matrix (IFIM) ˆ JN
c of the model given by 

 

( )
1

2

ˆ

logˆ ,
L

E
θ

θ
θ θ

−
  ∂ 

= −  ′∂ ∂   

JN
c

   

(3) 

where the expression in bracket is the (s s)× matrix of second partial derivatives of the 

log-likelihood function of the fitted model evaluated at the maximum likelihood 

estimators θ̂ . For this, see, Cramer [11] and Rao [12-14]. 

The estimated IFIM provides us an achievable accuracy of the parameter estimates by 
considering the entire parameter space of the model. IFIM is a measure of the best 
precision with which a parameter can be estimated from statistical data. It measures the 
quantum of information and measures the curvature of the log likelihood function of the 
model. The diagonal elements of IFIM contain the estimated variances or squared 
standard errors of the estimated parameters, while the off-diagonals of the matrix 
contain their covariances. When Akaike [7] was defining the accuracy of the parameter 
estimates by a universal criterion, he had IFIM in mind, but in his original derivation of 
AIC, he was not successful in bringing IFIM in the penalty term of his AIC, 
mathematically. 

In its general form, for univariate and multivariate models (linear and/or nonlinear) 
ICOMP is defined by 

 1
ˆ ˆ2 log ( ) 2 ( ),kICOMP L Cθ= − + JN

c  (4) 

where 

 1

ˆ 1ˆ ˆ( ) log log
2 2

s tr
C

s

 
= − 

 

JN

JN JNc
c c  (5) 

is the maximal information complexity of the estimated inverse Fisher information matrix 

(IFIM) of the model, and where ˆ ˆdim( ) ( ).s rank= =JN JN
c c More on this later. 

Hence, ICOMP in its idealized form is an additive composition of a term which measures 
the lack of fit (i.e., inference uncertainty), a second term which measures the complexity 
of the covariance matrix of the parameter estimates of a model, which represents the 
parametric uncertainty of a model. It provides a more judicious penalty term and 
balances the overfitting and underfitting risks of a model than that of AIC. Indeed, this 
new approach provides an entropic general data-adaptive penalty functional, which is 
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random and is an improvement over a fixed choice of penalty functional such as in AIC, 
or its variants. 

Before we show and discuss several forms of ICOMP class of criteria, we first introduce 
some background material to understand the information-theoretic concept of complexity 
of a covariance matrix. Therefore, the rest of the paper is organized as follows. In 
Section 2, we define the information measure of dependence in higher dimensions and 
present the results on the initial definition of the information-theoretic measure of 
covariance complexity and also the maximal covariance complexity. Later, we provide 
other forms of complexity measures which are geometric and scale-invariant. In Section 
3, we introduce the several forms of ICOMP class of criteria for model selection. For 
space considerations, we restrict the detailed proofs and derivations of these criteria 
where it is appropriate. For more details, we will refer the readers to Bozdogan [1, 5, 6, 
10], Bozdogan and Ueno [16], Bozdogan and Bearse [17], and Bozdogan and Haughton 
[15]. 

We illustrate the practical utility and the importance of this new class of model selection 
criteria by providing a real example on customer profiling and segmentation of the 
mobile phone customers using a novel multi-class support vector machine-recursive 
feature elimination (MSVM-RFE) method. This is presented in Section 4. Section 5 
concludes the paper with some discussion.  

2. Information Theoretic Measure of Dependence and Complexity 

When we are given a high dimensional data matrix X of size ( )n p× , in multivariate 

statistical modeling and data mining, often p-variables interact in some fashion or 
another, and some variables (or sets of variables) influence and exert effects on other 
variables. These effects are reflected in terms of interactions of these variables and their 
dependencies upon one another. We call this the dependence and non-independence of 
the variables involved. Therefore, for a random vector, we define the complexity as 
follows. 

Definition 2.1: The complexity of a random vector is a measure of the interaction 

or the dependency between its components. 

The more interaction or the dependency there is, the larger the complexity will be. So, a 
high degree of complexity implies high rates of computational effort and statistical data 
processing. 

We shall use information theory to analyze the dependence or non-independence and 
measure the complexity of set of variables. 

2.1. Information Measure of Dependence in High-Dimensions 

We consider a continuous p-dimensional distribution with joint density function

1( ) ( ,..., )pf f x x=x  and marginal density functions ( ), 1,..., .j jf x j p=  Following Kullback 

[18], and Harris [19], Theil and Feibig [20], and others, we define the information 

measure of dependence between the random variables 1, , pX X… as follows:  

 

1
1

1 1

1
1 1

1 1

,

( ,..., )
( ) ( ,..., ) [log ]

( ) ( )

( ,..., )
        ( ,..., ) log

( ) ( )

p
p f

p p

p
p p

p p

f x x
I I x x E

f x f x

f x x
f x x dx dx

f x f x

+∞ +∞

−∞ −∞

= =

= ∫ ∫

x
�

� �
�

 (6) 
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where I is the Kullback-Leibler (KL) [21] information divergence against independence. It 
is a measure of expected dependency among the component variables. In the literature, 
this is also known as the mutual information or the information proper. 

What is compared here is the joint distribution 1( ,..., )pf x x of the random variables to the 

product of their marginal distributions 1 1 2 2( ) ( ) ( )p pf x f x f x� under the assumption that 

they are independently distributed to the extent that the joint distribution differs from 
the distribution of the variables under the assumption that they are independent. Hence, 
this is a measure of interdependence among the variables. 

The properties of the KL information divergence are as follows: 

• 1( ) ( ,..., ) 0pI I x x≡ ≥x i.e., the expected mutual information is nonnegative. 

• 1( ) ( ,..., ) 0pI I x x≡ =x
 
if and only if 1 1 1( ,..., ) ( ) ( )p p pf x x f x f x= �  for every p-

tuple 1( ,..., )px x , i.e., if and only if the random variables 1,..., px x are mutually 

statistically independent. In this case the quotient in (6) is equal to unity, and its 
logarithm is then zero. If it is not zero, this implies a dependency. 

We relate the KL divergence in (6) to Shannon's [22] entropy by the important identity 

 1 1
1

,( ) ( ,..., ) ( ) ( ,..., )
p

p j p
j

I I x x H x H x x
=

≡ = −∑x  (7) 

where 

 log ( ) ( ) log ( ) ,( ) j j j jj f x f x f x dxH x E
+∞

−∞
  = − = − ∫  (8) 

is the marginal entropy, and 

 
[ ]1

1 1 1

log ( )( ,..., )

( ,..., ) log ( ,..., )

p

p p p

f xH x x E

f x x f x x dx dx
+∞ +∞

−∞ −∞
=

= −

∫ ∫� �
 (9) 

is the global or joint entropy. 

