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Abstract. In this paper, we introduce a new class of generalized α-univex functions where the 
involved functions are locally Lipschitz. We extend the concept of α-type I invex [S. K. Mishra, J. S. 
Rautela, On nondifferentiable minimax fractional programming under generalized α-type I invexity, 
J. Appl. Math. Comput. 31 (2009) 317-334] to α-univexity and an example is provided to show that 
there exist functions that are α-univex but not α-type I invex. Furthermore, Karush-Kuhn-Tucker-
type sufficient optimality conditions and duality results for three different types of dual models are 
obtained for nondifferentiable minimax fractional programming problem involving generalized α-
univex functions. The results in this paper extend some known results in the literature. 
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1. Introduction 
Fractional programming models have become a 
subject of wide interest since they provide a 
universal apparatus for a wide class of models. 
For example, it can be used in engineering, 
corporate planning, agricultural planning, public 
policy decision making, financial analysis of a 
firm, health care, and educational planning. In 
these sorts of problems the objective function is 
usually given as a ratio of functions in fractional 
programming form (see Stancu Minasion [20]).  
The problems, in which both a minimization and 
a maximization process of fractional objectives 
are performed, are usually called in decision 
science as generalized minimax fractional 
programming problems. These problems have 
arisen in game  theory [3],  goal programming 
[4], minimum risk problems [21], economics [22] 
and multiobjective programming [23].  
 

 
 Nonlinear programming problems containing 
square roots of positive semidefinite quadratic 
forms have arisen in stochastic programming, in 
multifacility location problems, and in portfolio 
selection problems, among others. A fairly 
extensive list of references pertaining to various 
aspects of these problems is given in Zalmai [26]. 
Generalizations of convexity related to optimality 
conditions and duality for minimax fractional 
programming problems have been of much 
interest in the recent past and many contributions 
have been made to this development. For 
example, see [1, 5, 8-20, 24] and the references 
cited therein. Yadav and Mukherjee [24] 
formulated two dual models for minimax 
fractional programming problem and established 
some duality results. In view of some omissions 
and inconsistencies in Yadav and Mukherjee 
[24], Chandra and Kumar [5] constructed two 
dual models, and proved various duality theorems 
under convexity assumptions. 
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 The necessary and sufficient conditions for 
generalized minimax programming were first 
developed by Schmitendorf [19]. Bector and 
Bhatia [1] relaxed the convexity assumptions in 
the sufficient optimality condition in [19] and 
also employed the optimality conditions to 
construct several dual models which involve 
pseudo-convex and quasi-convex functions, and 
derived weak and strong duality theorems. 
 Liu [13, 14] obtained the necessary and 
sufficient optimality conditions and derived 
duality theorems for a class of nonsmooth 
multiobjective fractional programming problems 
involving  ,F -convex and pseudoinvex 
functions. Lai and Lee [12] focus his study on 
nondifferentiable minimax fractional 
programming problems and its two parameter-
free dual models. They also established weak, 
strong and strict converse duality theorems under 
the assumptions of pseudo/quasi-convex 
functions. In the formulation of the dual models 
in [12] optimality conditions given in [11] are 
used. Zheng and Cheng [25] introduce a new 
class of nonsmooth generalized  ,,F -d-
univex function and derived sufficient optimality 
conditions and duality theorems for 
nondifferentiable minimax fractional 
programming problem and its three different 
types of dual models. 
 To relax the definition of invex function 
recently Noor [18] introduced the concept of  -
invex functions. Mishra and Rautela [17] study a 
nondifferentiable minimax fractional 
programming problem under the assumption of 
generalized α-type I invex which has been 
defined in the setting of Clarke’s derivative and 
established sufficient optimality conditions and 
duality theorems for the three different type of 
dual problems.  
 Bector et al. [2] established optimality and 
duality results for a nonlinear multiobjective 
programming problem involving univex 
functions which have been defined by relaxing 
the definition of an invex function by Bector et 
al. [2] itself. 
 In this paper, firstly we introduce the concept 
of nonsmooth  -univex functions and a counter 
example is given to show that there exists a 
function which is nonsmooth  -univex but not 
 -type I invex given in [17]. Then we establish 
sufficient optimality conditions for 
nondifferentiable minimax fractional 
programming problems involving the aforesaid 
functions. Finally, weak, strong and strict 

converse duality theorems are discussed in order 
to relate the efficient solutions of primal problem 
and its three different types of dual models. 
 This paper is organized as follows. Section 2 
is devoted to some definitions and notations. In 
Section 3, we derive the sufficient optimality 
conditions for nondifferentiable minimax 
fractional programming problems under the 
assumption of generalized  -univex functions. 
Duality results are presented in Sections 4-6. This 
work extends the works of Mishra and Rautela 
[17] and partially the results of Jayswal [10] to 
the nonsmooth case. 
 

2. Preliminaries 

Throughout this paper, let nR  be the n-
dimensional Euclidean space and nR  be its non-
negative orthant. Let X be a nonempty subset of

nR .  First, we recall the following definitions. 
 
Definition 2.1 [6] A function RXf : is said 
to Lipschitz near Xx if for some 0K ,         

    ,zyKzfyf    
zy,  within a neighbourhood of x . 

 
We say that RXf :  is locally Lipschitz on 
X if it is Lipschitz near any point of X .  

 
Definition 2.2 [6] If RXf :  is locally 
Lipschitz at Xx , the generalized derivative (in 
the sense of Clarke) of f at Xx in the 

direction nRv , denote by  vxf ;0 , is given by  

     





yfvyfvxf
xy







0

suplim;0 . 

