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Abstract 

In this paper a stochastic model has been developed to estimate the origin-destination 

(OD) matrices. Particularly, the model is capable of estimating the OD probabilities for 

the electricity supply in the GCC. The major basis in this model is its ability to account 

explicitly for missing observations. The maximum likelihood estimates for the model 

parameters are derived in this work. In addition, the long run behavior of the model is 

studied. The long run mean of amount of electricity (LRAOE) enters as well as the long 

run mean cost (LRMC) per unit of time is considered for this model. Also, the LRAOE and 

the LRMC are considered for the case when one country uses all the amount of electricity 

enters (absorbing state)  and the case where more than one country use all the amount 

of electricity enters (k absorbing states) conditional on one absorbing state. 

Keywords: Origin-Destination Matrices, Stochastic Model, OD Probabilities, Long Run Average 
Amount, Long Run Mean Constant 

Körfez Arap Ülkeleri İşbirliği Konseyi’nde elektrik dağıtım hizmeti için kaynak-

menzil olasılıklarının tahminine yönelik bir stokastik model 

Özet 

Bu makalede, kaynak-menzil matrisinin tahminine yönelik bir stokastik model 

geliştirilmiştir. Bu model bilhassa, Körfez Arap Ülkeleri İşbirliği Konseyi’ne elektrik 

dağıtım hizmeti için kaynak-menzil olasılıklarının öngörülmesine sağlamaktadır. Bu 

modelin temel özelliği, kayıp gözlemleri açık bir şekilde hesaplamaya olanak vermesidir. 

Bu çalışmada kullanılan parametreler, en çok olabilirlik tahmin yöntemi ile elde edilmiştir. 

Bunun yanı sıra, modelin uzun vadede nasıl çalışacağı üzerinde çalışılmıştır. Uzun 

dönemde sağlanan ortalama elektrik miktarının yanı sıra uzun vadede birim zaman için 

geçerli ortalama maliyetler bu modelde hesaplanmıştır. Ayrıca bu iki parametre, belirli bir 

ülkenin sağlanan tüm elektriği tükettiği (yutucu durum) ve bir yutucu durum şartına 

bağlı olarak, birden fazla ülkenin bölgeye sağlanan tüm elektriği tükettiği (k adet yutucu 

durum) senaryolar için kullanılmıştır.  

Anahtar Sözcükler: Kaynak-Menzil Matrisleri, Stokastik Model, KM Olasılıkları, Uzun Vadeli 

Ortalama Değer, Uzun Vadeli Ortamala Sabit 

1. Introduction 

Stochastic models have received considerable attention by many researchers in the 

literature due to their wide applications in many areas. Such applications can be found in 

business, engineering, transportation, energy, electricity, etc. Thus studying the 

estimation of the OD directly from the observed amount of electricity is of great 

importance.  
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Different authors have studied the application of stochastic model in estimating the OD 

probabilities. For example, Alawaneh et al. [1] have studied the estimation of the OD 

directly from observed traffic counts. This model is capable of estimating the OD 

probabilities for any intersection or interchange irrespective of the number of entrances 

and exits. Mike [2] has studied the long-term memory in US stock market volatility. Two 

commonly tests, the semi-parametric and the modified re-scaled range tests are applied 

to various transformations of stock return series for different US companies. Walls [3] 

has examined the volatility, volume, and maturity effects in electricity future market. His 

work appears to be the first empirical investigation of the market for electricity future. 

This paper focuses on estimating the OD matrices for the amount of electricity supply in 

the GCC and consequently the OD probabilities for the electricity supply irrespective of 

number of entrances and exits from countries as discussed in section 3. Section 4 

considers the steady state distribution and its usage to compute the long run mean 

amount of electricity simply LRMAOE as well as the long run mean cost LRMC per unit of 

time. Section 5 considers the steady state distribution for absorbing Markov Chain and 

its usage to compute the LRMAOE and one absorbing state as in subsection 5.1 and for 

the case of the existence of r absorbing states conditional on the eventual absorption 

into a specific state, say 1 as in subsection 5.2. Finally, section 6 considers some 

applications of the above results obtained in the suggested paper.  