Watanabe [23] calls (7) the strength of structure and a measure of interdependence. We 

note that (7) is the sum of the interactions in a system with 1,..., px x as components, 

which we define to be the entropy complexity of that system. This is also called the 
Shannon complexity (see, Rissanen [24]). If there is more interdependency in the 
structure, we will see that the more markedly the sum of the marginal entropies will be. 
Consequently, this will dominate the joint entropy. If we wish to extract fewer and more 
important variables, it will be desirable that they be statistically independent, because 
the presence of interdependence means redundancy and mutual duplication of 
information contained in these variables (Watanabe, [23]). 

The relation in (7) can easily be generalized to finding the interaction between any 
subset of variables. 



H. Bozdogan / İstanbul Üniversitesi İşletme Fakültesi Dergisi 39, 2, (2010) 370-398 © 2010 

375 

 

2.2. Information-Theoretic Measure of Covariance Complexity 

To define the information-theoretic measure of complexity of a multivariate distribution, 

let 1( ) ( ,..., )pf f x x=x be a multivariate normal (Gaussian) density function given by 

 
2

1

1
12

( ) ( ,..., )

1
       (2 ) | | exp{ ( ) ( )},

2

p

pf f x x

π
− − −Σ Σ

=

′= − − −

x

x µ x µ
 (10) 

where 1 2( , ,..., ) , , 1,2,...,p j j pµ µ µ µ′= −∞ < < ∞ =µ and 0Σ > (positive definite) 

As a short hand, we write 

 ~ ( , ).pN Σx µ  (11) 

Then the joint entropy 1( ) ( ,..., )pH H x x=x  from equation (9) for the case in which 

=µ 0 is given by 

 

 

1

1

1

( ) ( ,..., ) ( ) log ( )

1
        ( ) log(2 ) | | ( ) ( )

2 2
1

        log(2 ) | | ( ) ( )( ) .
2 2

p p

p

p

H H x x f f d

p
f d

p
tr f d

π

π

−

−

 
  

 Σ
 

= = −

′= Σ + − Σ −

′= + Σ − −

∫

∫

∫

R

R

R

x x x x

x x µ x µ x

x x µ x µ x

 (12) 

Then, since [ ] ,E Σ′ =xx we have 

 
1

1
( ) ( ,..., ) log(2 ) log | |

2 2 2
1

        [log(2 ) 1] log | |.
2 2

p

p p
H H x x

p

π

π

Σ

Σ

= = + +

= + +

x
 (13) 

See, e.g., Blahut [25]. 

Similarly, the marginal entropy ( )jH x  is 

 
2

( ) ( ) log ( )

1 1 1
         log(2 ) log( ), 1,2,...,

2 2 2

j j j j

j

H x f x f x dx

j pπ σ

+∞

−∞
= −

= + + =

∫
 (14) 

where 2
jσ  is the variance of the jth variable. 

Using Shannon’s [22] result, we have the following theorem. 
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Theorem 2.1: Among all distributions with the same mean and covariance matrix Σ , a 
multivariate normal (or Gaussian) distribution with that covariance matrix Σ has maximal 
entropy. 

The proof of this theorem is given in Rao [26]. 

We note that the expression in (13) is a fixed upper bound for any p-dimensional entropy 
given the covariance matrix. 

Since in general there is no unique distribution for which the maximum of entropy is 
achieved, a less restrictive result is given in van Emden [8]. This leads to a uniquely 

determined maximizing distribution due to the fact that not all covariances ijσ  are 

necessary to specify the entropy. This is already done by the determinant ofΣ , and 
therefore, Shannon’s [22] condition can be relaxed. 

2.3. Initial Definition of Covariance Complexity 

Van Emden [8] provides a reasonable initial definition of complexity of a covariance 
matrix Σ  for the multivariate normal (or Gaussian) distribution. Using (7), this measure 
is given by: 

 

1 0 1
1

1

( ,..., ) ( ) ( ) ( ,..., )

1 1 1 1
log(2 ) log( ) log(2 ) log | | .

2 2 2 2 2 2

p

p j p
j

p

jj
j

I x x C H x H x x

p pπ σ π

=

=

Σ

 
Σ  

≡ = −

= + + − − −

∑

∑
 (15) 

This reduces to 

 
0

1

1
log | ( ) | log | |,

2

1 1
( ) log( ) log | |

2 2

1
2

p

jj
j

Diag

C σ
=

Σ

= Σ − Σ

= − Σ∑
 (16) 

where 2,jj jσ σ≡  is the variance of the jth variable, and is the jth diagonal element ofΣ . 

The first term of (16) is not invariant under orthonormal transformations. As pointed out 
by van Emden [8], the result in (16) is not an effective measure of the amount of 
complexity in the covariance matrixΣ , since: 

 (i)  0( )C Σ
 
depends on the coordinates of the original random variables 1,..., px x . 

(ii) The first term of 0( )C Σ  in (16) would change under orthonormal transformations. 

2.4. Definition of Maximal Covariance Complexity 

Since we defined the complexity as a general property of statistical models, we consider 
that the general definition of complexity of a covariance matrix Σ  should be independent 

of the coordinates of the original random variables 1,..., px x
 
associated with the variances 

2, 1,2,..., .j j pσ = As it is 0( )C Σ in (16) is coordinate dependent. 
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However, to characterize the maximal amount of complexity ofΣ , we can relate the 

general definition of complexity of Σ to the total amount of interaction or 0( )C Σ in (16). 

We do this by recognizing the fact that the maximum amount of complexity in Σ given by 

0( )C Σ under orthogonal transformations y Tx= of variables, whereT T I′ = and T is ( )p p×

, may reasonably serve as a measure of complexity ofΣ . This corresponds to observing 
the interaction between the variables under the coordinate system that most clearly 

represents it in terms of a measure 1 0( ,..., ) ( )pI x x C Σ≡ . So, to improve upon 0( )C Σ in 

(16), we seek the maximum of complexity in Σ  under orthogonal transformations and 
have the following proposition. 

Definition 2.1:  A maximal information theoretic measure of complexity of a covariance 
matrix Σ  of a multivariate Gaussian distribution is 

 

 

1 0 1 1

log

( ) max ( ) max{ ( ) ( ) ( ,..., )}

( ) 1
     log | |,

2 2

p pT T
C C H x H x H x x

p tr
p

Σ Σ

 
 
 

= = + + −

Σ
= − Σ

�

 (17) 

where the maximum is taken over the orthonormal transformation T of the overall 

coordinate system 1,..., px x . 

Hence, based on the 0( )C Σ measure, the idea of using the maximal information 

complexity measure 1( )C Σ  as a penalty functional, in the literature, is due to Bozdogan 

[1, 2, 5, 6], where the proof and the properties of 1( )C Σ  are shown in detail. For this, 

see, also, Mulaik [28] in his interesting book on Linear Causal Modeling with Structural 
Equations. For space considerations, we do not recapitulate these proofs here.  

