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Abstract.   In this paper, K - 
c

 quasiconvex, K - 
c

 pseudoconvex and other related functions 

have been introduced in terms of their Clarke subdifferentials, where K   is an arbitrary closed 

convex, pointed cone with nonempty interior. The (strict, weakly) K -pseudomonotonicity, (strict) 

K -naturally quasimonotonicity and K -quasimonotonicity of Clarke subdifferential maps have also 

been defined. Further, we introduce Minty weak (MVVIP) and Stampacchia weak (SVVIP) vector 

variational inequalities over arbitrary cones. Under regularity assumption, we have proved that a 

weak minimum solution of vector optimization problem (VOP) is a solution of (SVVIP) and under 

the condition of K - 
c

pseudoconvexity we have obtained the converse for MVVIP (SVVIP). In 

the end we study the interrelations between these with the help of strict K -naturally 

quasimonotonicity of Clarke subdifferential map.  

 

Keywords:  Generalized nonsmooth cone convexity; generalized cone monotonicity; vector 

optimization problem; vector variational inequality problem.  

AMS Classification: 90C30 

 

1. Introduction 

The Variational inequality problem was first 

introduced by Hartman and Stampacchia [1] in 

their seminal paper. As it has many applications 

in fundamental sciences as well as in economics 

and management sciences, it has become very 

popular among researchers. Giannessi [2] 

introduced vector variational inequality problem 

and since then a great deal of research started in 

this area by various authors like Chen and Yang 

[3], Chen [4], Yao [5], Giannessi [6,7,8], 

Komlosi [9], Yang et al. [10], Lee and Lee [11] 

etc. Giannessi [6] has shown equivalence 

between efficient solutions of differentiable, 

convex vector optimization problem and 

solutions of variational inequality of Minty type. 

Yang et al. [10] established some relations 

between a solution of a Minty vector variational 

inequality (VVI) problem and an efficient 

solution of a differentiable nonconvex vector 

optimization problem under the assumptions of 

pseudoconvexity of functions or 

pseudomonotonicity of their gradients. Komlosi 

[9] studied Stampacchia and Minty vector 

variational inequality problems and discussed the 

solution concepts of these problems and vector 

optimization problem. Vector variational-like 

inequality problems have been studied by many 

authors like Mishra and Wang [12], Chinaie et al. 

[13] etc. Recently, Rezaie and Zafarani [14] have 

studied relations between vector optimization 

problem and Minty and Stampacchia vector 

variational-like inequalities over cones contained 

in n

+R \ {0}   for nondifferentiable functions under 

generalized invexity or generalized monotonicity 

assumptions. 
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Generalized monotonicity plays a central role in 

the study of the existence of solution of 

variational inequality problems and their relations 

with vector optimization problems. Monotonicity 

(generalized) concepts have been related to 

convexity (generalized) of functions in case of 

gradient maps by various authors like 

Karamardian and Schaible [15], Hadjisavvas and 

Schaible [16] and Schaible [17]. Various authors 

like Cambini [18], Cambini and Martein [19], 

Vani [20] etc. have extended generalized 

convexity and / or generalized monotonicity 

concepts from scalar case to the vector valued 

functions. 

In this paper, we introduce the notions of K -
c  quasiconvex, weakly K - c  quasiconvex, 

K - c  pseudoconvex and strict K - c

pseudoconvex  functions in terms of Clarke 

subdifferentials. The interrelations between 

above mentioned functions have been given. 

The concepts of (strict, weakly) K - 

pseudomonotonicity, (strict) K -naturally 

quasimonotonicity and K -quasimonotonicity 

of Clarke subdifferential maps have been 

defined. Further Minty weak and Stampacchia 

weak vector variational inequalities over 

arbitrary cones have been introduced.  Their 

relations with vector optimization problem 

over cones have been studied with the help of 

K - c pseudoconvex functions. We end the 

paper by presenting interrelations among Minty 

weak and Stampacchia weak vector variational 

inequalities over cones under the assumption of 

strict K -naturally quasimonotonicity of Clarke 

subdifferential map. 
 

2. Generalized Nonsmooth Cone Convexity 

and Generalized Cone Monotonicity 

We begin this section with the following 

definitions. 

 

Definition 1[21]   Let : R
n R be a locally 

Lipschitz function on R n .  Then the Clarke 

generalized subdifferential of  at x R
n

  is 

given as 

( ) {
c

x  R n | 
0

( , ) , ,x v v v R n
}  

where 
0

( , )x v  is Clarke generalized directional 

derivative of   at x R
n

 in direction  v  and  is 

given by 

            
0

, 0

( ) ( )
( , ) sup ,

y x t

y tv y
x v Lim

t
  

where y R n  and 0.t  

 ( )
c

x   is nonempty, convex and compact set for 

each x R n . 