 
Definition 2.3 [6] The Clarke’s generalized 
gradient of f at Xx , denoted by  xf , is 
defined as follows: 

    .;: 0 nTn RvvvxfRxf    
It follows that, for any nRv  

    xfvvxf T   :max;0 . 
 
Definition 2.4 [18] A subset X is said to be  -
invex set, if there exists nRXX : ,
   0\:,  RXXux such that  

     1,0,,,,,   XuxXuxuxu . 
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     It is well known that the  -invex set need not 
be a convex set, see Noor [18]. 
 
Definition 2.5 [18] The function f on the  -
invex set is said to be  -preinvex with respect 
to , if  

          ,1,, xfufuxuxuf    
                                             1,0,,  Xux . 
 
     Note that every convex function is a preinvex 
function, but the converse is not true. For 
example, the function   uuf   is not a 
convex function, but it is a preinvex function 
with respect to  and   1, ux , where 

 








.otherwise,

,0,0and0,0if,
,

xu
uxuxux

ux

The following example shows that  -preinvex 
function exist. 
 
Example 2.1 [7] Let RX  . For any ,, Xux 
let   1, ux ,   ux eeux ,  and   cuf  , 
where Rc is a constant. Then X is an  -
invex set with respect to and  and  

          xfufuxuxuf   1,, ,       
                                      1,0,,  Xux , 

which indicates that F  is  -preinvex with 
respect to   and   on X . 

From now onwards, unless otherwise is 
specified, we assume that X is a nonempty -
invex set with respect to   and  . 

Consider the following nondifferentiable 
minimax fractional programming problem:  

  (P)      
 
  2/1

2/1

  , ,

  , ,
sup inf 

Bxxyxg

Axxyxf
YyRx n 




,    

        subject to     0,  xh   
where RRRgf mn :  ,  and pn RRh :  
are locally Lipschitz functions, BA   and   be 

nn  positive semi-definite matrices and Y , an 
 -invex set, is a compact subset of mR .    

Let P  be the set of all feasible solutions of 
(P). For each   ,  , mn RRyx   define  

   
 

.
  , ,

  , ,
, 2/1

2/1

Bxxyxg

Axxyxf
yx






 

 
Suppose that for each   ,  , YRyx n   

  0    , ,  Axxyxf  
   and              0.  , ,  Bxxyxg  
 
Denote 

 

 
 

 
  







































2/1

2/1

2/1

2/1

  , ,

  , ,
sup

  , ,

  , ,
:

Bxxyxg

Axxyxf

Bxxyxg

Axxyxf
Yy

xY

Yy

, 

    pJ  ..., ,2 ,1 ,     0:  xhJjxJ j . 
 
Let K be a triplet such that 
         
    ,1    1 : , ,   nsRRNytsxK mss

       

        


 
s

i
i

s
s tRtttt

1
 21  1with  ..., ,,     

    . ,...,1  , and   ..., ,, and 21 sixYyyyyy is   
 

Since Y  is a compact subset of mR , it follows 
that for each    00   , xYx P . Thus, for any

 0xYyi  , we have a positive constant 
 .  ,00 iyxk    

 
We shall make use of the following generalized 
Schwartz inequality: 

              
2/12/1 ,,, AvvAxxAvx            (1) 

for some  the equality holds when 
AvAx   for some .0  

 Hence if 1, 2/1 Avv , we have  

                2/1,, AxxAvx  .                    (2) 

In order to relax the convexity assumption in 
the above problem, we impose the following 
definitions. Let RXf :  be a locally 
Lipschitz function. 

 
Definition 2.6 The function f is said to be 
(strictly)  -univex at Xa  with respect to 

,,b  and  , if there exist ,: nRXX 
 0\:  RXX , nonnegative functions b, 

also defined on XX  , and function RR :  

,, nRvx 
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such that, for all Xx , 
             ,,,,, axaxafxfaxb    

 af . 
 
Remark 2.1 From Definition 2.5, there are 
following special cases: 

(i) If the function f is differentiable at a, and
  1, ax , then we can see that the 

definition 2.6 implies the definition of 
univex function given in Bector et al. [2].   

(ii) Evidently, if we choose   1, axb ,
  1, ax  and   as an identity 

function and f is differentiable, then we 
see that definition 2.6 reduces to 
definition of invex function given in 
Hanson [8]. 

(iii) If the function f is differentiable at a, 
then we obtain definition of  -univexity 
given in Jayswal [10]. 

(iv) If we define RR : with   VV   
and   1, axb , then we get the 
definition of  -type I invex given in 
Mishra and Rautela [17].   
 

It is noted that, not every  -univex function 
is  -type I invex function [17]. We have the 
following counter-example, which shows that the 
function f is  -univex but not  -type I invex.  
 
Example 2.2 Let 0,  aRx and     

 








.0,2
,0,

xx
xx

xf  

Clearly,    2,1 af . Let   2/6, xaxb  and 
let RR :  given by   2VV  . Let 
   xax sin1/1, 

 
and   xax sin,  . 

Then f is  -univex at a with respect to  ,,b  
and   for all Rx . 
     On the other hand, if we take 0x , we have   
         ,,,,, afaxaxafxf    

which shows that f is not  -type I invex at a  
with respect to same  and  .  
 
Definition 2.7 The function f is said to be pseudo
 -univex at Xa with respect to ,,b  and 

 , if there exist nRXX : ,
 0\:  RXX , nonnegative functions b, 

also defined on XX  , and function RR :  
such that, for all Xx , 

   
        afafxfaxb

axax








,0,
0,,,

equivalently, 
      

     .,0,,,
0,

afaxax
afxfaxb








                             

The following example shows that there exists 
function which is pseudo  -univex but neither 
 -type I invex nor pseudo -type I invex. 
 