If we let 1 2, , , pλ λ λ… be the eigenvalues of the covariance matrixΣ then 

( )
1

/ 1 /
p

a j
j

tr p pλ λ
=

= Σ = ∑  

is the arithmetic mean of the eigenvalues, and  

1/

1/

1

p
p

p

g j
j

λ λ
=

 
= Σ =  

 
∏  

is the geometric mean of the eigenvalues ofΣ . Then the complexity of Σ can be written 
as 

 ( ) ( )1 log / .
2 a g

p
C λ λΣ =  (18) 

Hence, we interpret the complexity as the log ratio between the arithmetic mean and the 
geometric mean of the eigenvalues ofΣ . It measures how unequal the eigenvalues of Σ  
are, and it incorporates the two simplest scalar measures of multivariate scatter, namely 
the trace and the determinant into one single function. Indeed, Mustonen [28] in his 
paper shows the fact that the trace (sum of variances) and the determinant of the 
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covariance matrix (generalized variance) alone do not meet certain essential 
requirements of variability in the multivariate normal distribution.  

A low degree of complexity represents less interaction between the variables. The 

minimum of 1( )C Σ corresponds to the “least complex” structure. In other words, 

1( ) 0C Σ →
 
as IΣ → , the identity matrix. This establishes a plausible relation between 

information-theoretic complexity and computational effort. 

Other interpretations of 1( )C Σ  are given in Bozdogan [1, 2, 5, 6]. 

Although ( )1C Σ in (17) is derived under the existence of an orthogonal transformation, 

we prefer to use this over the initial definition of complexity 0( )C Σ in (16) without using 

any transformations ofΣ . This is because of its rather attractive properties. We do not 

necessarily discard the use of 0( )C Σ . Further, ( )1C Σ is monotonically increasing function 

of the dimension p ofΣ . Compared to 0( )C Σ
 
defined in (16), ( )1C Σ is a preferred 

measure to evaluate complexity which is much less costly to compute in higher 
dimensions. 

2.5. Percent Relative Reduction in Complexity 

Diagonal operation of a covariance matrix Σ  always reduces the complexity ofΣ . Let P  

be the correlation matrix obtained from Σ  by the relationship
1/2 1/2P D Dσ σ

− −= Σ , where 

1(1 , ,1 )pD Diagσ σ σ= …
 
is a diagonal matrix whose diagonal elements equals

1 , 1, ,j j pσ = … . From (17), we have 

 1 0

1
( ) log ( )

2
C P P C P= − ≡  (19) 

and 1 0( ) ( )C P C P≡
 
takes into account the interdependencies (correlations) among the 

variables. Then, the relative reduction of complexity is given by 

 

 1 1

1

( ) ( )
.

( )

C C P
RRC

C

Σ −
=

Σ
 (20) 

Percent relative reduction of complexity is then 

 

 1 1

1

( ) ( )
100%.

( )

C C P
PRRC

C

Σ −
= ×

Σ
 (21) 

For simplicity, the 0( )C P measure based on correlation matrix will be denoted by RC
 
and

0( )C P is written as RC for notational convenience. Obviously, RC is invariant with respect 

to scaling and orthonormal transformations and subsequently can be used as a 
complexity measure to evaluate the interdependencies among parameter estimates. Note 

that if 1,P = then 1 0( ,..., ) ( ) 0pI x x C Σ≡ =
 
which implies the mutual independence of the 

variables 1,..., px x . If the variables are not mutually independent, then0 1P< < and that 
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1 0( ,..., ) ( ) 0pI x x C Σ≡ > .In this sense, the information measure of dependence,

1( ,..., )pI x x can also be viewed as a measure of dimensionality of model manifolds. 

2.6. Other Forms of Complexity 

Under the orthogonal transformation T, the maximal complexity in (17) can be written as 

 

*
1

1

3

1 1

1
( ) log( )

2

1 1
( 1)( 3) ( 1) .

4 6

2
0 , 1,2, ,

p

j
j

q q

j j j
j j

j

C s

s s O s

j s
s

λ

λ λ λ

λ

=

= =

Σ = −

≅ − − − −

< < =

∑

∑ ∑

…

 (22) 

where "log" denotes the natural logarithm "ln" , ( )O • denotes the order of the argument. 

The Taylor expansion of log( )jsλ used in (22) is about the neighborhood of the point 

 1 2

1
.s s

λ λ λ= = = =�  (23) 

At the point of eigenvalue equality
*
1 ( ) 0C Σ = , with 

*
1 ( ) 0C • >  otherwise. See, Morgera 

[29]. 

As is explained in van Emden [8], we note that (22) is only one possible measure of 
covariance complexity. Any convex function ( )φ • , like ln( )− • , whose second derivative 

exists and is positive, may be used as a complexity measure, i.e.,  

 *

1

1
( ) ( ) ( )

q

j
j

C c
qφ φ λ φ

=

 
• = − 

 
∑  (24) 

leads to an entire family of complexity measures, where c is a constant. For more on 
convex functions, see Conway [30]. 

2.6.1. Frobenius Norm Complexity 

With the convexity in mind, van Emden [8] suggested a second measure of complexity of 
a covariance matrix based on the Frobenius norm given by 

( )
2

21







 Σ
−Σ=Σ

p

tr

p
CF ,                                   (25) 

where ( )ΣΣ′=Σ tr
2

, the square of the Frobenius norm of Σ  which is invariant under 

orthogonal transformations. 

In terms of the eigenvalues (or singular values), ( )FC Σ reduces to 

 2

1

,
1

( ) (λ λ )
p

j aF
j

C
p =

Σ = −∑  (26) 
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where p is the rank of Σ , λ j is the j
th eigenvalue of 0Σ > , 1,2, ,j p= …  and λ a is 

arithmetic mean of the eigenvalues. Note that ( ) 0FC Σ ≥  with ( ) 0FC Σ =  only when all 

λ λj a= .Hence, ( )FC Σ measures the absolute variation in the eigenvalues and it is 

translation invariant. That is, ( ) ( )F FkIC CΣ + Σ= . But it is not scale-invariant. 

 

Also, note that ( )FC Σ is convenient to compute since no transformation of Σ is required 

and it is applicable to any covariance matrix (van Emden [8] and Morgera [29]). 

If we define the spread of the covariance matrix Σ by 

 
,

( ) max ,j k
j k

s λ λΣ = −  (27) 

then we can obtain an upper and lower bound on ( )FC Σ given by 

 2 2
2

1 ( 1)
( ) ( ) ( ),

2 2F

p p
s C s

p p

−
Σ ≤ Σ ≤ Σ  (28) 

where 2( )s Σ denotes the square of the spread in (27), and p is the rank or the dimension 

ofΣ , i.e., the number of variables. 

2.6.2. Scale-Invariant Complexity 

The connection between the maximal information complexity ( )1C Σ and Frobenius norm 

complexity ( )FC Σ is that these two complexities are second order equivalent. The proof 

of this is given in van Emden [8] by an incorrect sign. But the corrected sign is given in 

Morgera [29] in the power series expansion of log( )x . Hence, we can approximate ( )1C Σ  

in terms of the eigenvalues ,  1,2, ,λ j j p= … by 

 
2

1
1

.
λ λ1

( ) ( )
4 λ

p
j a

j a

C
=

Σ
−

≅ ∑  (29) 

Now, we can relate ( )1C Σ  to the Frobenius norm characterization of complexity 

( )FC Σ of Σ  (Bozdogan, [1]) by introducing 1 ( )FC Σ  given by 
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2 21
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In terms of the eigenvalues, 1 ( )FC Σ becomes  

 

2
2

1

2
2

1

1

1
(λ λ )  

4 pλ

1
      (λ λ ) .

