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ABSTRACT 
 
In this work, some design parameters have been obtained, depending on the energy eigenvalue of the carriers 
such as electrons and holes confined in the quantum well. Some optical power expressions for the active region 
and cladding layers of the quantum well have been obtained in terms of these parameters and have been 
theoretically estimated. 
 
Key Words: Symmetric quantum well, Asymmetric quantum well, Active region power, Loss power, Confinement 
factor. 

 
ÖZET 

 
Bu çalışmada, kuantum çukurundaki electron ve delikler gibi taşıyıcıların enerji öz değerlerine bağlı olan bazı 
tasarım parametreleri elde edilmiştir. Kuantum çukurunun hapsedici tabakaları ve aktif bölgesine ait bazı optik 
güç ifadeleri elde edilmiş ve teorik olarak hesaplanmıştır. 
 
Anahtar Kelimeler: Simetrik kuantum çukuru, Asimetrik kuantum çukuru, Aktif bölge gücü, Güç kaybı, 
Hapsedicilik faktörü. 
 

1. INTRODUCTION 
 

These days just about everybody has a quantum well 
(QW) at home. At the heart of every CD player is a 
layered crystalline structure finely crafted to squeeze 
laser light from electrons. The scientists create 
advanced versions  of such crystals, producing some of 
the finest QW material.  
 
Optical devices to understanding the basic principles 
that govern the operations of the quantum well lasers 
(QWLs) require a basic comprehension of simple 
quantum well problem. The QWLs, for example, are 
around 20-30 atomic layers thick and have been 
increasingly used to read the information stored on the 
compact disk. The QWLs are based on the carrier 
confinement in the QWs as working principle. The 
single QW is just one of the three basic regions of the 
quantum devices, which bases on the QW as shown in 

Fig.1 [1]. The scientists work together to create 
advanced materials and devices like super fast 
transistors. 
 
The QWLs produce laser light because of the unique 
atomic geometry of the layered crystals from which 
they are fashioned. The regions I, III and II in Fig.1 are 
called respectively cladding layers (CLs), which are 
high bandgap layers, and active region (AR). The CLs 
constitute 2 barriers which are erected by energy [2]. 
The barriers of energy confine the carriers such as 
electrons and holes in the AR. For the confinement 
most of the carriers and photons between the CLs, the 
QW is realized by the bandgap engineering. When the 
width 2a of the AR is comparable the characteristic 
length such as Broglie wave length, then the quantum 
size effect (QSE) occurs [3]. In this case, the carriers 
introduce new properties and leap a quantum level in 
energy and release light. This light can read the pattern 
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of pits on a CD or carry information down fibre optic 
cable in modern high-speed communication networks. 
By carefully varying crystalline layers to make 
specialized QWs, scientists can tune lasers to emit 
optimal wavelengths of light perfectly matched to the 
transmission properties of a special glass fiber.  
 
The carriers in the AR of the QW are allowed to exist 
in a certain confined (bound) states, which are 
described by a wave function such as electric field. 
That is, the confined states for carriers in the QW can 
be described by solving the Schrödinger wave equation 
to solve the quantized electric field wave and energy 
eigenvalue (EEV) for a carrier. The energy eigenvalues 
(EEVs) for the carriers in a bulk material [4] are 

2*m8/222nnE ahπ= ,   (1) 

n= 1, 2, 3, ... 
and in the AR of the QW  

n
EoVE −=ν ,   (2) 

n= 1, 2, 3, ... 
 

in which Vo is a barrier potential which is determined 
by the construction of the semiconductor material used 
[3], h  and m* are normalized Planck constant as 

π= 2/hh  and effective mass for a carrier, 
respectively. 
 
The electric fields, which verify the Schrödinger wave 
equation, for a carrier are respectively  
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in the region III [5]. In eq.(3) the amplitude A is given 
by 
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The parameter ζ  and the propagation constants Iα , 

IIα  and III,Iα  [6] in the equations above are 

respectively given by  
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where λ  is the wavelength of the optical field. 
 

In eqs.(9)-(11) zβ  is the phase constant in the z-

direction. The parameters above defined belong to the 
asymmetric quantum well (AQW) shown in Fig.1. If it 

is taken as III,InIIInIn ==  then the AQW becomes 

the symmetric quantum well (SQW). Therefore, 
eqs.(4,5) and eqs.(9,11) become as follows: [ ]a±α±= x(

III,I
exp

III,I
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E ,   (14) 

which are evanescent fields, and 
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In eq.(14) the negative sign corresponds to the region 
III. In this work we will study the SQW in terms of the 
normalized propagation constant as a model α . 

x  

y 

z  

 a  -a 
A c tive region   
       (A R ) 

C ladd ing layers (C Ls) 

( I)  (II)  ( III)  

 nI   nII nIII 

V (x)) 