            
0

( , ) sup , : ( ) .
c

x v v f x  

The function  is said to be regular [22] if 

'
( ) ( , )i x v  exists for all x R n  and  every 

direction v R n . 

'
( ) ( , ) ( , ).ii x v x v  

Let D  be a nonempty open subset of R n . 

Let :f D R
k    

be a vector valued function. 

Then f is said to be locally Lipschitz on  

R n , if, each 
i

f  is locally Lipschitz on R n . The 

Clarke generalized directional derivative of  

locally Lipschitz function f at x  in the direction 

y x   is given by 
0 0 0

1
( , ) (( ) ( , ), ..., ( ) ( , ))

k
f x y x f x y x f x y x

where  
0

( ) ( , )
i

f x y x  is Clarke generalized 

directional  derivative of 
i

f  at x  in the direction 

.y x  The Clarke generalized  jacobian of f at 

x   is given by 

( ) ( ) ( ) .... ( ),
1 2

c c c c
f x f x f x f x

k
 where 

( )
c

i
f x  is Clarke generalized subdifferential of 

i
f   at x  and f

1 2
( , , ..., ).

k
f f f  

 

Let K R
k   

be a closed convex, pointed cone 

with non empty interior and let int K  and K  

denote the interior and closure of K   

respectively. The positive dual cone K  

(Swaragi, Nakayama and Tanino [23]) is defined 

as  

{K
*

y R
k  

| 
*

, 0,y y  for all }.y K  

Let A  R
n    

be a nonempty subset. Then the 

convex hull of A  is denoted by .coA  
 
 

 

Jahn [24] defined K - quasiconvex function as 

given below. 
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Definition 2.  The function :f D R
k    

is said 

to be K - quasiconvex on ,D  if for all ,x y D  

( ) ( )f x f y K             

 ( ( )) ( ) ,f y x y f y K  

 for all [0,1].  

 

We now introduce two important classes of 

generalized convex functions (with respect to 

cones) using the concept of Clarke subdifferential 

namely K -
c

quasiconvex  and  weakly K -
c

quasiconvex functions. 

 Following definition has been introduced on 

the lines of Cambini [18] and Jahn [24].  

 

Definition 3. The function :f D R
k    

is said to 

be K -
c

 quasiconvex on ,D  if for all ,x y D   

( ) ( )f x f y K ( ), ,
c

f y x y K  

where 

1 2
( ), ( ), ( ), ... ( ), .

c c c c

k
f y x y f y x y f y x y f y x y

Remark 1 (i) If  k=1, K R+, then the above 

definition reduces to the definition of 
c

-

quasiconvex function given by Bector, Chandra 

and Dutta [22]. 

(ii) If k=1, K R+ and f  is continuously 

differentiable then the above definition reduces to 

the definition of quasiconvex function. 

 

On the lines of Cambini [18], we give below the 

definition of weakly K -
c

 quasiconvex 

function. 

 

Definition 4. The function :f D R
k  

is said to 

be weakly K -
c

 quasiconvex on ,D  if for all 

,x y D  

( ) ( ) intf x f y K        

 ( ),
c

f y x y K  

Remark 2 (i) If k=1, K R+, then the above 

definition reduces to the following 

 ( ) ( )f x f y  

                    , 0,x y  

 for all ( ).
c

f y  

 

Then by Theorem 5.4.1 of Bector, Chandra and 

Dutta [22], f  is quasiconvex function. Thus it 

characterizes Lipschitz quasiconvex function. 

We now provide an example of K -
c

quasiconvex function. 

 

Example 1  Let :f D R
2
  be  a function defined 

by
1 2

( , )f f f where  

1
:f D R, 

2
:f D R are defined as  

1

, 0
( ) ,

0 , 0

x x
f x

x

2

2

, 0
( )

, 0

x x
f x

x x
 

and ( 5, 5)D  

(1, 2 ), 0

( ) ( , ) : [0,1], [ 1, 0 ] , 0

(0, 1), 0

c

x x

f x t l t l x

x

 

Let 
2

( , ) | 0, 0 .K x y R x y  

Then f  is K -
c

quasiconvex as  

( ) ( )f x f y K        

 ( ), ,
c

f y x y K         

 

We now introduce the following definition of K -
c

pseudoconvex and strict K -
c

 pseudoconvex 

functions on the lines of Cambini [18]. 