4λ

( )
p

j a
ja

p

j a
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F

pC
=

=

Σ = −

= −

∑

∑
 (31) 

We note that 1 ( )FC Σ is a second order equivalent measure of complexity to the original 

1( )C Σ measure. Also, we note that 1 ( )FC Σ is scale-invariant and 1 ( ) 0FC Σ ≥  with 

1 ( ) 0FC Σ = only when all when all λ λj a= . Also, 1 ( )FC Σ measures the relative variation 

in the eigenvalues rather than absolute variation of the eigenvalues. 

In summary, we observe that 1( )C Σ  and 1 ( )FC Σ  are quite different measures of 

complexity ofΣ . In the literature, several authors including Rissanen [9], Ljung & 
Rissanen [31], Maklad & Nichols [32], and Morgera [29], have made use of van Emden’s 
[8] results, all with in some form of incomplete arguments without the lack of fit part as 
a model selection index. Further, Poskitt [33] also used van Emden’s [8] results in trying 
to discriminate Bayesian models with an error. These incomplete arguments in the earlier 
contributions that are cited here are rectified in this authors work and they are 
generalized through this author’s several unique scientific contributions.  

Next, we introduce several forms of information-theoretic measure of complexity criterion 
called ICOMP (IFIM) of Bozdogan [1-6] as a decision rule for model selection evaluation 

based on the maximal covariance complexity 1( )C • , ( )RC • , and 1 ( )FC • . These 

approaches have established theoretical background and foundation. Again, for space 
limitations, here we only show selectively the derivations of certain forms and refer the 
readers to the other forms which are already established in the literature. 

3. A New Class of Information Complexity (ICOMP) Criteria 

In this section, we introduce several forms of ICOMP class of criteria for model selection 
to measure the fit between multivariate normal linear and/or nonlinear structural models 
and observed data as an example of the application of the covariance complexity 
measure discussed in detail in Section 2. 

3.1. ICOMP as an Approximation to the Sum of Two Kullback-Leibler Distances 

Here, we first introduce a general formulation of ICOMP using the estimated inverse-
Fisher information matrix (IFIM), which is also known as the Cramer-Rao lower bound 
(CRLB) matrix. This approach to ICOMP is an approximation to the sum of two Kullback-
Leibler (KL) [21] distances. Such an approach provides us an achievable accuracy of the 
parameter estimates by considering the entire parameter space of the model. As a result 
we have: 

Proposition 3.1: For a multivariate normal linear or nonlinear model we define 
thegeneral form of ICOMP (IFIM) as 

 

 ( ) ( ) ( )1
1

ˆ ˆ2 log 2 ,MICOMP IFIM L Cθ −= − + c  (32) 
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where 1C  denotes the maximal informational complexity of 1ˆ −
c , the estimated IFIM given 

by 

 1

ˆ 1ˆ ˆ( ) log log ,
2 2

s tr
C

s

 
= − 

 

JN

JN JNc
c c  (33) 

where ˆ ˆdim( ) ( )s rank= =JN JN
c c . 

For detailed derivations, see Bozdogan and Haughton [18], Bearse and Bozdogan [17], 
Bozdogan [4, 5].  

The first component of ICOMP (IFIM) in (32) measures the lack of fit of the model, and 
the second component measures the complexity of the estimated inverse- Fisher 
information matrix (IFIM), which gives a scalar measure of the celebrated Cramer-Rao 
lower bound matrix which takes into account the accuracy of the estimated parameters 
and implicitly adjusts for the number of free parameters included in the model. It is an 
intrinsic measure of uncertainty, and, furthermore, it is a quality metric of the estimation 
procedure. For more on this and for some immediate physical motivation, we refer the 
readers to the interesting book by Frieden [34], entitled: “Physics from Fisher 
Information.” 

The use of ( )1
1

ˆC −
c in the information-theoretic model evaluation criteria takes into 

account the fact that as we increase the number of free parameters in a model, the 
accuracy of the parameter estimates decreases. As preferred according to the principle of 
parsimony, ICOMP (IFIM) chooses simpler models that provide more accurate and 
efficient parameter estimates over more complex, overspecified models.  

We note that, the trace of IFIM in the complexity measure involves only the diagonal 
elements analogous to variances while the determinant involves also the off-diagonal 
elements analogous to covariances. Therefore, ICOMP (IFIM) contrasts the trace and the 
determinant of IFIM, and this amounts to a comparison of the geometric and arithmetic 
means of the eigenvalues of IFIM given by 

 ( ) ( ) ( )ˆ2 log log / ,M a gICOMP IFIM L sθ λ λ= − +     (34) 

where ( ) ( )1 1ˆ ˆˆ ˆdims rankθ θ− −= =c c , and where aλ is the arithmetic mean and gλ  is the 

geometric mean of the eigenvalues of 1ˆ −
c . 

We note that ICOMP (IFIM) now looks in appearance like the CAIC of Bozdogan [10], 
Rissanen’s [35] MDL, and Schwarz’s [36] Bayesian criterion SBC, except for using 

( )log /a gλ λ  instead of using ( )log n  denotes the natural logarithm of the sample sizen .  

A model with minimum ICOMP (IFIM) is chosen to be the best among all possible 
competing alternative models.  

With ICOMP (IFIM), complexity is viewed not as the number of parameters in the model, 
but as the degree of interdependence (i.e. the correlational structure among the 
parameter estimates). By defining complexity in this way, ICOMP (IFIM) provides a more 
judicious penalty term than AIC, MDL, SBC, or CAIC. The lack of parsimony and the 

profusion of complexity are automatically adjusted by ( )1
1

ˆC −
c  across the competing 

alternative portfolio of models as the parameter spaces of these models are constrained 
in the model selection process. 
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In the literature, several authors such as McQuarie and Tsai [37], Burnham and Anderson 
[38], and a few others, without reviewing underlying statistical theory and the impact of 
ICOMP (IFIM) in terms of its potential and innovation, have erroneously interpreted the 
contribution of this novel approach over AIC, and AIC-type criteria. We believe that this 
is due to of not being able to compute IFIM correctly under various multivariate models.  

3.2. ICOMP as an Estimate of Posterior Expected Utility 

The idea of using two utility functions 1U and 2U  that are multiplied to define a utility U

whose posterior expectation is (approximately) maximized to select a model was 

considered notably by Poskitt [33], and others. If we relate utility 1U to the lack of fit 

component of the model and 2U to the complexity of the parameter space of the model, 

i.e., the dimension of the model, we introduce a new ICOMP class of criteria as a 

Bayesian criterion in maximizing a posterior expected utility (PEU) following the results 

from Bozdogan and Haughton [15].  