Example 2.3 Let  0\RX  , RXf :  be 

defined by   xxf  . 

Obviously,  








.0,1
,0,1

x
x

xf
 

 
Let   axaxb ,  and let RR :  given by 

  2VV  . Let   xax sin,   and         

 








,0,1
,0,1

,
x
x

ax . Then f  is pseudo  -

univex on X with respect to  ,,b  and . But 
f is neither -type I invex nor pseudo -type I 

invex with respect to same  and  as can be 
seen by taking ax . 
 
Definition 2.8 The function f is said to be strict 
pseudo -univex at Xa with respect to 

,,b  and  , if there exist nRXX : ,
 0\:  RXX , non-negative functions 

b, also defined on XX  , and function 
RR : such that, for all Xx , 

   
        afafxfaxb

axax








,0,
0,,,

 

equivalently,  

 
      

     .,0,,,
0,

afaxax
afxfaxb








 

 
Example 2.4 Let  ,,,, bfX and be same 
as in Example 2.3. By Example 2.3, we know 
that f  is pseudo  -univex on X with respect to 

 ,,b  and  . However, if we assume
Xaxax  ,, , in the above Example 2.3, 
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then f  is strictly pseudo  -univex with respect 
to  ,,b  and  .  
 
Definition 2.9 The function f is said to be quasi
 -univex at Xa  with respect to ,,b  and 

 , if there exist ,: nRXX 
 0\:  RXX , nonnegative functions b, 

also defined on XX  , and function RR :  
such that, for all Xx , 

   
      

     afaxax
afxfaxb









,0,,,
0,

 

equivalently,  

   
        .,0,

0,,,
afafxfaxb

axax








The following example shows that quasi  -
univex function exists. 
 
Example 2.5 Let bfX ,,  and   be same as in 
Example 2.3. However, if we define 

  2VV  and  








,0,1
,0,1

,
x
x

ax .  

Then f  is quasi  -univex with respect to 
 ,,b  and . 

     The following example shows that there exists 
function which is quasi  -univex but not pseudo
 -type I univex not pseudo -type I invex and 
not  -type I invex. 
 
Example 2.6 The function RRf :  is defined 
by   xxf  . Let  

     axaxb , ,  













,,0
,,1
,,1

,
ax
ax
ax

ax  

and  








.,1
,,1

,
ax
ax

ax  

 
Further assume that RR :  be given by
  VV  .  Then f  is quasi  -univex with 

respect to  ,,b ,  and       1 xfxf  
for all Rx . But f is neither pseudo  -type I 
univex with respect to ,,b  and   nor pseudo
 -type I invex with respect to   and   on R . 

Also it can be easily seen that for ax  , f is 
not  -type I invex with respect to   and  on
R . 
     The following result from [12] is needed in 
the sequel. 
 
Lemma 2.1 Let 0x  be an optimal solution for (P) 

satisfying 0,    , 00 Axx  0    , 00 Bxx  and 

   00  , xJjxh j   are linearly independent. 

Then there exist     nRvu,xKyts      , , , 0
*  

and pR*  such that 

     



s

i
iii BvyxgkAuyxft

1
000

*   , ,0

                    ,, 0
* xh                             (3)     

        ii yxgkAxxyxf   ,  , , 00
2/1

000  ,            

               siBxx  ..., ,2,1    ,0  , 2/1
00    (4) 

      ,0, 0
* xh                                     (5) 

    


 
s

1i

** ,1   with    i
s

i tRt                           (6) 

    ,1  ,    ,1  ,  BvvAuu  

    
















.  ,  ,

     ,  ,  ,

,1  ,    ,1  ,

2/1
000

2/1
000

BxxBvx

AxxAux

BvvAuu

                   (7) 

 
It should be noted that both the matrices A  and 
B are positive definite at the solution 0x  in the 

above Lemma. If one of 00   , xAx  and 

00  , xBx  is zero, or both A  and B  are singular 

at 0x , then for    0
*  , , xKyts  , we can take   

    , ,0  ,: 00 xhzRzxZ jjj
n

y  

                                                            0xJj , 

holds (iii) - (i) following  theof oneany with 
   ii yxgyxfv ,,, 00   : 

(i) 0 ,  ,0 , 0000  xBxxAx  
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s

i
i zk

xAx
Ax

vt
1

02/1
00

0*   ,
 ,


   

                                        

   ,0 ,
2/12

0  zzBk  

(ii) 0  ,  ,0  , 0000  xBxxAx  

    































s

i
i z

xBx
Bx

kvt
1

2/1
00

0
0

*   ,
  ,

     

                                                 ,0 , 2/1  zBz  

(iii) 0 ,  ,0 , 0000  xBxxAx  

  
       2/1

0
1

0
*  ,  , zzBkzkvt

s

i
i  



    

                                                  .0 , 2/1  zBz  

If we take the condition   0xZ y  in Lemma 
2.1, then the result of Lemma 2.1 still holds. 
Throughout the paper, we assume that 0b  and 1b  
are nonnegative functions defined on XX   and

RR :, 10  . 
 

3. Sufficient Optimality Condition 
We now establish sufficient optimality conditions 
for (P) under the assumptions of generalized  -
univexity discussed in previous section. 
 