0  

x  

y 

(a ) 

(b ) 
 

Fig.1 (a) Three basic regions of the AQW, (b) The 
variation of one-dimensional potential V(x) 

 
 

2. THE PARAMETER αααα 
 

For the single mode in the SQW the eigenvalue 
equation [6] is given by  
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ζ=ζη tan/ ,   (16) 

where η  is defined by 

aIII,Iα=η .   (17) 

The parameters ζ=α=ζ cosVII a  and ζ=α=η sinVIII,I a  

are the parametric variables of the EEVs in the 
normalized coordinate system for the carriers in the AR 
[6]. The parameters ζ  and η  form a circle and give 

normalized frequency (NF) as  

22V η+ζ= ,   (18) 

which is also given by  

oV*m2)/(V h�= ,   (19) 

or  

2
III,I

2
II nn

2
V −

λ
π

= � ,   (20) 

in the another alternative forms [7], as the radius of the 
circle as shown in Fig.2 [5,6]. The parameter α  is 
defined as 

ζ=η=α 2sin2V/2 ,   (21) 

which is the normalized propagation constant (NPC) 
[5,6,7]. Because the NPC is nonlinear, α  was 
expressed as  

2V/)29960.0V1428.1( −=α ,   (22) 

by Rudolf and at al. in the ref.[8] for linearity in the 
range of 2.5 V5.1 〈〈 . 

 
The NPC α  gives the another parameter L, which 
describes the depth of the QW as shown in Fig.2, as  

ζ=ζ=α−= 2cos2V/21L .   (23) 

The parametric variables ζ  and η  are also given by  

LV1V =α−=ζ   (24) 

and 

α=η V ,   (25) 

in terms of α  and the parameter L [5,6] . 
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Fig. 2 The coordinate points of the EEVs in the 
normalized coordinate system η−ζ  for the carriers in 

the QWs (dotted lines belong to the odd field).  
 
 
 

3. THE PROPERTIES OF THE NPC α  
 
Another defining of the NPC eα  [6] for the AQW is 

given by 
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where the parameters 
II α=η a  and 

IIIIII α=η a  for 

the CLs are the ordinates of the EEVs for carriers for 
the regions I and III in the AQW and  one can write as 

]
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which is the asymmetric factor [9]. Note that eq.(27) 

for the AQWs yields =η
I

=η
III III,I

η  for the 

SQWs. 
 

The parametric coordinates eζ , eη  define an elipse. 

Here eη  is the ordinate of the energy eigenvalue point 

on the ellipse for a carrier and eV  is the normalized 

frequency corresponding to this ordinate. If 

eee V α=η  due to eq.(25) is used in eq.(26), eα is 

obtained. This means that, in order to get the NPC, eη  

and eV  change in such a way that the ratio eη / eV  

remains as the NPC (as a constant). In eq.(26) 

ozef k/n β=  is effective index. If it is taken as 

III,InIIInIn ==  then ap=0 and thus eq.(26) 

becomes 
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where α  represents the NPC for the SQWs. The 
parameters ζ=α=ζ cos

c
VIII,Ic

a  and ζ=α=η sin
c

VIII,Ic
a  

give a circle with the radius V=Vc for the even field. If 
the circle is schematically plotted in Fig.3, then from 
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the figure one obtains 2
c

2
c

2 V/sin η=γ , in which cη  

and cV  are respectively the ordinate of the point on the 

circle and the normalized frequency corresponding to 

this ordinate cη  for the energy eigenvalue of a carrier.  

 
So, the NPC cα  for this circle with the radius cV  is 

given by  
2

c
2

c
2

c
2

c V/sinsin η=γ=ζ=α .   (31) 

 
If the equation α=α=η VV III,IIII,I

 or 

α=α=η VVcc  substitutes in eq.(31), it is also seen 

that α=α c , as shown in eq.(30). Here, α  represents 

the NPC for the circle. This states that the NPC is 
independent of the angle γ  and a constant, 

corresponding to normalized frequency Vc and the 

ordinate cη . 
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Fig.3 Effective index surface given by the circle for 

ordinary wave 
 
 

The circle in Fig.3, represents an ordinary wave and OP 
can be considered a wave number such as kc. In such a 

medium, according to normalized wave number  
ok

ck
, 

the formula 

2
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2
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2
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n

1

k

k
=    (32) 

expresses the effective index surface for the ordinary 
wave and is independent of the angleγ  [2]. 