 

Definition 5. The function :f D R
k    

is said to 

be K -
c

pseudoconvex on ,D  if for all ,x y D   

( ) ( ) intf x f y K       

 ( ), int .
c

f y x y K  

 

Remark 3 (i) If  k=1, K R+ , then the above 

definition reduces to the definition of 
c

-

pseudoconvex function given by  Bector, 

Chandra and Dutta [22]. 

 

(ii) If  f  is continuously differentiable function 

then the above definition reduces to the definition 

of K -pseudoconvex  function given by 

Aggarwal [25] and  Cambini and Martein [19] as 

( ) ( ).
c

f
f y J y  

 

(iii) If   k=1, K R+   and f  is continuously 

differentiable
 
then the above definition reduces to 

the definition of pseudoconvex function.  

 

Definition 6. The function :f D R
k    

is said to 

be strict K -
c

pseudoconvex  on ,D  if for all 

,x y D  

 ( ) ( )f x f y K      

 ( ), int .
c

f y x y K  
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Remark 4 (i) If k=1, K R+ and f  is 

continuously differentiable
 

then the above 

definition reduces to the definition of strict 

pseudoconvex function. 

 

(ii) If  f  is continuously differentiable function 

then the above definition reduces to the definition 

of strict K -pseudoconvex function given by   

Cambini and Martein [19] as ( ) ( ).
c

f
f y J y  

We now give below an example of K -
c

pseudoconvex function. 

 

Example 2 Let :f D R
2 

  be a function defined 

by
1 2

( , )f f f where  

1
:f D R, 

2
:f D R are defined as  

1 2

, 0 , 0
( ) , ( )

3 , 0 , 0

x x x x
f x f x

x x x x
 

and ( 5, 5)D  

( 1,1), 0

( ) ( , ) : [ 1, 3], [ 1,1] , 0

(3, 1), 0

c

x

f x t l t l x

x

 

Let 
2

( , ) | 0 , 0 , .
2

x
K x y R x y y  

Then f  is K -
c

pseudoconvex as  

 ( ) ( ) intf x f y K                

 ( ), int .
c

f y x y K  

 

We now present interrelations between the above 

defined functions in the form of following 

remarks. 

 

Remark 5 Every K -
c

 quasiconvex function is 

weakly K -
c

 quasiconvex function. 

 

Remark 6 Every strict K -
c

 pseudoconvex 

function is K -
c

pseudoconvex function. 

 

Remark 7 Every strict K -
c

 pseudoconvex 

function is K -
c

quasiconvex function. 

On the lines of Rezaie and Zafarani [14], we now 

give the definitions of generalized  monotone  set 

valued maps over arbitrary closed convex and 

pointed cones with non empty interior. 

Let :f D R
k

 be a vector valued function.  

Definition 7.  The set valued map c
f  is K - 

pseudomonotone on  D  if for every pair of 

distinct points ,x y D  

 ( ),
c

f x y x K       

 ( ), .
c

f y x y K  

 

Remark 8 (i) If n

+ \ {0}K R  and ( , ),y x y x  

then the above definition becomes the definition 

of K - pseudomonotone map given by Rezaie and 

Zafarani [14]. 

 

(ii) If k=1, K R+
 

and f  is continuously 

differentiable
 
then the above definition reduces to 

the following definition of pseudomonotonicity 

of the map 
c

f f  (Karamardian and Schaible 

[15])  

 ( ), 0f x y x         ( ), 0f y y x  

Definition 8. The set valued map 
c

f  is strict K

- pseudomonotone on D  if for every pair of 

distinct points ,x y D  

 ( ),
c

f x y x K       

 ( ), int .
c

f y x y K  

 

Remark 9 (i) If n

+ \ {0}K R  and ( , ),y x y x  

then the above definition becomes the definition 

of strict K - pseudomonotone map given by 

Rezaie and Zafarani [14]. 

 

 (ii) If k=1, K R+
 

and f  is continuously 

differentiable
 
then the above definition reduces to 

the following definition of strict 

pseudomonotonicity of the map 
c

f f  

(Karamardian and Schaible [15])  

 ( ), 0f x y x    ( ), 0.f y y x  

 

Definition 9. The set valued map 
c

f  is weakly 

K - pseudomonotone on D  if  for distinct points 

,x y D  there exists ( )
c

f x such that   

, inty x K     

 ( ), int .
c

f y y x K  

Definition 10. The set valued map 
c

f  is K - 

naturally quasimonotone on D  if for every pair 
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of distinct points ,x y D  

( ), int
c

f x y x K     

 ( ), .
c

f y x y K  

Remark 10 (i) If  n

+ \ {0}K R  and ( , ),y x y x  

then the above definition becomes the definition 

of K - quasimonotone map given by Rezaie and 

Zafarani [14]. 