Proposition 3.2: ICOMP as a Bayesian criterion in maximizing a posterior expected 
utility (PEU) is given by 

 ( ) ( ) ( )( )1
1

ˆ ˆˆ2 log 2 .M MPEU
ICOMP IFIM L k Cθ θ−= − + + c   (35) 

Proof:  

Let ( ),ML y θ  be the likelihood function of the parameter vector for a given vector y of 

observations. Let ( )|Priorf Mθ denote the prior density function of θ  on the modelM , 

and let ( )|Postf yθ be the posterior density of θ corresponding to the prior ( )|Priorf Mθ . 

Let ( )FIM θ  denote the Fisher information matrix (FIM) for the n  observations 

corresponding to modelM , and let k be the dimension ofM . Following Poskitt [33], we 
consider the KL  distance between the posterior and the prior densities for model M
given by 

 

( ) ( )( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

| ; | | log |

| log |

| | log | .

M

M

M

Post Prior Post Post

Post Prior

Post Post Prior

KL f y f M f y f y d

f y f M d

H f y f y f M d

θ θ θ θ θ

θ θ θ

θ θ θ θ

Θ

Θ

Θ

=

−

= −

∫

∫

∫

(36) 

Further following the arguments in Poskitt [33], under regularity conditions which 
guarantee the asymptotic normality of the posterior distribution, that is, when  

 
( ) ( ) ( )( )1ˆ ˆ ˆˆ| ,Post Mf y Nθ θ θ θ−≅ Σ ≡c

 (37) 

( ) ( )( ) ( ) ( ) ( )11 ˆˆ| ; | log 2 log log | .
2 2 2Post Prior M Prior

k k
KL f y f M f Mθ θ π θ θ−≅ − − − −c  (38) 



H. Bozdoğan / İstanbul Üniversitesi İşletme Fakültesi Dergisi 39, 2, (2010) 370-398 © 2010 

384 

 

One can argue, as Poskitt [33] that a utility 1U can be defined as ( )1log U KL=  given by 

(38). In Bayesian design of experiments, following Lindley’s [39] suggestion, several 
authors have considered KL as a utility function.  For more on this, see, e.g., Chaloner 
and Verdinelli [40]. 

In our case, we propose to multiply the utility 1U  by a utility 2U  equal to: 

 
( )( )1

2 1
ˆˆexp MU C θ− = −  

c
 (39) 

Then our utility 1 2U U U= × , and the log of that utility is 

 1 2log log log .U U U= +  (40) 

Hence, substituting (38) and (39) into (40), we have 

 ( ) ( ) ( ) ( ) ( )( )1 1
1

1 ˆ ˆˆ ˆlog log 2 log log |
2 2 2 M Prior M

k k
U f M Cπ θ θ θ− −= − − − − −c c  (41) 

which is the difference of KL distances. Note that our utility 2U is slightly different from 

that used by Poskitt. His utility 2U  uses only the trace term in the expression of the 

complexity, and does not contrast the determinant of IFIM with the trace. The trace 
involves only the diagonal elements analogous to variances while the determinant 
involves also the off diagonal elements analogous to covariances. This amounts to a 
comparison of the geometric and arithmetic means of the eigenvalues of IFIM given in 
(34). 

The greatest simplicity, that is zero complexity, is achieved when IFIM is proportional to 
the identity matrix, implying that the parameters are orthogonal and can be estimated 
with equal precision. If we apply Poskitt’s Corollary 2.2 or the Laplace expansion results 
of Kass, Tierney and Kadane [41], it follows that, under some regularity conditions, if the 
parameter vector θ lies inM , the log of the posterior expected utility(PEU) can be 
approximated by  

 
( ) ( ) ( ) ( ) ( )

( ) ( )

11ˆ ˆˆlog log , log 2 log log
2 2

ˆlog | log

M M

Prior M

k
PEU f y U

f M f M

θ π θ

θ

−≅ + + +

+ +

c
 (42) 

up to order ( )1 /O n  and up to some terms which do not depend on the modelM . 

Replacing ( )log U in (42) by its value in (41), and simplifying, some terms will cancel out.  

We thus obtain a criterion, to be maximized to choose a model, equal to: 

 ( ) ( )( ) ( )1
1

ˆ ˆˆlog , log
2M M

k
f y C f Mθ θ−− − +c  (43) 

Maximizing (43) is equivalent to minimizing estimated ICOMP (IFIM) given by 

( ) ( )( ) ( )1
1

ˆ ˆˆ( ) 2 log 2 log  PEU M MICOMP IFIM L k C f Mθ θ−= − + + +c         (44) 

Assuming that the prior on modelM , that is, ( )f M , is constant for all models in (44), 

we have  
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 ( ) ( ) ( )( )1
1

ˆ ˆˆ2 log 2 .M MPEU
ICOMP IFIM L k Cθ θ−= − + + c ∎ (45) 

This completes the derivation of ( )
PEU

ICOMP IFIM . 

The decision rule is to choose the minimum of ICOMP (IFIM) over the class of models 

, 1,2, ,kM k K= …  that is the best fitting model.  

We note that ICOMP (IFIM) in (45) penalizes the bad scaling of the parameters. If scale 
invariance is an issue in model selection enterprise, one can use the correlational form of 
IFIM given by 

( ) 1 1

1 11 12 2
ˆ ˆ

ˆˆ ˆ ,R M D Dθ − −

− −− −=
c c

c c                                              (46) 

where 1

1
2

ˆD −

−

c
 is the negative square-root of the diagonal entries of 1ˆ −

c . Hence, the 

correlational form of ( )
PEU

ICOMP IFIM is: 

 ( ) ( ) ( )( )1
1_

ˆ ˆˆ2 log 2 .M R MR PEU
ICOMP IFIM L k Cθ θ−= − + + c  (47) 

In nonlinear modeling, when the parameter estimates are highly correlated, one can 
remove the correlation by considering parameter transformations of the model. The 

difference between the complexities ( )( )1
1

ˆˆ
MC θ−

c  and ( )( )1
1

ˆˆ
R MC θ−

c  can be used to show 

how well the parameters are scaled.  Parameter transformation can reduce the 
complexity measure based on the correlation structure, but it can increase the 
complexity measure based on the maximal complexity. This occurs because the reduction 
in the correlation does not imply the reduction of the scaling effect. Indeed, the reduction 
in the correlation may even make scaling worse. In this sense, ICOMP (IFIM) may be 

better than ( )
R

ICOMP IFIM  in model selection, since it considers both of these effects 

in one criterion function. For more on this, see, e.g., Chen [42] in his doctoral thesis 
under the supervision of this author. 

3.3.  Other and Consistent Forms of PEUICOMP  

Note that when we defined the utility 

 ( )( )1
2 1

ˆˆexp ,MU a C θ− = − ×
 

c  (48) 

we considered the constant multiplier 1a ≡ in the exponent of 2U to obtain the result in 

(45). This formulation, gives us the additional term k in the penalty function which is the 
number of estimated parameters in the modelM . 