From Fig.4, one obtains the parametric equations of the 
ellipse as 

ecos1Rcos1Re ζ=γ=ζ ,   (33)  

γ=η sin2Re = esin2R ζ     (34) 

where R1 and R2 are the radii of the ellipse. This ellipse 
is formed by the effective index of the AQW. Fig.4 has 
also Fig.3, and represents the index surface for the 

AQWs. Triangles 0P cζ  and OE eζ  are similar 

triangles, as shown in Fig.4. So, for the AQW and 
SQW, respectively, the normalized propagation 

constants eα  and cα  are equal to each other 

[cf.eq.(31)]. As a matter of fact, one gets 
2
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or from eqs.(33,34), 
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Once the free wave number ko and the length a of the 
QW are selected for a working point as certain values, 

the both parameters eη  and eV  change with respect to 

each other in such a way that the NPC eα  remains as a 

constant. But, to get the changing radii for ellipse, 
according to the effective index surface, the indices 
must change with wavelength λ  [2].  
 
Consequently, the effective index does depend on the 
form of ellipse as shown in Fig.4 and this index surface 
corresponds to the extraordinary wave [2] and is given 
by 
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which describes an ellipse[2]. The phase constants for 
the ordinary waves are not equal for 0≠γ . This fact 

plays a critical role in the nonlinear optics. OE in Fig.4 
can be regarded as the wave number ke for 

extraordinary wave. In eq.(37), for 0=γ  and o90=γ  

note that the effective indices are respectively equal to 
the indices n1 and n2, respectively.  
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Fig.4 Effective index surfaces on the circle and ellipse 

for ordinary and extra ordinary waves 

 
 
In coclusion, the NPC for the material used about any 
QW is dependent of indices of the regions of the QW 
and also dependent of structural parameters of material 
used and barrier potential Vo and the length a of the 
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QW. As a matter of fact, some of these are implied by 
the expressions [4] as follows for a single mode, 1=ν : 

oV

1E

oV

E
=ν=α , 

2a*m8

22

1E
π

=
h

,   (38) 

In eq.(38) Vo, and, m* represent the barrier potential, 
the width of the QW and the effective mass for a 
carrier, respectively. 
 
Consequently, the NPC α  belonging to the QW for 
given ko, nI, nII and nIII  is obtained as only one value. 
For this NPC, the parametric coordinates of the EEVs 
for carriers constitute an elipse in the AQWs, while 

they form a circle for the SQWs ( III,IIIII nnn == ) 

for the single mode. 
 

 
 

4. POWER FOR THE AR IN THE QW 
 

In the AR the power IIP  is requested as a unity, after 

loss power III,IP  flows through the CLs, is shown in 

Fig.5. 
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Fig.5 Different powers in the QW in the model α  
 
 

Denoting the complex conjugate with (*), the power 

IIP of the AR [6] in Fig.5 is defined as 
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for the SQW. From eqs.(3,40) in the SQW, one gets 
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which is called effective optical mode width [10]. 
 
Eqs.(6,41) give PII=1. The input power Pi in the SQW 
is given by  

III,IPIIPiP += .   (43) 

In this α  model, one assumes that IIPiP 〉  and 
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in which 2
l

P  is the loss power. 

 
 

5. LOSS POWER IN THE QW 
 
In the AQW the loss power [6] for the CLs in Fig.5 is 
generally defined as follows: 
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The loss in eq.(47) in the AQW becomes as  
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or eqs.(40,41,49,53) give 
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with the help of eqs.(24,25). Note that this different 
procedure is also in agreement with eq.(52). 

 
 

6. INPUT POWER IN THE QW 
 

The input power iP  [6] in the AQW in Fig.5 is defined 

as  
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and from eq.(51). 
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So, the parameter K [6] is  
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The confinement factor [6] is defined by  
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In the same way from eq.(54) one gets the parameter R 
[6] as 
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The power for the AR from eqs.(55,61) is obtained as 
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which is in agreement with power of  the AR defined as 
a unity. The constant A in eq.(6) due to eq.(42) 
becomes 

W/1A = .   (68) 
Eqs.(60,68) shows the agreement in eq.(54,67) as a 
result. 
 
 

7. THRESHOLD CONDITION AND GAIN  
 
Threshold coefficient (threshold gain) [2] for the SQWs 
is determined by the requirement that the round-trip 
gain is equal to 1:  

1
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If one considers only mirror losses, this implies that for 
the amplifying the gain coefficient g  must be 

sufficiently large, so that 

1
go

g
g

g

e2/1)
2

RıR( ≥
− ll

   (71) 

or 
 

+=
o

gg
th

g    (72) 



A Novel Procedure and Parameters for Design of Symmetric Quantum Wells in Terms of Normalised Propagation 
Constant as a Model α in the Single Mode 

 

TEMİZ, KARAKILINÇ 
79 

where gl  and og  are respectively the length of the 

cavity and the only mirror losses.  
 