Theorem 3.1 Suppose that Px 0  be a 
feasible solution for (P). Suppose that there exist

,0  Rk     nRvu,xKyts      , , , 0
* and

pR*  satisfying (3) – (7). Assume that one of 
the following conditions holds:  

(a)        ii

s

i
i ygkAuyft  ,, , 0

1

*  


  

Bv,  and  h,*  are  - univex  with 

respect to 01010 ,,,, bb  and   with 
  000  VV  and   VV 1 ; 

(b)
 

       ii

s

i
i ygkAuyft  ,, , 0

1

*  


  

Bv,  is pseudo -univex with respect to 

000 ,, b  and   with   00 0  VV   and 

 h,*  is quasi  - univex with respect to 

111 ,, b  and   with 0V   01  V ; 

c)        


s

i iii ygkAuyft
1 0

*  ,, ,  

Bv,  is quasi -univex with respect to 

000 ,, b  and   and  h,*  is strictly 

pseudo  - univex with respect to 111 ,, b  and 
 with   00 0  VV   and   00 V

0V .      
Then 0x is an optimal solution of (P). 
 

Proof.  Suppose the contrary that 0x  is not an 
optimal solution of (P). Then there exists 

Px 1  such that 

 
 

 
 

.
  , ,

  , ,
sup

  , ,

  , ,
sup 

2/1
000

2/1
000

2/1
111

2/1
111

Bxxyxg

Axxyxf

Bxxyxg

Axxyxf

Yy

Yy














We know that 

 
 

 
 

,
  , ,

  , ,

  , ,

  , ,
sup

02/1
000

2/1
000

2/1
000

2/1
000

k
Bxxyxg

Axxyxf

Bxxyxg

Axxyxf

i

i

Yy













 

for  0xYyi  , si  ..., ,2,1 , and  

 
 

 
 

.
  , ,

  , ,
sup

  , ,

  , ,
 

2/1
111

2/1
111

2/1
111

2/1
111

Bxxyxg

Axxyxf

Bxxyxg

Axxyxf

Yy

i

i












 

Thus, we have  

 
  02/1

111

2/1
111

  , ,

  , ,
 k

Bxxyxg

Axxyxf

i

i 



 for si  ..., ,2,1 . 

 
It follows that 

   
 

   ,0  , ,

  , ,
2/1

1110

2/1
111





Bxxyxgk

Axxyxf

i

i    (8)   
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for si  ..., ,2,1 . 

From (2), (4), (6) (7) and (8), we get 

         Auxyxftx i

s

i
i   , , 11

1

*
1 



     

                    Bvxyxgk i   , , 110        

  
   0  , ,

  , ,

2/1
1110

2/1
111

1

*






Bxxyxgk

Axxyxft

i

i

s

i
i

  
  2/1

0000

2/1
000

1

*

  , ,

  , ,

Bxxyxgk

Axxyxft

i

i

s

i
i






  

  
 .

  , ,

  , ,

0

000

00
1

*

x
Bvxyxgk

Auxyxft

i

i

s

i
i








 
 
That is 

                        01 xx   .                        (9) 

If hypothesis (a) holds, then   

    

  

  

  Bvxyxgk

Auxyxft

Bvxyxgk

Auxyxftxxb

i

i

s

i
i

i

i

s

i
i

  , ,

  , ,

  , ,

  , ,,

000

00
1

*

110

11
1

*
0010






















 

      001010 ,,,, xxxxx    

 

    
  ))3(by(

,,,,,

0

01
*

010

xh

xxxx








  

        0
*

1
*

1011 ,,, xhxhxxb   (by 

the  -univexity of  h,* ) 

      1
*

0
* ,, xhxh   (by the positivity 

of 1b and   VV 1 ) 

  0  (by the feasibility of 1x  for (P) and (5)). 

 
 

Since   000  VV and 00 b , we get  

         01 xx   , 

which contradicts (9). 
 

If hypothesis (b) holds, by the positivity of 0 ,b  
  00 0  VV   and from the inequality (9), 

we get 

       0, 01010  xxxxb  . 

 
By the pseudo  -univexity of , the above 
inequality give 

     001010 ,0,,, xxxxx   . (10)  

 
From (10) and (3), we get  

    
 ,

,0,,,,

0

01
*

010

xh

xxxx









by the positivity of 0 , we get 

   001
* ,0,,, xhxx   .     (11) 

 

Since ,, *
1

P
P Rx   from (5), we get 

         0,, 0
*

1
*  xhxh  .               (12) 

 

By the condition   00 1  VV  and the 
positivity of 1b , (12) gives 

       0,,, 0
*

1
*

1011  xhxhxxb  . 

 

By the quasi  -univexity of  h,* and the 
above inequality, we get 

     .,0,,,, 001
*

011 xhxxxx  
 

By the positivity of 1 , we get  

      
   001

* ,0,,, xhxx   , 

which contradicts (11).  
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     For hypothesis (c) the proof is similar to the 
proof of case (b). This completes the proof. □ 
 
Remark 3.1  
 (i) If the functions gf , and h  are continuous 

differentiable, then Theorem 3.1 above 
reduces to Theorem 3.1 given in [10].   

 (ii) Evidently, if we choose 10 ,  as the identity 
maps,  10 1 bb   and if the functions 

gf , and h  are continuous differentiable, 
then we obtain the Theorem 3.1 given in 
[16].   

(iii) If we take 10 ,  as the identity maps, and 

10 1 bb   in the above Theorem 3.1, we 
get Theorem 3.1 given in [17]. 