Indeed other choices of a  and the utility 2U  are possible and equally justifiable giving 

rise to different penalty functions. For example, a choice of ( )loga n≡ , would yield  

 ( ) ( ) ( ) ( )( )1
1_

ˆ ˆˆ2 log 2 log .M MPEU LN
ICOMP IFIM L k n Cθ θ−= − + + c  (49) 
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Different choices of utility 2U may depend on other characteristics that a researcher can 

consider on the parameter vector Mθ
 
if the model M  is under consideration. Therefore, 

the full specification of the form of the utility function 2U  is important. By defining 

different forms of the utility 2U  we can, therefore, obtain other forms of

( )
PEU

ICOMP IFIM that give us many useful class of model selection criteria. 

These are given as follows. 

• The choice of the utility 

( ) ( )2 1
ˆˆ ˆexpU tr C = − − 

JN JN
c o c                                       (50) 

would lead to 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1
1_

1
1

ˆ ˆˆ ˆ ˆ2 log 2 2

ˆ ˆˆ ˆ ˆ2 log 2 .

M MPEU Miss

M M

ICOMP IFIM L k tr C

L k tr C

θ θ

θ θ

−

−

= − + + +

 = − + + +
 

c

c

JN

JN

c o

c o

 (51) 

We can approximate ( )ˆ ˆtr JN
c o  by 

 ( )ˆ ˆ
2

nk
tr

n k
≅

− −
JN

c o  (52) 

which corrects the bias for small as well as large sample sizes if the model is 

misspecified. Note that ( )ˆ ˆtr JN
c o  is the well-known Lagrange-multiplier test statistic. 

See, for example, Takeuchi [43], Hosking [44], and Shibata [45]. 

If the model is correctly specified, then   

 ( )ˆ ˆ ( ) .ktr tr I k= =JN
c o  (53) 

Therefore, ( )
_PEU Miss

ICOMP IFIM reduces to 

 

( ) ( ) ( )( )
( ) ( )( )

( )( )

3

1
1_

1
1

1
3 1

ˆ ˆˆ2 log 2 2

ˆ ˆˆ2 log 3 2

ˆˆ2 .

M MPEU AIC

M M

M

ICOMP IFIM L k k C

L k C

AIC C

θ θ

θ θ

θ

−

−

−

= − + + +

= − + +

= +

c

c

c

 (54) 

Note that in utility 2U above in (50), the terms in the exponent can be also be weighted 

differently. There is no necessity that these terms be weighted equally. 

• The choice of the utility 

( )2 1
ˆexp log( )

2

k
U n C = − −  

JN
c                                                (55) 
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would lead to 

 
( ) ( ) ( )( )

( )( )

1
1_

1
1

ˆ ˆˆ2 log log( ) 2

ˆˆ2 .

M MPEU CAIC

M

CICOMP IFIM L k k n C

CAIC C

θ θ

θ

−

−

= − + + +

= +

c

c

 (56) 

As we can see, by choosing different forms of utility 2U , we can obtain several other 

interesting forms of ICOMP class of criteria that are consistent and penalize 
overparameterization more stringently to pick only the simplest models whenever there 
is nothing to be lost by doing so. 

3.4. ICOMP for Misspecified Models  

In this section we generalize ICOMP to the case of a misspecified model and develop 
ICOMP under misspecification. Suppose that the fitted model is the wrong or misspecified 
model. Then we have  

Proposition 3.3: Under model misspecification, ICOMP is defined by 

 
( ) ( ) � ( )( )

( ) ( )
1

1 1
1

ˆ ˆ2 log 2

ˆ ˆ ˆ ˆ2 log 2 .

Misspec Misspec
ICOMP Model L C Cov

L C

θ θ

θ − −

= − +

= − + c oc

 (57) 

Or, equivalently 

 ( ) ( ) ( ) ( )( )1
1_

ˆ ˆˆ ˆ ˆ2log 2 .M MPEU Miss
ICOMP IFIM L k tr Cθ θ− = − + + +

 
c

JN
c o  (58) 

  

When a model is misspecified the “sandwich” or “robust” covariance matrix consistently 
estimated by  

 1 1ˆˆ ˆ ˆ ˆ( ) .MisspecCov θ − −=c oc  (59) 

If the model is correct, we get 

 =c o  (60) 

and the “sandwich” or “robust” covariance matrix reduces to  

 
( ) 1Cov θ −=c

 (61) 

the usual inverse Fisher information matrix (IFIM), which is known as the ‘naive’ 
covariance formula. 

3.5. ICOMP as a Performance Measure: PERFICOMP  

In many classification and clustering problems and when we use kernel-based methods 
such as the support vector machines (SVM), Multi-Class SVM (MSVM), etc., our goal is to 
minimize the probability of misclassification error. Intuitively, then, the penalty term for 
a poorly-fitting model would be based on the classification error rate. In SVM and MSVM 
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type of problems, the error variance 
2σ is estimated by the mean squared difference 

between actual group labels ( iy ) and predicted group labels ( ˆiy ) given by 

 2 2

1

1ˆ ˆ( ) .
n

i i
i

y y
n

σ
=

= −∑  (62) 

Now following the work of Howe and Bozdogan [46] the information-theoretic measure of 
complexity as performance measure is defined as follows 

 
2

1 _
ˆˆlog(2 ) log( ) 2 ( )PERF F STA CSEICOMP n n n Cπ σ= + + + Σ  (63) 

where _
ˆ

STA CSEΣ is the stabilized and smoothed convex sum covariance matrix estimator 

(STA-CSE) given by 

 _
ˆ ˆ ˆ(1 ) ,STA CSE STA STA

n n
D

n m n m
Σ Σ= + −

+ +
 (64) 

where 

  

 ˆ )
1ˆ ( pSTA STAD tr I
p

 
Σ 

 
=  (65) 

and 

 _

2
1 2

1

ˆ 1
( ) (λ λ ) .

4λSTA CSE

s

j aF
ja

C
=

Σ = −∑  (66) 

First, the hybrid covariance estimate in (64) is calculated, and then the diagonal matrix 

of the largest singular values as a reduced rank approximation of _
ˆ

STA CSEΣ
 
is obtained. By 

minimizing PERFICOMP the classification error is minimized under the best fitting model. 

Also, PERFICOMP
 
is used to choose an optimal kernel function in kernel-based methods. 

We also use PERFICOMP in SVM-RFE subset selection problems.   

In the literature cross-validation-based criteria has been used for variable selection. 
These types of criteria are too time-consuming due to the high-dimensionality of the 
feature space. The proposed method shortens the variable selection time.  