 

8. ESTIMATION PROCEDURE BY MEANS OF 
THESE DESIGN PARAMETERS IN THE SINGLE 

QWs AT THE NEAR THRESHOLD LEVEL 
 

For a=5 Ao, 55.1=λ mµ , nI,III=3.350 and nII=3.352, 

one gets V=1.6592, which is in the range of the 
linearity. Therefore, eq.(22) gives 2995.0=α  and so 
L=0.7005. The parametric coordinates ζ  and η  of the 

EEVs in Fig.2 are respectively =ζ =1.38868 and 

90802.0=η  according to eqs.(24,25). The loss power 

lP  in eq.(51) becomes 0.5801. In order to remain as a 

unity of the power IIP  for the AR, the input power 

lP1iP +=  according to eqs.(43,48) must be 1. 5801 

and the confinement factor FII in eq.(65) is 0.6329. 
 
The absorption coefficients within the regions I and III 
of the AQWs give the relation with the confinement 

factor IIF  [11] as 
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coefficients for the regions I and III. From eqs.(65,73) 
one gets  

K=
I

k +
III

k    (74) 

in the AQWs and taking 
I

k =
III

k  

I
k =

III
k =K/2,   (75) 

in the SQWs. So, one can get as [11] 

2/2K
I

k)
II

F1(
II

F 
th

g =−=    (76) 

at the threshold. The threshold condition of the cavity 
at the situation of small-signal power gain becomes 

2/2KeIIF thg
eG == ,   (77) 

which gives 1.0697≅ 1 according to the parameters 
given above and value of K in eq.(64). This implies the 
working in the immediate at the threshold level.  
 
Initially, when laser starts, the gain may be much larger 
than the threshold gain. After a few oscillations in the 
value of the round trip gain, the laser action reaches a 
steady state and the gain obtains a steady-state value. 
Finally, it should be noted that the efficiency of a laser 
not only depends on the gain, but also on the pumping 
of efficiency [3]. Taking the mirror losses and the other 
cavity losses into account [2,12], one obtains 

2
RıR

1
ln

g2

1
ogg

l
+= =go+ 2/2K 

th
g = ,   (78) 

where og , and the each of R1, R2 are respectively  total 

of the mirror losses, other cavity losses, and reflectivity 
of the each of mirror as shown in Fig.6. The gain 
profile and loss level are depicted in Fig.7, in which 

oo f2π=ω , where fo is resonant frequency.  

A few round-trips through the cavity are sufficient to 
the field quite large. For example, one generally 
supposes that the net gain  

4
g

)
o

gg(

e2/1)
2

RıR( =
− l

.   (79) 

So, eq. (78) for given above parameters yields g=0.76. 
That is, for example, after just 5 round trips, the 
intensity will have grown by a factor of 42x5 ≅ 1.05x106 
with the amplifying of 

13.2
g

eG == ,   (80) 
provided that the gain coefficient g stays constant as 
2.13 [13]. 
 
The real value of eq.(78) must be 1 not 1.0697. 
Because, the NPC α  could not be exactly determined 
due to non-linearity in eq.(21) and thus has obtained 
approximately, as 1.0697. 
 

         )IIFthg(  

lg 

r1, r2: Power reflectivity 
coefficients of the mirrors Active laser material 

                 Mirror, r1 Mirror, r2 

 
 

Fig.6 A simple laser resonator at the threshold 
 
 

If the QW structure repeats itself in a periodic manner, 
it is known as a multiple quantum well (MQW) such as 
super lattices and quantum cascade lasers. The MQW 
structure leads to direct the emitted light along the 
layers. The optical confined of carriers occurs in the 
QWs all across the device. Some photons exist from the 
MQW layers of the gain section, some get absorbed by 
the material and some stimulated the emission of the 
other photons. The change of the stimulated emission 
increases as we inject more carriers. Transparency 
occurs when material loss equals gain and at higher 
pumping power, the MQW stack becomes a gain 
medium [14]. 
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The optical feedback essential for a laser is obtained by 
reflecting part of the light through the gain medium, 
using the mirrors to create a laser cavity. For example, 
limiting together many of the three QW structures in 
descending staircase of energy levels results in one 
electron emitting as many coherent photons as, there 
are active regions. This is how laser light is produced in 
the quantum cascade lasers [9]. 
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Fig.7 The gain profile and threshold level 

 
 
 
 

9. RESULTS 
 

The effective masses of carriers of the material used for 
the QWs are functions of the carrier velocities which 
depend on the indices of the regions of the QWs. The 
indices vary with the wavelength of the field. The NPC 
α  also depends on the wavelength, indices and the 
velocities of carriers. Consequently, the carrier mass 
and the NPC α  must be accurately determined under 
these circumstances.  
 
The greater accuracies of the calculated values for 
effective mass of the carrier and the NPC α  in the 
SQW are, the greater accuracies of the parameter 
values obtained by this theoretical approach are olso. 
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