 

(ii) If k=1, K R+
 

and f  is continuously 

differentiable
 
then the above definition reduces to 

the following definition of quasimonotonicity of 

the map 
c

f f  (Karamardian and Schaible 

[15])  

 ( ), 0f x y x    ( ), 0.f y y x  

 

Definition 11. The set valued map 
c

f  is strict
 

K -naturally quasimonotone on D  if for every 

pair of distinct points ,x y D  

  ( ), int
c

f x y x K     

 ( ), int .
c

f y x y K  

 

Remark 11(i) If n

+ \ {0}K R  and ( , ),y x y x  

then the above definition becomes the definition 

of strict K - quasimonotone map given by Rezaie 

and Zafarani [14]. 

 

(ii) If k=1, K R+
 

and f  is continuously 

differentiable
 
then the above definition reduces to   

pseudomonotonicity  of the map 
c

f f  

(Karamardian and Schaible [15])  

 ( ), 0f x y x    ( ), 0.f y y x  

 

Definition 12. The set valued map 
c

f  is K - 

quasimonotone on  D  if for every pair of distinct 

points ,x y D  

 ( ),
c

f x x y K     

 ( ), .
c

f y x y K  

 

Remark 12(i)  If  k=1, K R+
 

and f  is 

continuously differentiable
 

then the above 

definition reduces to pseudomonotonicity of the 

map 
c

f f  (Karamardian and Schaible [15])  

 ( ), 0f x x y    ( ), 0.f y x y  

 

Now we give an example of strict K –

pseudomonotone map as follows: 

 

Example 3  Let :f D R
2 

 be  a function defined 

by
1 2

( , )f f f where  

1
:f D R, 

2
:f D R are defined as  

2

1 2

2 , 0, 0
( ) , ( )

, 0, 0

x xx x x
f x f x

x xx x

 

and ( 5, 5)D  

                  

(2 1, 2 ), 0

( ) (1, ) : [ 2, 1] , 0

(1, 1), 0

c

x x

f x l l x

x

 

Let 
2

( , ) | 0 , 0 , .
2

x
K x y R x y y  

Then 
c

f  is strict
 
K - pseudomonotone as  

 ( ),
c

f x y x K  ( ), int .
c

f y x y K  

 

The section proceeds further by presenting 

interrelationships between above mentioned 

generalized monotone maps. 

 

Remark  13 Every strict K -pseudomonotone 

map is K - pseudomonotone but converse may 

not be true as can be seen from the following 

example: 

 

Example 4  Let :f D R
2
  be  a function defined 

by
1 2

( , )f f f  where  

1
:f D R, 

2
:f D R  are defined as  

 
1 2

, 0 , 0
( ) , ( )

0 , 0 1, 0

x x x x
f x f x

x x
       

and ( 5, 5)D  

(1, 1), 0

( ) ( , ) : [0,1], [ 1, 0 ] , 0

(0, 0 ), 0

c

x

f x t l t l x

x

 

Let 
2

( , ) | 0, 0, .K x y R x y y x  

Then 
c

f  is K -pseudomonotone as 

( ),
c

f x y x K   ( ),
c

f y x y K  

but 
c

f  is not strict K -pseudomonotone 
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because for 1, 0x y  

 ( ),
c

f x y x K  but  ( ), int .
c

f y x y K  

 

Remark 14 Every strict K -naturally 

quasimonotone map is K -naturally 

quasimonotone but converse may not be true as 

can be seen from the following example: 

 

Example 5 Let :f D R
2
  be a function defined 

by
1 2

( , )f f f  where  

 
1

:f D R, 
2

:f D R are defined as  

 
2

1 2

, 0 , 0
( ) , ( )

0, 0 , 0

x x x x
f x f x

x x x
       

and ( 5, 5)D  

(1, 2 ), 0

( ) ( , ) : [0,1], [ 1, 0 ] , 0

(0, 1), 0

c

x x

f x t l t l x

x

 