 

4. First Duality Model                                         

In this section, we consider the following dual to 
(P): 
        (DI) 

     
k

ytsHytzKyts ,,,,,,
1

supmax


, 

subject to  

      

 
     )13(, ,  , ,

  , ,0

2/1

2/1

1

zhBvvyzg

kAuuyzft

i

i

s

i
i






 

   )14(,0  , ,

  , ,
1






Bvzyzgk

Auzyzft

i

i

s

i
i

  0 , zh ,                                            (15) 

1 , Azz , 1z , Bz ,                             (16) 

where  ytsH ,,1 denotes the set of all triplets 
    RRRvz Pn,, satisfying (13) - (16)  
and    zKyts ,, . For a triplet   Kyts ,, , if 
the set  ytsH ,,1 is empty, then we define the 
supremum over it to be -∞. In this section we 
denote  

    

  .  , .,

  ,,
1

Bvygk

Auyft

i

i

s

i
i



 




 
 

Theorem 4.1 (Weak duality). Let Px   be a 
feasible solution for (P) and let  ytsvuz ,,,,,,  
be a feasible solution for (DI). Assume that one 
of the following conditions holds: 

(a)    and  h,  are  -univex with 

respect to 01010 ,,,, bb  and   with 
  000  VV  and   VV 1 ; 

(b)    is pseudo - univex with respect to 

000 ,, b  and   with   00 0  VV   and   

 h,  is quasi -univex with respect to

111 ,, b and  with   00 1  VV  ; 

(c)    is quasi -univex with respect to 

000 ,, b  and   with   00 0  VV  and 

 h,  is strictly pseudo  - univex with 

respect to 111 ,, b  and   with 
  00 1  VV  .      

Then 
 
 

k
Bxxyxg

Axxyxf







2/1

2/1

Yy   , ,

  ,,
sup . 

Proof.  Suppose contrary to the result, that is  
 
 

k
Bxxyxg

Axxyxf







2/1

2/1

Yy   , ,

  ,,
sup . 

 
Therefore we get the following relation 

  
 

   YyBxxyxgk

Axxyxf

ii

i





,0  , ,

  , ,
2/1

2/1

.  

It follows from ,,...,2,1,0 siti  with 1
1




s

i
it

, that  

 
   ,,...,1,0  , ,

  , ,
2/1

2/1

siBxxyxgk

Axxyxft

i

ii




 

with at least one strict inequality because
  0,...,, 21  stttt . 

 
From (2), (14), (16) and the above inequality, we 
get 

    

  Bvxyxgk

Auxyxftx

i

i

s

i
i

  , ,

  ,,
1
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   0  , ,

  ,,

2/1

2/1

1






Bxxyxgk

Axxyxft

i

i

s

i
i

    
  

    .  , ,

  ,,
1

zBvzyzgk

Auzyzft

i

i

s

i
i




   

 That is, 
                               zx   .                 (17) 
 
If hypothesis (a) holds, then  

       
    

   Bvxyxgk

Auxyxftzxb

i

i

s

i
i

  ,,

,,,
1

00













      

   

  

  Bvzyzgk

Auzyzft

i

s

i
ii

,,

,,
1






 

                 zzxzx   ,,,,0                

            
    

  ))13(by(,

,,,,,0

zh

zxzx








 
                             

                  zhxhzxb ,,, 11     (by 

the  -univexity of  h, )
 

                xhzh ,,    (by the 

positivity of 1b and   VV 1 ) 

            0   (by the feasibility of x for (P) and 
(15)). 

 
Since   000  VV and 00 b , we get  

   zx   , 
which contradicts (17). 
 
If hypothesis (b) holds, by the positivity of 0 ,b

  00 0  VV   and from the inequality 
(17), we get 

       0, 00  zxzxb  . 
 
 

By the pseudo  -univexity of , the above 
inequality gives 
         zzxzx   ,0,,,0 .   (18) 
 
From (18) and (13), we get  
       zhzxzx   ,0,,,,0 ,  

by the positivity of 0 , we get  

         zhzx   ,0,,, .     (19) 
 
 
Since ,, P

P Rx   from (15), we get 
     0,,  zhxh  . 

 
By the condition   00 1  VV  and the 
positivity of 1b , the above inequality yield 

             0,,, 11  zhxhzxb  . 
 
By the quasi  -univexity of  h,  and from 
the above inequality, we get 
         zhzxzx   ,0,,,,1 . 
 
By the positivity of 1 , we get  

   zhzx   ,0,,, , 
which contradicts (19).  
 
     For hypothesis (c) the proof is similar to that 
of the proof given above for case (b).           □ 
 
Theorem 4.2 (Strong duality). Assume that *x  is 
an optimal solution for (P) and *x satisfies a 
constraints qualification for (P). Then there exist 
   ****  , , xKyts   and 
   ***

1
*****  , , , ,, , ytsHvukx  such that 

 ********  , , , ,, , , ytsvukx   is feasible for 
(DI). If any of the conditions of Theorem 4.1 
holds, then  ********  , , , ,, , , ytsvukx   is an 
optimal solution for (DI), and problem (P) and 
(DI) have the same optimal value. 
 
Proof. By Lemma 2.1, there exist 
   ****  , , xKyts   and  *****  , ,, , vukx   

 ***
1  , , ytsH  such that 

 ********  , , , ,, , , ytsvukx   is a feasible for 
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(DI), and       

 
  2/1****

2/1****
*

  , ,

  ,,

Bxxyxg

Axxyxf
k

i

i




 . 

The optimality of this feasible solution for (DI) 
follows from Theorem 4.1.                            □ 
 
Theorem 4.3 (Strict Converse Duality). Let *x
and  ytsvukz ,,,,,,,  be optimal for (P) and 
(DI), respectively. Assume that the hypothesis of 
Theorem 4.2 is fulfilled. Further if any one of the 
following conditions holds:  

(a)      


s

i iii ygkuAyft
1

 , , ,  

vB,  is strictly  -univex with respect to 

000 ,, b  and   with   00 0  VV   and 

 h,  is  -univex with respect to 111 ,, b  

and  with   00 1  VV  ; 

(b)      


s

i iii ygkuAyft
1

 , , ,  

vB,  is strictly pseudo -univex with 

respect to 000 ,, b  and   with 

  00 0  VV   and  h,   is quasi -

univex with respect to 111 ,, b  and  with
  00 1  VV  . 