2. Model Specification 

Suppose the GCC consists of r countries. This means we have r inputs and r outputs. Let 

ijN denotes the amount of electricity entering approach i and exiting approach j. Thus, 

we have (r × r) matrix with cell counts ijN  and  
ji

ij NN
,

. Let X(t) denotes the total 

amount of electricity that enter the facility at time t. Then  0);( ttX  is a discrete 

Markov Chain with state space  rS ,....,2,1  and transition probability matrix: 

SjiPP ij  ,;][  

with 

SjiitXjtXPPij  ,);)1(|)((       (1) 

where ijP  is the probability that the amount of electricity is exiting state j at time t, 

given that it left entrance state i at time t-1. Thus, P is given by 
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where each row in the above matrix represents an entrance state and each column 

represents an exit state.  The ijP  are called the one-step transition (one-step transition 

OD probabilities) probabilities that satisfy the following conditions: 
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It should be noted that the ijP ’s completely define the Markov Chain. The analysis of 

Markov Chain probabilities is possible by realizations of the process. Central to these 

calculations are the n-step transition probability matrix Pn, where  

SjiPP
n

ij  ,];[
)(

 

Here 
)(n

ijP denotes the probability for the amount of the electricity entering state i at 

time m and exiting state j at time m+n, where n represents the travel time to cross the 

facility, i.e., 

SjiiXjXPP mnm

n

ij   ,),|(
)(

      (3) 

3. Estimation of Model Parameters 

Let ),....,,( 101 NN xxxX   be a random sample from the discrete Markov Chain with OD 

probabilities ijP . We use the likelihood function given by Basawa and Prakasa [4]: 







r

ji

ijji

N

k

kx Npxpp
k

1,

,0

1

0 1
          (4) 

where  )...,,,( 0.0.20.10 r  is the initial distribution and ijN is the frequency of one-

step transitions ji  in the sample. Following the same approach as in Alwaneh et al. 

[1], it is easily shown that the maximum likelihood estimate of ijp  is given by 



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r
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iji

i

ij

ij NN
N

N
p

1

,ˆ         (5) 

4. Steady State Distribution 

Consider a Markov Chain }0;{ tX t , with state space },...,2,1{ rS   and transition matrix 

P. Then the steady state probability ( j ) for the amount of electricity has been in 

supplied and is in exit state j, irrespective of the starting entrance state. Moreover, j  

gives the long run mean function of time that the process }{ tX is in the exit state j. Note 

that j  is given by solving the linear equations [5] such that 





r

k

kikj riforp
1

,...,2,1       (6) 

and  1....21  r .   Also, j  is independent as the limiting distribution: 

)(lim n

ij
n

j p


           (7) 
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Note that, if each visit to the exit state j gains an amount of electricity jN , the steady 

state on the long run mean amount of electricity per unit of time (LRMAOE) associated 

with this Markov Chain is 

LRMAOE = 


r

j

jj N
1

           (8) 

Now using the limiting distribution, it is easily shown that the long run mean cost (LRMC) 

per unit of time is given by 

  LRMC = 


r

j

jjC
1

          (9) 

where jC  is the cost incurred by each visit to state j. 

5. Steady State Distribution for Absorbing Markov Chain 

In this section, we derive the steady state distribution for Markov Chain with one or 

more absorbing states. More specifically, the absorbing state occurs if one country of 

GCC uses all the amount of electricity enters and has no amount exit. Also, r absorbing 

states (r >1) occurs if more than one country of the GCC, say r, use all the amount of 

electricity enters and no amount exit. Subsections 5.1 and 5.2 study the suggested 

cases. 

5.1. Case of 1 Absorbing State 

Let the Markov Chain }{ tX  has states 1, 2, 3,…, r where state 1 is an absorbing state, 

and the transition matrix is given by 
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Here Q is )1()1(  rr matrix and Po and 0 are both )1( r  vectors. Assume Q is 

irreducible and a periodic matrix, with transient state is },....,3,2{ rT  . If the process 

has the initial distribution 0  over transient states, then the probability that absorbed by 

time n is  
Ti

n

ioi P
)(

0  and given that it is still in T, the condition probability that it is in 

state j is given by 
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Using Perron-Frobenius theory for non-negative matrices, we get [6]: 
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)(0 2
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ij nbaP  
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where }{ ja  and Tjb j };{ are elements in the normalized right and left eigenvalues of 

Q respectively corresponding to  
 


Tj Tj

jjj bba )1&1(,1 , and  1  is the maximum 

modulus eigenvalue.  

Note that 

jnn
n

bTxjxp 


)|(lim  

and 

jjnm
mn

abmnTxjxp 


),|(limlim  , 

}{ jb and }{ jjba ; Tj are usually known as the quasi and product quasi stationary 

distributions. Thus, the steady state distribution j for this case is given by [7]: 

Tjab jjj  ;                 (13) 

Therefore, the long run average of electricity (LRAOE) and the long run mean cost per 

unit of time (LRMC) are given by 

LRAOE = 


r

j

jj N
2

                  (14) 

and 

LRMC = 


r

j

jjC
2

                  (15) 

where jN  and jC  are defined in section 4. 

5.2 Case of k Absorbing States 

Let the Markov Chain }{ tX  has states rkrkkS  };,...,1,,...,2,1{  with transition 

matrix P. Assume }{ tX  has k absorbing states and (r-k) transition states denoted by 

},...,2,1{ kR  and },...,1{ rkT  respectively, i.e. 