Let 
2

( , ) | 0, 0 .K x y R x y  

Then 
c

f  is 
  

K - naturally quasimonotone as 

( ), int
c

f x y x K  ( ),
c

f y x y K  

but 
c

f  is not strict K - naturally quasimonotone 

because for 1, 0x y  ( ), int
c

f x y x K  

but  ( ), int .
c

f y x y K  

 

3. Vector Variational Inequalities 

In this section we consider the following vector 

optimization problem over cones and study its 

relation with associated vector variational 

inequalities: 

       (VOP)      K -minimize ( )f x  

             subject to   x C  

where :f D R
k

, 
1 2

( , , ..., ),
k

f f f f  each  ,
i

f  

1, 2, ...,i k  is locally Lipschitz, K  is closed 

convex and pointed cone with nonempty interior 

in R k  
 and C  is nonempty, convex subset of .D  

 

Definition 13.  A vector x C  is said to be a 

weak minimum of (VOP) if 

( ) ( ) int ,f x f y K     for all .y C  

 

 

We now consider the following Minty weak 

vector variational inequality problem(MVVIP) 

over cones. 

(MVVIP) Find x C  such that 

( ), int ,
c

f y y x K   for all   .y C  

 

Remark 15(i) If ,k n
n

+ \ {0}K R  and 

( , ),y x y x  then the above problem becomes 

Minty weak vector variational - like inequality 

problem (MWVLI) given by Rezaie and Zafarani 

[14] as follows: 

 

Find x C such that 

( ), ( , ) int ( ),
c

f y y x K x       for all ,y C  

 

where ( ) :K x x C is a family of convex and 

pointed cones of  R n  such that n

+( ) \ {0},K x R  

for all .x C  

                        (ii) If K R
k

, ,k p  C  is closed
 

and f  is convex
   

then the above problem 

reduces to the following variational inequality 

problem (WMVVI) considered by Lee and Lee 

[11]. 

 

Find x C  such that  

   for all ( ),
i i

f y  1, 2, ..., ,i k  

   
1
, , ..., , int

k
y x y x R

k
,   for all 

,y C   

where ( )
i

f y  denotes subdifferential of ,
i

f  

1, 2, ...,i k  at  .y  

 

Further, we consider the following Stampacchia 

weak vector variational inequality 

problem(SVVIP) over cones. 

 

(SVVIP) Find x C such that  

 ( ), int ,
c

f x y x K for all .y C  

 

Remark 16 (i) If ,k n
n

+ \ {0}K R  and 

( , ),y x y x  then the above problem becomes 

Stampacchia weak vector variational-like 

inequality problem (SWVLI) given by Rezaie 

and Zafarani [14] as follows: 

 Find x C such that 

( ), ( , ) int ( ),
c

f x y x K x       for all ,y C  

where ( ) :K x x C is a family of convex and 

pointed cones of  R n  such that n

+( ) \ {0},K x R  
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for all .x C  

 

(ii) If K R
k

, ,k p C  is closed
 
and f  is 

continuously differentiable
 

then the above 

problem reduces to the following variational 

inequality problem (WVVI)  considered by 

Giannessi [8]. 

 

Find x C such that 

    
1

( ), , ...., ( ), int
k

f x y x f x y x R
k

,     

for all .y C   

 

(iii) If K R
k

, ,k p  C  is closed
 
and f  is 

convex
  

then the  above problem reduces to the 

following variational inequality problem 

(WVVI)1 considered by Lee and Lee [11]. 

 

Find x C  such that for all ( ),
i i

f x  

1, 2, ..., ,i k  

   
1
, , ..., , int

k
y x y x R

k
, for all 

.y C   

 

We now present relations between weak 

minimum solution of (VOP) and solution of 

MVVIP(SVVIP). 

 

Theorem 1. If x C  is a solution of (MVVIP) 

and f  is K -
c

pseudoconvex then x  is a weak 

minimum for (VOP).  

Proof   Let x C  be a solution of (MVVIP). 

Then for all  ,y C  

( ), int .
c

f y y x K                         (1)                     

Let ( ) ( ),x x y x  0 1.  

Since C  is convex, ( ) .x C  

Replacing y  by ( )x  in (1) we get 

( ( )), ( ) int ,
c

f x x x K  

which implies that there exists at least one 

( ( ))
c

f x such that  

 , ( ) int .x x K                       (2)                                                                        

(2) gives , int .y x K   

As 
c

f  is locally bounded at ,x  there exist a 

neighbourhood of x  and a constant ' 0k  such 

that for each z  in this neighbourhood and 

( )
c

f z we have || || ' .k  

As  ( )x x  when 0 ,  thus for 0  small 

enough || || ' .k  

Without loss of generality we may assume that 

' .  