Then zx * ; that is, z is an optimal solution for 
(P) and  

 
  .

 , ,

 , ,
sup 2/1*

2/1*

k
zBzyzg

zAzyzf
Yy







 

Proof.  Suppose on the contrary that zx * . 
From Theorem 4.2, we know that there exist 
   ****  , , xKyts   and 
   ***

1
*****  , , , ,, , ytsHvukx   such that 

 ********  , , , ,, , , ytsvukx   is optimal for (DI) 
with the optimal value                              

 
 

.
 , ,

 , ,
sup *

2/1****

2/1****

k
Bxxyxg

Axxyxf

Yy







 

Following as in [12], we get 
   zx  * . 

Since   00 0  VV   and the positivity of

0b , the above inequality yield 

       0, *
0

*
0  zxzxb  . 

 
If condition (a) holds, then by the strict  -
univexity  1 , we get 

     zzxzx   ,0,,, **
0 . 

 
Now from (13) and the above inequality, we get 

      .,0,,,, **
0 zhzxzx  

 
By the positivity of 0 , we get 

     zhzx   ,0,,, * .      (20) 
 
Since ,,* P

P Rx   from (15), we get 

     0,, *  zhxh  . 
 
By the condition   00 1  VV  and the 
positivity of 1b , the above inequality yield 

       0,,, *
1

*
1  zhxhzxb  . 

 
By the  -univexity of  h,  and from the 
above inequality, we get 

      zhzxzx   ,0,,,, **
1 . 

 
By the positivity of 1 , we get 

   zhzx   ,0,,, * , 
which contradicts to (20). 
Hence, we get 

 
 

.
 , ,

 , ,
sup 2/1****

2/1****

k
Bxxyxg

Axxyxf

Yy







 

 
The above inequality contradicts the fact that 

 
 

.
 , ,

 , ,
sup *

2/1****

2/1****

kk
Bxxyxg

Axxyxf

Yy







 

 
Therefore, we conclude that zx * . 
For hypothesis (b) the proof is similar to that of 
the proof given above for case (a).                 □ 
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Remark 4.1  
 (i) If the functions gf , and h  are continuous 

differentiable, then the above Theorem 4.1 
and 4.2 reduces to Theorem 4.1 and 4.2 
given in [10].   

(ii) Evidently, if we choose 10 ,  as the identity 
maps, 10 1 bb   and if the functions gf ,
and h  are continuous differentiable, then we 
obtain the Theorem 4.1 and 4.2 given in 
[16].   

(iii) If we take 10 ,  as the identity maps, and 

10 1 bb   in the above Theorem 4.1, and 
4.2 we get Theorem 4.1 and 4.2 given in 
[17]. 

 

5. Second Duality Model 

In this section, we formulate the Wolfe-type dual 
model to problem (P) as follows: 

       (DII) 
       

 zF
ytsHvuzzKyts ,,,,,,,

2

supmax
 

 

          subject to 

      AuyzfBzzyzgt ii

s

i
i 



 ,  , ,0 2/1

1

     
  )21(,,

 ,  , , 2/1

zh

BvyzgAzzyzf ii





 

  0 , zh ,                                            (22) 

,1,,1,  BzzAzz  

AuzAzz  , , 2/1  , v , , 2/1 BzBzz  , (23) 

where    
 

,
 , ,

 , ,
sup 2/1

2/1

Bzzyzg

Azzyzf
zF

Yy 





 

 zYyi   and  ytsH ,,2 denotes the set of 

  nnPn RRRRvuz  ,,, satisfying (35) - 
(37). If the set  ytsH ,,2  is empty, then we 
define the supremum over it to be -∞. In this 
section, we denote  

        


ii

s

i
i yfBvzyzgt  ,  , ,

1
1   

      ., ,  , ,, BvygAuzyzfAu ii 
 

Theorem 5.1 (Weak duality) Let Px   be a 
feasible solution for (P) and let  ytsvuz ,,,,,,  
be a feasible solution for (DII). Assume that one 
of the following conditions holds: 

(a)  1  and  h,  are  -univex with 

respect to 01010 ,,,, bb  and   with 
  000  VV  and   VV 1 ; 

(b)  1  is pseudo -univex with respect to 

000 ,, b  and   with   00 0  VV   and 

 h,  is quasi -univex with respect to

111 ,, b and  with   00 1  VV  ; 

(c)  1  is quasi -univex with respect to 

000 ,, b  and   with   00 0  VV  and 

 h,  is strictly pseudo  -univex with 

respect to 111 ,, b  and   with
  00 1  VV  . Then 

 
 

 zF
Bxxyxg

Axxyxf







2/1

2/1

Yy   , ,

  ,,
sup . 

 

Proof. Suppose contrary to the result that for 
each Px  , 

       
 
 

 zF
Bxxyxg

Axxyxf







2/1

2/1

Yy   , ,

  ,,
sup .       (24) 

Since   sizYyi ,...,2,1,  , we have 

   
 

.,...,2,1,
  , ,

  ,,
 2/1

2/1

si
Bzzyzg

Azzyzf
zF

i

i 



 (25) 

Following as in [12], we get 

                          zx 11   .                   (26) 

Now if condition (a) holds, then  

       zxzxb 1100 ,    

          zzxzx 10 ,,,,    

           zhzxzx   ,,,,,0     
(by (21)) 
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           zhxhzxb ,,, 11    (by the 

 -univexity of  h, ) 

         xhzh ,,    (by the positivity of 

1b and   VV 1 ) 

     0  (by the feasibility of x for (P) and (22)). 

 
Since   000  VV and 00 b , we get  

   zx 11   , 
which contradicts (26). 
 