4. A Real Numerical Example: Customer Profiling and Segmentation 

In this section, we show a real numerical example using a novel and flexible supervised 
classification technique called Multiclass Support Vector Machines Recursive Feature 
Elimination (MSVM-RFE) for segmentation of mobile phone customer data base and to 
identify the best features for customer profiling and management in K classes or groups. 
Description of a customer group or type of customer based on various demographic, 
psychographic and/or geographic characteristics, is called customer or shopper profile. 
The characteristics of a customer may include income, occupation, level of education, 
age, gender, hobbies, or area of residence. Customer profiles provide the knowledge 
needed for a company to select the best prospect of customers that maximize the 
profitability of the company by establishing a one-to-one relationship with the customer. 
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First we give a brief set up of binary support vector machine (SVM) and Multi-Class SVM 
(MSVM). 

4.1. Binary Support Vector Machines (SVMs) 

Support vector machines (SVMs) are modern classification algorithms which are not 
sensitive to the curse of dimensionality and well suited for the analysis of high 
dimensional data. Intuitively, an SVM searches for a hyper plane with maximal distance 
between itself and the closest observation from each of the classes (Vapnik [47]). 
Therefore, SVM is a maximum margin classifier and the decision function of SVMs is 
represented as a linear function in feature space as 

 
* *( ) , ( ) ,i s if x w k x b= +  (67) 

where [ ]1 2( ) ( , ), ( , ), , ( , )s i i i i mk x K x s K x s K x s= … is the vector of the ith data point evaluated 

at the m support vectors, which form a subset of the data. This is the support vector 

machine (SVM). Thus, optimization of the weights 
*w and intercept 

*b becomes the 
quadratic programming (QP) problem given by 

 

( )* * 2

,
1

1

2

1 2

1
, min ,

2

, 1 ,  ,

 , 1 ,  ,subject  to  

0, 0,

n
d

w b
i

i i

i i

i

w b w C

w x b i I

w x b i I

C i I I

ξ

ξ
ξ

ξ

=

 
= + 

 

 + ≥ − ∈
 + ≥ − + ∈
 > ≥ ∈

∑� �

∪

 (68) 

When 1d = , we say the SVM is 1L  soft margin trained, otherwise, it is 2L  soft margin 

trained. C is a regularization constant, and 1I  
and 2I are slack variables used to relax the 

inequalities for non-separable data. 

4.2. Multi-Class Support Vector Machines (MSVMs) 

For data composed of 2K > classes or groups indexed by , 1, ,k k K= … , we consider a set 

of discriminant functions 

 ( ) , ( ) .k i k s i kf x w k x b= +  (69) 

There are several ways to decompose the MSVM, including One-Against All (OAA) and 
One-Against-One (OAO) - see Hsu and Lin [48].The OAA decomposition works by trading 
the single multi-class problem for K binary SVM problems, where the binary state vector 

ky′
 
is 

 
1

y
2

k
k

k

for y y

for y y

=
′ = 

≠
 (70) 

For example, if we had 3K = classes A, B, and C, OAA would solve 3 binary problems: 

 

A vs BC

B vs AC

C vs AB  

The multi-class classification rule used is then 
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1,2, ,
( ) max ( ).i k i

k K
q x f x

=
=

…
 (71) 

OAO, on the other hand, solves the multi-class problem by solving 

 

( 1)

2

K K
K

−
′ =

 

binary SVM problems, in which all pairs of classes are considered. The majority voting 
strategy shown in equation (71) is used to select the final class assignments

[ ]1 2( ) ( ), ( ), , ( )i i i K ivote x v x v x v x′= … is a vector indicating the frequency with which, from all 

K ′ binary SVM results, the ith data point was classified into each group. 

 
1,2, ,

( ) max ( ). 
i

i i
y K

q x vote x
′ ′=

=
…

 (72) 

Using the same groups A, B, and C, OAO solves the binary SVMs 

 

A vs B

A vs C

B vs C  

We use and score PERFICOMP defined in (63) which was inspired by the regression basis 

of discriminant analysis given by 

 

 
2

1 _
ˆˆlog(2 ) log( ) 2 ( )PERF F STA CSEICOMP n n n Cπ σ= + + + Σ  (73) 

where  

 2 2

1

1ˆ ˆ( )
n

i i
i

y y
n

σ
=

= −∑  (74) 

is the estimated error variance between actual response values and predicted response 

values. That is, the error variance term for a supervised classification. _
ˆ

STA CSEΣ is the 

estimated hybridized stabilized and smoothed covariance matrix of the MSVMs. 

4.3. The Description of the Dataset 

We present our numerical results on customer profiling and segmentation of mobile 
phone customer data base. This dataset is the courtesy of Camillo [49]. Our goal is to: 

• Optimally classify the mobile phone customers in Italian market; 
• Choose the best subset of Principal Component dimensions of the original 

customer profile variables; and 
• Determine the best strategy for the Italian cell phone company. 

The customer data base is based on Italian mobile phone users of TELECOM. Presently, 
the company has about 95% market penetration rate in Italy in terms of its services. 
Customer data base was created from a survey study of 1,021n = customers on 90 items 

that measured the lifestyle behavior of the customers, their knowledge of mobile phone 
technology and its usage, etc. After pre-processing and cleaning the data base and using 
optimal scaling on 1,021n = customers, the 90 items were characterized on 20d =
principal components (PCs). So the database which is analyzed here consists of 1,021n =
customers (or observations) on 20d =  PC features with no missing observations and 
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4K = distinct groups. Details and the purpose on 4K = groups are given in the report of 
Camillo, Liberati, and Athappilly [50]. These are: 

• Group 1:"Functional People"(20.8%) –Generally males 35-44 years old, with 
low education. They call and receive calls from people belonging to the same cell 
brand company. They use short message service (SMS) regularly. They use 
mobile phone especially for professional needs and choose the mobile phone 
based on its functional features. 

• Group 2:"Practical People"(35.9%)– Generally males and females of 45-64 
years old, with medium/high education. They use phones especially in the 
afternoons (between 3:00-6:00 pm). They spend about 30 Euros per month and 
use all the services because they have an intense social life. 

• Group 3:"Techno People"(27.59%)– Generally males of 25-34 years old and 
highly educated. They live in the North-West of Italy. They are for the most part 
professional men or students, who spend about 45 Euros per month. They buy 
high technology tools for their mobile phone. They also have an intense social life. 

• Group 4: "Mature People"(15.8%)–Generally over 65 years old females, who 
live mostly in the big cities in the North-West of Italy. They use the mobile phone 
only for emergencies. On other occasions, they prefer to call with home phone. 

The goal of customer profiling and segmentation is to study the customer relationship 
management (CRM), which is to identify the best business customers-in terms of 
customer acquisition and retention; to choose the appropriate medium to reach the best 
customers prioritize the best business target markets for possible expansion; and to 
identify the best customer profiles for predictive data mining of future customers, etc. 