QP

I
P

1

0
                  (16) 

where I is the kk  identity matrix, Q is )1()1(  rr  irreducible and aperiodic matrix 

of transmission probabilities TjiPij ,; , 1P  is kkr  )( and 0 is )( krk  zero matrix. 

Now, assuming n ...,,, 21  are eigenvalues of Q such that 

1;.... 1321   n  and the right and the left eigenvalues are }{ ja  and 

}{ jb , Tj  respectively defined in section 5.1. Forming a new Markov Chain by 

conditioning an eventual absorption into a particular fixed state, say {1}. In this case, 
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we obtain a new absorbing chain }{ *

tX  with single absorbing state {1}. The transition 

states will remain as before, but will be governed by a new transition matrix P*; i.e. 

0;
01

* *

1**

1









 P

QP
P                (17) 

Using the same approach as in section 5.1 and Al-Towaiq and Al-Eideh [8], it is easily 

shown that 






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jj

jj

nn
n bB

bB
TXjXP

1

1** )|(lim                (18) 

where jB  is the probability that the process starting in transient state j ends up in 

absorbing state  ; k,...,2,1  and can be calculated by 

RTjBPPB
Th

hjhjj  


 &;                (19) 

Also, 

TjabTXjXP jjnm
mn




;)|(limlim **
. 

This means that the steady state distribution j  for the amount of electricity enters 

some of GCC countries say k and no amount exit by conditioning one country is given by 

jjj ba                   (20) 

Note that this result does not change and remains the same as in section 5.1. Therefore, 

the long run average of electricity (LRAOE) enters a k countries conditional on the 

eventual absorption into one country is given by: 

  LRAOE = 


r

kj

jj N
1

                  (21) 

and the associated long run mean cost per unit of time is also given by 

LRMC = 


r

kj

jjC
1

                  (22) 

where jC  is defined in section 4. 

6. Applications 

Example 6.1 

Consider a group of 4 countries which means we have 4 inputs and 4 outputs. Suppose 

the observed amount of electricity 4,3,2,1,; jiN ij  entering approach i and exiting 

approach j in a period of time are given as in the following table: 
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
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Here each row represents an entrance state and each column represents an exit state. 

The maximum likelihood estimate of ijP  is given by 







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




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2.032.022.016.0

2.031.028.021.0

2.03.028.022.0

0001

P . 

For example, the proportion of amount of electricity that come from a country (entrance) 

2 and leaves through country (exit) 3 is 0.3. Note that state 

Let 
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Now, solving 0 IQ   we get the eigenvalues .84.0,6.0,0 321    Then the 

maximum modulus eigenvalue 84.01  . The associated normalized right and left 

eigenvalues a and b of Q respectively corresponding to     1&11 jjj bba  and 

given by: 

 

 9687.01.1928.0a    

and  



















39.0

31.0

3.0

b  

Thus, using Eq.(13), we suggest the steady state distribution 4,3,2; jj  as 

)3778.0,3436.0,2786.0( . 

This means that in the long run the proportion of amount of electricity that go through 

exit 2 is 0.2786.  

Now, since N2 = 136, N3 = 147, N4 = 133, the long run average of amount of electricity 

per unit of time as in Eq(14) is given by: 

65.138LRAOE  
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i.e. approximately 139 kW of electricity per unit of time. This means that almost 46.33 

Watts of electricity will go through each exit 2, 3, and 4 per unit of time. 

Also, assume the cost of Watts per kilo incurred by each exit j = 2, 3, 4 is given by C2 = 

18 cents,  C3 = 15 cents, C4 = 17 cents.  Then, the long run mean cost of electricity 

using Eq.(15) is given by 

59.16LRMC  

i.e almost 17 cents, the long run mean cost of electricity. 

Example 6.2 

Consider a group of 6 countries. Similarly as in example 6.1 above, the observed amount 

of electricity  6,..,2,1,; jiNij  is given by: 
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and the maximum likelihood estimate of Pi,j is given by 
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Here, 
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Using the same analysis we get the maximum modulus eigenvalue 525.01   and the 

normalized right and left eigenvalues a and b  corresponding to  is given by: 

 962.0251.178.0a    

and  






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
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Now, using Eq.(20), the steady state distribution 6,5,4; jj  is 

)305.0,432.0,263.0(  

Since N4 = 198, N5 = 217, N6 = 171, the long run average of amount of electricity per 

unit of time as in Eq(21) is given by: 

198~973.197LRAOE  

This means that almost 66 kW of electricity will go through each exit 4, 5, and 6 per unit 

of time. Finally, if we assume that the cost as before in example 6.1 above: 

C4 = 18 cents,  C5 = 15 cents, C6 = 17 cents. 

Then, the long run mean cost of electricity using Eq.(122) is given by 

399.16LRMC  

Which means approximately 16.4 cents, the long run mean cost of kilos of Watts per unit 

of time. 
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