     If hypothesis (b) holds, by the positivity of 0 ,b

  00 0  VV   and from the inequality 
(26), we get 

       0, 1100  zxzxb  . 
 
By the pseudo  -univexity of 1 , the above 
inequality gives 
       .,0,,, 10 zzxzx      (27) 
 
From (21) and (27), we get  
       zhzxzx   ,0,,,,0 , 

by the positivity of 0 , we get  

            zhzx   ,0,,, . 

   i.e.    zhzx   ,0,,, .   (28) 
 
Since ,, P

P Rx   from (22), we get 

                 0,,  zhxh  .              (29)                                         
 
By the condition   00 1  VV  and the 
positivity of 1b , (29) gives 

       0,,, 11  zhxhzxb  . 
 
By the quasi  -univexity of  h,  and from 
the above inequality, we get 
         zhzxzx   ,0,,,,1 . 
 
By the positivity of 1 , we get  

           zhzx   ,0,,, , 
which contradicts (28).  
 
 

     The proof is similar when hypothesis (c) 
holds. This completes the proof.                   □ 
 
Theorem 5.2 (Strong duality). Assume that *x  is 
an optimal solution for (P) and *x satisfies a 
constraints qualification for (P). Then there exist 
   ****  , , xKyts   and 
   ***

2
*****  , , , ,, , ytsHvukx  such that 

 ********  , , , ,, , , ytsvukx   is feasible for 
(DII). If any of the conditions of Theorem 5.1 
holds, then  ********  , , , ,, , , ytsvukx   is an 
optimal solution for (DII), and problem (P) and 
(DII) have the same optimal value. 
 
Proof. By Lemma 2.1, there exist 
   ****  , , xKyts   and  *****  , ,, , vukx   

 ***
2  , , ytsH  such that 

 ********  , , , ,, , , ytsvukx   is feasible for 
(DII), and  

 
  2/1****

2/1****

0
  , ,

  ,,

Bxxyxg

Axxyxf
k




 . 

The optimality of this feasible solution for (DII) 
follows from Theorem 5.1.                             □ 
 
Theorem 5.3 (Strict Converse Duality). Let *x
and  ytsvuz ,,,,,,  be optimal for (P) and 
(DII), respectively. Assume that the hypothesis of 
Theorem 5.2 is fulfilled. Further if any one of the 
following conditions holds:  

(a)  1  is strictly  -univex with respect to 

000 ,, b  and   with   00 0  VV   and 

 h,  is  -univex with respect to 111 ,, b  

and   with   00 1  VV  ; 

(b)  1  is strictly pseudo -univex with respect 
to 000 ,, b  and   with   00 0  VV    

and  h,   is quasi -univex with respect to 

111 ,, b  and  with   00 1  VV  . 

Then zx * ; that is, z is an optimal solution for 
(P).  
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Proof. Suppose on the contrary that zx * . 
Similar to the proof of Theorem 5.1, we get                

   
 
 

 .
 , ,

 , ,
sup 2/1***

2/1***

zF
Bxxyxg

Axxyxf

Yy







      (30) 

Following as in [12], we get 
                     zx 1

*
1   .                       (31)                                                             

 
By the positivity of 0b ,   00 0  VV   and 
from the inequality (31), we get 

       0, 1
*

10
*

0  zxzxb  . 
 
If hypothesis (a) holds, then by the strict  -
univexity of  1 and from the above inequality, 
we get 

     zzxzx 1
**

0 ,0,,,   .   (32) 
 
Now from (32) and (21), we get 

      .,0,,,, **
0 zhzxzx  

 
By the positivity of 0 , we get 

     
     zhzx   ,0,,, * . 

 i.e.    zhzx   ,0,,, * .  (33) 
 
Since ,,* P

P Rx   from (22), we get 

          
     0,, *  zhxh  .              (34) 

 
By the condition   00 1  VV  and the 
positivity of 1b , (34) gives 

       0,,, *
1

*
1  zhxhzxb  . 

 
By the  -univexity of  h, , from the above 
inequality, we get 

      zhzxzx   ,0,,,, **
1 . 

 
By the positivity of 1 , we get  

   zhzx   ,0,,, * , 
which contradicts (33). Hence (30) is false, and 
we have 

     

 
 

 .
 , ,

 , ,
sup 2/1***

2/1***

zF
Bxxyxg

Axxyxf

Yy







    (35) 

 
Since *x is an optimal solution for (P), from 
Theorem 5.2 there exist    ****  , , xKyts   and 
 ****  , , , vux    ***

2  , , ytsH  such that 
 *******  , , , , , , ytsvux   is an optimal solution 
for (DII) with the optimal value 

 
 

   zFxF
Bxxyxg

Axxyxf

Yy








*
2/1***

2/1***

 , ,

 , ,
sup , 

which contradicts (35). Hence ;* zx   that is, z 
is an optimal solution for (P). 
Since   00 0  VV  and the positivity of

0b , from (31), we get  

       0, 1
*

10
*

0  zxzxb  . 

If hypothesis (b) holds, then by the strict pseudo 
 -univexity of 1 and from the above 
inequality, we get 

     zzxzx 1
**

0 ,0,,,   . 

The remaining part of the proof is similar to the 
case of case (a). This completes the proof.                                                             
□ 
 
Remark 5.1  
 (i) If the functions gf , and h  are continuous 

differentiable, then the above Theorem 5.1, 
5.2 and 5.3 reduces to Theorem 5.1, 5.2 and 
5.3 given in [10].   

(ii) Evidently, if we choose 10 ,  as the identity 
maps, 10 1 bb   and if the functions gf ,
and h  are continuous differentiable, then we 
obtain the Theorem 5.1, 5.2 and 5.3 given in 
[16].   