4.4 Classical Discriminant Analysis (DA) Results 

Before we carry out classical quadratic discriminant analysis (QDA), we used the parallel 
coordinate plot popularized by Wegman [51]. In this method, the similarity lies in that 
each observation is mapped onto a line. Therefore, the parallel coordinate plots show 
connected line segments representing each row of a dataset. The x-axis is p points - one 
for each dimension in the data; the y-axis spans from min( )X tomax( )X . What we are 

doing here is replacing an orthogonal coordinate system with a parallel coordinate 
system; hence the name. 

Looking at the parallel coordinate plot for this dataset, we see that this data set is highly 
overlapped and also the variables are highly correlated. It is difficult to separate the 
groups by simply using visual inspection. 

 

Figure 4.1 Parallel coordinateplot of K=4 mobile phone customer groups. 
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Next, we used both the linear discriminant analysis (LDA) and quadratic discriminant 
analysis (QDA). These two methods are popular and in general show good performance 
when data are multivariate normally (or Gaussian) distributed. In our case, since the 
results from LDA and QDA were almost the same, and since QDA is more general 
approach where covariance matrices of each group are considered to be different, we 
only give our results for QDA. 

Based on the Gaussian assumption, we calculate the posterior probability of group 
membership of each observation, and assign an observation to a group where the 
posterior probability of group membership is the greatest. As a result, QDA works well in 
heteroskedastic cases. 

Using the maximum probability rule, an observation vector x can be assigned to group k 
rather than l, if 

 ( ) ( )k i l iQ x Q x>  (75) 

for all k l≠ , where 

 ( ) ( ) ( )1
k

1 1
( )  –  –   log .

2 2k i i k k i k kQ x x x S x x log S π−′= − − +  (76) 

Classification result from using quadratic discriminant analysis (QDA) is summarized in 
Table 4.1. 

Table 4.1 Confusion matrix from Quadratic DA. 
Actual\Predicted 

1Ĝ  2Ĝ  3Ĝ  4Ĝ  Row 
Total 

1G  67 55 42 43 207 

2G  41 169 75 115 400 

3G  35 48 114 53 250 

4G  14 31 15 104 164 

Column Total 157 303 246 315 1,021n =  

Looking at Table 4.1, we note that the number of misclassified customers is equal to 567. 
In other words, 55.53% of the customers of the mobile phone users are misclassified. 
This is a high number of misclassification rate. The reason for this high misclassification 
rate is that, the mobile phone dataset is highly non-separable as seen in 2-D and 3-D 
canonical plots shown in Figures 4.2 and 4.3, respectively. 
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Figure 4.2 2-D Canonical plot of K=4 mobile phone customer groups. 

 

 

Figure 4.3 3-D Canonical plot of K=4 mobile phone customer groups. 

4.4. The Results of the Analysis Using MSVM-RFE 

We now use multi-class support vector-recursive feature elimination (MSVM-RFE). The 
procedure of MSVM-RFE is as follows: 

• Train the classifier, 
• Compute the ranking of ICOMP criterion for features, and 
• Choose the minimum of ICOMP to select the best subset of the ranked features. 

We use several kernel functions to fit MSVM-RFE, such as quadratic, cubic, inverse multi- 
quadratic, and Cauchy kernels. For this, see Baek and Bozdogan [52]. Table 4.2 shows 
the results from fitting MSVM-RFE using the cubic polynomial kernel for the classification 
of the mobile phone customer data base and dimension reduction. 
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Table 4.2 MSVM-RFE Cubic polynomial kernel results. 

 

Note that the test error is 39% using the cubic polynomial kernel and One-Against-One 
(OAO) MSVM-RFE with the best subset of PCs: 2, 7, 9, 10, 12, 15, 18. This is a reduction 
of dimensionality out of 20 PCs. The other kernels do not give us any better results. DAG 
here refers to “Directed Acyclic Graph” and Pairwise refers to Pairwise coupling, which is 
a popular multi-class classification method that combines all comparisons for each pair of 
classes. 

Next, we use the Cauchy kernel as shown in Table 4.3. Note that, MSVM-RFE 
performance the best under the Cauchy kernel. By best, here we mean that both 

misclassification error rate and also the minimum value of PERFICOMP
 
are both achieved 

at the Cauchy kernel. 

Table 4.3 MSVM-RFE Cauchy kernel results. Best Solution. 

 

Looking at Table 4.3, we see that when we use the Cauchy kernel which is the best 
kernel chosen by ICOMP gives us 22.7% misclassification error rate with the best subset 
of PCs: 1, 2, 5, 7, 8, 10, 13, 17, 18. Although the number PCs chosen increased a bit in 
fitting the Cauchy kernel as compared to the cubic polynomial kernel, the error rate of 
classification is improved 16%. 
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Further we note that when we compare our result with that of the classical Quadratic 
Discriminant Analysis (QDA), we have 

55.53% 22.70% 32.83%− =  

better results of classification in terms of percent missclassification error rate.  

This is a remarkable achievement due to using MSVM-RFE hybridized with PERFICOMP that 

was not possible before using other methods to classify the mobile phone customer data 
base as a new micro-marketing analytics. 

One now can build a more reliable market segmentation model for mobile phone 
customer management. Our approach helps mobile phone companies and service 
providers to sift through their data basis for meaningful relationships by determining the 
patterns of customer preferences intelligently rather than reacting haphazardly.  

5. Conclusions and Discussion 

In this paper, we presented several forms of the information-theoretic measure of 
complexity ICOMP class of criteria. These criteria are based on sound theoretical and 
technical underpinnings of entropic covariance complexity measure.  In this sense, the 
logical foundations of the procedure presented here are both natural and rational. 
ICOMP  class of criteria refine the original derivation of Akaike’s AIC and AIC type−

criteria, where Akaike went to the asymptotic distribution of the parameter vector ˆ
Mθ  of 

the model M too quickly. There are other forms of ICOMP that are robust and at the 
same time misspecification resistant. For space considerations, we did not show these 
forms in this paper. Although there is plethora of other model selection criteria in the 
literature, ICOMP theory is uniquely situated in that it bridges both Frequentist and 

Bayesian approaches to model selection. One of the many advantages of ICOMP class of 
criteria is that the use of information-theoretic measure of complexity of the estimated 
inverse-Fisher information matrix ( )IFIM avoids the complicated sampling distributions 

of many well-known classical test statistics, or any table look up, which is potentially of 
great value in evaluating the goodness of fit of competing models. Therefore, the utility 
of such model selection criteria is expected to enhance the scientific community. We note 
that, the development of the ICOMP class of criteria will lead to the acceptance of 
simpler and scalable, more generalizable, and more precisely estimated models which 
will have a positive impact on theory development and testing in all fields which utilize 
such models in their research efforts. 

In conclusion, we note that our numerical result on the mobile phone customers data 
base clearly demonstrate the excellent classification performance of ICOMP over the 
classical discriminant analysis method using a novel multi-class support vector machine-
recursive feature elimination (MSVM-RFE) method. There are many other applications of 
ICOMP class of criteria. These are shown and illustrated on many well-known real 
benchmark and simulated data sets in the forthcoming book of Bozdogan [6] with an 
accompanying computational toolbox in Matlab. 
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