Since 
c

f  is closed, ' ( ),
c

f x  therefore for 

x C  there exists ' ( )
c

f x  such that 

', inty x K  

which gives ( ), int .
c

f x y x K  

Since f  is K -
c

pseudoconvex, we have  

( ) ( ) int ,f y f x K         for all .y C  

Hence x  is a weak minimum for (VOP).     

           
Theorem 2. If x C  is a weak minimum for 

(VOP) and each , 1, 2, ...,
i

f i k  is continuous, 

regular, then x  is a solution of (SVVIP).  

Proof    Since x C  is a weak minimum for 

(VOP) 

( ) ( ) intf x f y K  for all .y C  

     (3) 

Suppose on contrary x  is not a solution of 

(SVVIP). Then there exist y C  such that  

       ( ), int .
c

f x y x K  

That is, , inty x K  for all ( ),
c

f x                                                       

where
1 2

( , , ..., ),
k

( ),
c

i i
f x         

1, 2, ..., .i k  

Also, we have 

            
0

( )

( ) ( , ) sup , ,
i i

c
f xi i

f x y x y x    

1, 2, ..., .i k  

Since each ( ),
c

i
f x  1, 2, ...,i k  is compact, 

choose ( )
c

i i
f x  such that  

( )

sup , , ,
i i

c
f xi i

y x y x  1, 2, ..., .i k  

Then, 
0

( ) ( , ) , ,
i i

f x y x y x 1, 2, ..., .i k          

     (4)                                  

Let 
1 2

( , , ..., ),
k

 then ( ).
c

f x  

Thus for some ,y C  there exist ( )
c

f x such 

that  

, inty x K                                 

  (5) 

Then, (4) gives 
0

( ) ( , ) , .f x y x y x  

Using (5), we get 
0

( ) ( , ) int ,f x y x K which 

implies for all /{0},K    
0

( ) ( , ) 0.f x y x   
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That is,  
0

1

( ) ( , ) 0.
k

i i
i

f x y x  

Since each , 1, 2, ...,
i

f i k  is regular we have  

              
1

'
( ) ( , ) 0.

k

i i
i

f x y x  

By continuity of f  we have that there exist 

*
0  for each /{0},K  such that  

( )( ( )) ( )( ) 0,f x y x f x   for all 

*
0 .  

Let 
*

0 , then from above inequality it 

follows that for each /{0},K  

( )( ( )) ( )( ) 0,f x y x f x  

which gives  

              ( ( )) ( ) int ,f x y x f x K  

which is contradiction to (3). 

Hence x  is a solution of (SVVIP).                                                                                       

                 
Theorem 3. If x C  is a solution of (SVVIP) 

and f  is K -
c

pseudoconvex  then x  is a weak 

minimum for (VOP). 

 

Proof   Suppose on contrary x C  is not a weak 

minimum for (VOP), then there exists  

y C  such that  

     ( ) ( ) int .f y f x K  

Since  f  is K -
c

pseudoconvex  we have 

( ), int .
c

f x y x K  

Hence for ,x C  there exists y C  such that  

( ), int ,
c

f x y x K  

which is contradiction to the fact that x  is a 

solution of (SVVIP). 

Hence x  is a weak minimum for (VOP).    

        

Theorem 4. Let 
c

f  be strict K -naturally 

quasimonotone. Then x C  is a solution of 

(SVVIP) if and only if it is a solution of 

(MVVIP). 

 

Proof   Let x C  be a solution of (SVVIP). 

Then for all ,y C  ( ), int .
c

f x y x K                                                         

Since 
c

f  is strict K -naturally quasimonotone, 

we have  

( ), int .
c

f y y x K  

 

Hence x  is a solution of (MVVIP). 

Conversely suppose that x C  is a solution of 

(MVVIP). 

Then for all  ,y C ( ), int .
c

f y y x K    

                      (6)                                 

Let ( ) ( ),x x y x  0 1.   

Since C  is convex, ( ) .x C  

Replacing y  by ( )x  in (6) we get 

( ( )), ( ) int ,
c

f x x x K  

which implies that there exists at least one 

( ( ))
c

f x such that  

 , ( ) int .x x K                                                                                            

That is,  

  , int .y x K  

 

Then proceeding on the similar lines of Theorem 

1 we get that for any ,y C  there exist 

( )
c

f x  such that , inty x K  which 

gives ( ), int .
c

f x y x K  

Hence x  is a solution of (SVVIP).                
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