(iii)  If we take 10 ,  as the identity maps, and 

10 1 bb   in the above Theorem 5.1, 5.2 
and 5.3 we get Theorem 5.1, 5.2 and 5.3 
given in [17]. 
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6. Third Duality Model 
In this section we take the following form of 
Lemma 2.1: 
 
Lemma 6.1 Let *x be an optimal solution for (P). 
Assume that    **  , xJjxh j   are linearly 

independent. Then there exist   Kyts  , , * and
pR*  such that 

    
  

,
, ,

,, ,
0

**
1

*

****
1

*

*

*





























Bvxyxgt

xhAuxyxft

i
s

i i

i
s

i i 

                                                                  (36) 
 

  ,0, ** xh
    

                                     (37) 
 

)38(

,  ,  ,

,  ,  ,

,1  ,    ,1  ,

*2/1**

*2/1**

















BvxBxx

AuxAxx

BvvAuu

 
  .,...,2,1,xY,1 0, *

s

1i

*** siytt iii  


(39)

 Now we consider the following parameter free 
dual problem for (P): 
 

(DIII)

       

    
  

0
, ,

,, ,

supmax

*

*

3

1
*

1
*

,,,,,,,





























Bvzyzgt

zhAuzyzft

i
s

i i

i
s

i i

ytsHvuzzKyts





 
 subject to  

    
  

,
, ,

,, ,
0 *

*

1
*

1
*



























Bvzyzgt

zhAuzyzft

i
s

i i

i
s

i i 

  

                                                                  

(40)  
                                                                                        

1v ,,1Au ,  Bvu , 

AuzAzz  , , 2/1  , v , , 2/1 BzBzz  , (41) 
 
where  ytsH ,,3  denotes the set of  

  nnPn RRRRvuz  ,,,  satisfying (40). 
If the set  ytsH ,,3 is empty, then we define the 

supremum over it to be -∞. Throughout this 
section for the sake of simplicity, we denote by

 2  

     

    
      .  , ,,

, ,

,  , ,

*

1
*

1

1

*

Bvygtzh

Auzyzftg

yftBvzyzgt

ii

i
s

i ij

P

j
j

i

s

i
iii




























 
 
Now we shall state weak, strong and strict 
converse duality theorems without proof as they 
can be proved in thelight of Theorem 5.1 to 
Theorem 5.3, proved in the previous section. 
 
Theorem 6.1 (Weak duality) Let Px   be a 
feasible solution for (P) and let  ytsvuz ,,,,,,  
be a feasible solution for (DIII). If  2  is 
pseudo -univex with respect to 000 ,, b  and 
  with   00 0  VV  , then 

 
 

    
  

*

*

1/ 2

1/ 2
y Y

1

1

, ,   
 sup

,  ,   

,  , ,
.

,  ,

s
i ii

s
i ii

f x y x Ax

g x y x Bx

t f z y z Au h z

t g z y z Bv













   
  




Theorem 6.2 (Strong duality). Assume that *x  is 
an optimal solution for (P) satisfying the 
hypothesis of Theorem 6.1. Then there exist 
   ****  , , xKyts   and 
   ***

3
****  , , , , , ytsHvux   such that 

 *******  , , , , , , ytsvux   is feasible for (DIII). 
If any of the conditions of Theorem 6.1 holds, 
then  *******  , , , , , , ytsvux   is an optimal 
solution for (DIII) and problem (P) and (DIII) 
have the same optimal value.

 

 
Theorem 6.3 (Strict Converse Duality). Let *x  
be an optimal solution for (P) and 
 ytsvuz ,,,,,,  be an optimal solution for 
(DIII). Assume that the hypothesis of Theorem 
6.2 is fulfilled and   2  is strictly pseudo -
univex with respect to 000 ,, b  and   with

  00 0  VV  . Then *xz  is an optimal 
solution of (P).  
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Remark 6.1  
(i) If the functions gf , and h  are continuous 

differentiable, then the above Theorem 6.1, 
6.2 and 6.3 reduces to Theorem 6.1, 6.2 and 
6.3 given in [10].   

 
(ii) Evidently, if we choose 10 ,  as the identity 

maps, 10 1 bb   and if the functions gf ,
and h  are continuous differentiable, then we 
obtain the Theorem 6.1, 6.2 and 6.3 given in 
[16].   

(iii) If we take 10 ,  as the identity maps, and 

10 1 bb   in the above Theorem 6.1, 6.2 
and 6.3 we get Theorem 6.1, 6.2 and 6.3 
given in [17]. 

 

7. Conclusion and Further Developments  
In this paper, we have introduced the classes of 
 -univex and generalized  -univex functions 
where the involved functions are locally 
Lipschitz, and have used these different classes 
of functions to derive sufficient optimality 
conditions and three types of duality results for 
nondifferentiable minimax fractional 
programming problems. The results developed in 
this paper improve and generalize a number of 
existing results in the literature. In fact, some 
researchers have paid much attention on 
extending some known results for univex 
functions. Hence, for this purpose, we may 
conclude that this paper enriched optimization 
theory in the view of mathematics.  

Furthermore, the results developed in this 
paper can be generalized to the following 
nondifferentiable multiobjective programming 
problem: 

  (MOP)       

   
   
    2/1

2/1
22

2/1
11

,...,

,Minimize

xBxxf

xBxxf

xBxxf

k
t

k

t

t







    

 subject to     ,0:  xgXxSx  

where X  is an open subset of nR , 
m

i RXgkiRXf    :,,...,2,1,  :  and 
kiBi ,...,2,1,   is an nn  positive 

semidefinite symmetric matrix. This will orient 
the future research of the authors. 
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